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Preface

The application of silicon reagents in organic synthesis has
grown at an increasingly rapid rate over the last twenty years.
This has been the result of truly international interest. Signifi-
cant contributions have been made by Japanese, Russian, Ger-
man, French, English, American, Swiss and Canadian as well
as by chemists from many other countries. This monograph
attempts to comprehensively cover this field. Some seventeen
hundred articles reporting contributions by over eighteen
hundred scientists are summarized. Nevertheless, I have no
doubt that interesting and important work has been left out.
I welcome comments about such results which should be in-
cluded in any future editions of this monograph.

I would like to thank Robert Damrauer who first stimulated
my interest in organosilicon chemistry. In addition, I thank
a number of chemists who have shared my enthusiasm for
silicon chemistry over the years: A Chihi, M.E. Childs, R.A.
Felix, H.Firgo, T.Y.Gu, T.LIto, LN.Jung, K.E.Koenig,
H. Okinoshima, M.M.Radcliffe, B.I.Rosen, H.S.D.Soysa,
K.P. Steele, R.E. Swaim, D.Tzeng, P.B. Valkovich, A.K. Will-
ard, S. Wunderly, and present members of my research group.
The opportunity to spend a quiet sabbatical leave at U.C.L.A.
greatly assisted in the preparation of this book. Finally, I am
indebted to Michelle Dea who typed the entire manuscript,
to Jennifer L.Teller who prepared camera ready copies of
all equations and figures and to John Carpenter who assisted in
collecting literature references.

Los Angeles, California U.S.A.
August 1982 William P. Weber
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1 Fundamental Considerations

The goal of this' monograph is to review the use of silicon reagents in
organic synthesis. Activity in this areg has grown by leaps and bounds in the
past decade. The commercial availability of many of these silicon reagents
should further encourage development of new chemistry in this area [1—6].
This topic has been the subject of several previous reviews [7—13]. In the
present monograph, I have attempted to comprehensively cover this field with
the exception of silylation, the protection of O—H, N—H, and S—H bonds as
silyl ethers [11, 12]. This choice was dictated by the vast number of examples
of the use of silylation whose comprehensive coverage would have easily
doubled the length of this already sizeable monograph.

- Before beginning, a short summary of some of the physical bases under-
lying all silicon chemistry is in order. These data will be compared to those for
carbon since organic chemists are the intended audience of this book.

The ground electronic configuration of silicon is 1s?2s22p¢3s?3p? whereas
carbon is 1s*2s®2p?. Both are usually tetracoordinate in their stable compounds
and silicon, like carbon, uses four sp® hydridized orbitals in its bonding.
Suitable organosilicon compounds are capable of optical activity. Chiral
compounds such as o-naphthylphenylmethylsilane have proved useful for
the study of reaction mechanisms at silyl centers [14].

Silylenes are divalent silicon species, and like carbenes, are highly reactive
intermediates. While research is active in this area [15], the use of silylenes
in organic synthesis has yet to be reported.

Unlike carbon, silicon shows little tendency to form stable compounds’
possessing multiple bonds. No reagents which possess multiple bonds between
silicon and carbon or any other elements have yet been developed. This
situation may change, however, since chemists interested in reactive inter-
mediates have intensively studied this area for the past dozen years [16].

Because silicon forms bonds with orbitals of principle quantum number 3
rather than 2, its bonds will be longer than the comparable ones of carbon.
The atomic radius of silicon is 1.17 A while that for carbon is 0.77 A. In single
bonds, carbon and silicon nuclei are 1.87—1.89 A apart while the carbon-
carbon separation in ethane is 1.54 A [17]. This may reduce the steric bulk of
a trimethylsilyl group, making it appear smaller than might be anticipated.
For example, chloromethyltrimethylsilane undergoes S,2 substitution reactions
with greater facility than do neopentyl halides [18].

Nal
Acetone

(CH3)3SiCH2C1 (CH3)3SiCH21

(1.1)
1
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1 Fundamental Considerations

Silicon, unlike, carbon, possesses comparatively low lying vacant 3d orbitals,
Nucleophiles may associate with these empty orbitals and thus affect the
regiochemistry observed in their reactions with organosilicon compounds. For
example, a-trimethylsilyl epoxides undergo nucleophilic attack by dialkyl
cuprate reagents at the carbon bearing the silyl group. This contrasts with
the usual nucleophilic attack on epoxides at the less hindered carbon [19].

(CHy)4Si OH

’>0 (n-Bu) ,Cul i (C”3)35"7T/ (1.2)

n-Bu

3d Orbitals may stabilize transition states as well as pentacoordinate reaction
intermediates. These orbitals may provide low energy pathways for nucleophilic
displacements in which bond making preceeds bond breaking. Compounds of
the type R;SiX (X = halogen, etc.) undergo facile S,2 nucleophilic displacement
and solvolysis, while similar tertiary alkyl halides generally react by S,1
pathways.

Several types of compounds in which silicon is penta- and even hexaco-
ordinate are known. These possess electronegative ligands which may cause
contraction of the 3d orbitals [20—22]. Recently, dipotassium alkyl or alkenyl
pentafluorosilicates have been extensively employed in organic synthesis [23]
(See Chapter 10).

Although many electronegativity scales exist and have minor differences in
absolute values between them, all agree that silicon is more electropositive
than either carbon or hydrogen. In all silicon is relatively close in electro-
negativity to hydrogen. On Pauling’s scale carbon is at 2.5 while silicon is
at 1.8. Hydrogen at 2.1 is intermediate [24]. The reactions of methyl lithium
with triphenylsilane and triphenylmethane illustrate this difference [25].

PhySi-H + CHali ——= PhySi-CHy + Li' W™ (1.3)

PhiC-H + CHiLi —— PhyC” Lit o+ Chy-H (1.4)
The success of ionic hydrogenation in which silanes serve as hydride donors
to carbocations reflects these differences [26].

- & . ; :
Ph3C BF4 + Et3S1-H ——————-Ph3C-H o Et3S1-F * BF3 %)

On the other hand, silanes, which possess Si—H bonds, may be compared to
hydrogen. Hydrosilation and hydrogenation reactions have many common
features [27] (see Chapter 10).

: R H
R-C=C-H —HEE]]—3> —\ (1.6)
HyPtely W tsiay,

Trimethylsilyl groups often react in a manner analogous to a proton. For
example, HCN adds to the carbonyl group of aldehydes and ketones to form

2
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cyanohydrins, while trimethylsilyl cyanide in similar reactions yields tri-
methylsilyloxynitriles. (See Chapter 2)

>=0 e Nc>—0H (1 -7)

(CH,) ,STCN
>=o il dsatrl Nc§r——051(cn3)3 (1.8)
7.

Recent work has determined many silicon bond dissociation energies. Sub-
stitution appears to have much less effect on both Si~H and Si—C bond
energies than it does on C—H and C—C bond energies. Most Si—H bond
dissociation energies (kcal/mole) are about 89.5 whereas C —H bond dissociation
energies vary from 104.8 for methane to 87.9 for the alpha C—H bonds of
toluene. Silicon-carbon bonds are close to 88.5 kcal/mole in strength, whereas
C—C bond energies vary from 88 in ethane to 82 for the C—C bond of
neopentane [28]. Silicon forms very strong bonds with electronegative ele-
ments such as fluorine and oxygen (see Table for Bond Energies). This has
considerable synthetic implications (see Chapter 25).

The strength of Si—O bonds may result from partial double bond character;
oxygen 2p lone pairs can overlap with empty 3d orbitals on adjacent silicon.
Consistent with this view, the Si—O-Si bond angle of disiloxane is observed
to be 144° [29, 30].

0
H,Si SiH (1.9)

3 3
Y 14g0A4

The fact that carbanions alpha to silicon are formed both by metallation of
tetraalkylsilanes [31] and by addition of organometallics to vinyl silanes [32, 33]
may reflect stabilization of such anions by overlap of the filled 2p orbital on
carbon with the adjacent empty 3d orbitals on silicon (see Chapter 6).

PhaSi” N + PhLi —= Ph?Si-—{H-CHZ-Ph (1.10)

However, the importance of 3d orbitals has been questioned [34, 35].

Finally, silicon has a definite stabilizing effect on beta carbocations in
cases where the Si—C bond can achieve a trans-coplanar arrangement with the
vacant 2p orbital of the carbocation center. B-Bromoethyltrimethylsilane
undergoes solvolytic elimination to yield ethylene and the elements of TMS-Br.
This reaction is as sensitive to solvent polarity as is the ionization of t-butyl
chloride [36]. This is unusual reactivity results from stabilization of the
carbocation by hyperconjugation [37] with the Si—C bond or by bridging of
the trimethylsilyl group [38]. :



