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Preface

This book is about compiler construction. But rather than the usual theoretical
study, it is a case study of an actual compiling system.

The Pascal-P compiler is possibly the most widely used Pascal compiler — it
has been the basis of many Pascal systems, including the well-known UCSD system,
and there has even been a computer built specifically to run it. There have been
many references to and articles about P-code before, but never a full exposition
of it.

Studying the principles of compiler construction can be difficult if the
theory is not backed up with some concrete examples of it in use. Realising this,
many authors present small sections of a compiler usually for a toy language.
Although this can be helpful, it often still does not fully demonstrate the problems
involved, such as the problems of type compatibility, parameter passing, and so
on. So this book is an attempt to fill this gap by presenting an annotated text of
a complete compiler.

Another use of this book is to support the study of programming methodo-
logy. It is well known that a good way of learning how to program well is to
critically read other people’s programs, especially as so much of programmers’
time is spent maintaining and altering programs they did not write.

Also presented with this book is a one-pass assembler and interpreter,
both of which could be used in the study of assemblers, and as an introduction
to machine architecture.

About the Commentary
Each chapter describes a particular aspect of the P-code system, each section
discussing a particular procedure or group of procedures, sometimes preceded
by an explanation of the data-structures used. References to lines of the programs
are enclosed in square brackets [ ].

Usually a section is followed by notes on suggestions for improvements,
corrections, or just alternative ways of doing something for comparison. Obviously
in a lot of cases whether one method is better than another is a matter of taste,
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and sometimes the notes may appear critical. However, writing a compiler is a
difficult job, and once written it could probably be improved almost indefinitely.
The fact that it is possible to understand the whole of this compiler in a relatively
short time is witness to its good design and style, and it is this good style that
allows improvements to be easily found.

The notes have been arranged where possible to be independent of the main
commentary, so that on a first reading, they can be skipped, in order to gain an
understanding of the whole compiler, before going back and concentrating on
details for a deeper understanding.

Sometimes points are repeated in the notes, for instance when explaining
a data-structure and then later when the data-structure is used. This is to facili-
tate studying sections independently.

The only section of the compiler not discussed is printtables [676-845].
This is a procedure for the output of the compiler tables for testing purposes and
therefore is in no way essential to the compiler or understanding it; it has been
left as an exercise to the reader.

Terminology
Two points on terminology. To avoid repetitious phrases the word routine has
been used to mean procedure or function. To avoid confusion, a type like

type colour = (red, green, blue);

is called an enumeration, while the phrase scalar is used to cover enumerations,
subranges, integer, character, boolean, and real.

The Listings
The compiler and assembler/interpreter are as the originals, with the corrections
published in Pascal News included. The only changes we have made are correc-
tions to the indentation, to some comments, and to the layout of the lines.

Note that the upward arrow ‘4’ is printed as a carat “¥

We apologise that the listings are separate from the commentary — we would
have preferred to have interspersed them, but this was done to keep the price

of the book down.

References

Two essential documents that should be referred to in collaboration with this
are The Pascal User Manual and Report, (Jensen, 1975), the two halves of which
are referred to in this book as The User Manual, and The Pascal Report, and
Pascal-P Implementation Notes (Nori, 1981), which is the official document
distributed with the compiler.
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Introduction

The compiler presented here is for a close variant of Pascal known as Pascal-P.
Rather than producing code for any particular machine, it produces code, that
has come to be called ‘P-code’, for a hypothetical stack-based computer that is
in many ways ideal for Pascal compilation.

Also presented here is an assembler and interpreter for Pcode defining the
actions for this P-machine.

Both these programs are written in Pascal, which at first sight may seem a
rather incestuous relationship, but it leaves several options open to the imple-
mentor. For instance:

(1) Translate the compiler by hand into some other language that is available.
(2) Find someone who already has a Pascal compiler for another machine, and
compile the P-compiler with this to produce a running P-compiler. Then use
this new compiler to translate the P-compiler (that is, itself) into Pcode.

Armed with this P-code version of the compiler, the interpreter may then be
translated by hand into another language and this used to interpret the compiler.

Alternatively, a translator from P-code to an available assembly language
could be written. Either way this would be easier than translating the compiler
by hand.

OVERVIEW OF THE COMPILER
Schematically, the information flow in the compiler is like this:

code

; o — . p—
characters —a»| lexical |——g»| syntax semantics generation

Lexical analysis processes the input characters and recognises the symbols of
the language; the syntax analyser takes these symbols and recognises the constitu-
ent parts of the program; with the knowledge of these constituent parts the
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semantic analyser can gather information about what the program means; with
this information the code generator can then generate equivalent code.

The actual structure of the compiler is slightly different. Central to it are
compiling procedures that do the syntax analysis, and call the lexical analyser,
semantic analyser, and code generator as sub-modules. Pictorially:

characters

» | = code d
compiling generation £oge

semantics

The assembler and interpreter are two separate modules; the assembler produces
the code for the interpreter, which then runs the code.

It is worth mentioning here, that while the compiler was designed to be
machine independent, the interpreter was written to run on a CDC machine, and
so reflects many aspects of the CDC architecture, such as the word-length.

SPECIFIC AND GENERAL READING

History
The P-code compiler developed as an offshoot of an effort to produce a compiler
for a CDC 6000 computer. Papers describing this development are:

Amman, U. (1974), The Method of Structured Programming Applied to the
Development of a Computer, International Computing Symposium 1973, (Ed.
Guenter, A. et al.) North Holland, 93-99.

Amman, U. (1981a), The Zurich Implementation, (see Barron, 1981).

Amman, U. (1981b), Code Generation of a Pascal Compiler, (see Barron, 1981).
Wirth, N. (1971), The Design of a Pascal Compiler, Software — Practice and
Experience, 1,309-333.
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Compiling
General books on the theory of compiling are

Aho, A. V. and Ullman, J. D. (1977) The Principles of Compiler Design, Addison
Wesley, Reading, Mass.

Bomat, R. (1979), Understanding and Writing Compilers, Macmillan.

Gries, D. (1971), Compiler Construction for Digital Compilers, Wiley,N.Y.

Syntax Analysis
Books on the specifics of syntax analysis are

Aho, A. V. and Ullman, J. D. (1973), The Theory of Parsing, Translation, and
Compiling, 1 and II, Prentice Hall, N.J.

Backhouse, R. C, (1979), The Syntax of Programming Languages, Prentice Hall
International, London.

Compilers
Books that present the code for a compiler (in all cases except the first, for a mini
language) are

Aretz, F. E. J. K. et al. (1973), An Algol 60 Compiler in Algol 60, Mathematical
Centre, Amsterdam.

Welsh, J. and McKeag, M. (1980), Structured System Programming, Prentice Hall
International, London. '

Wirth, N. (1976), Algorithms + Data Structures = Programs, Prentice Hall, N. J.
Wirth, N. (1981), Pascal-S: A Subset and its Implementation, (see Barron 1981).

The compilers in the last two bear a close similarity to the P-code compiler,
though of course are much smaller.

Intermediate Codes
An interesting review of intermediate codes like P-code is

Elsworth, E. F. (1978), Compilation via an Intermediate Language, Computer
Journal, 22, 3.

P-Code
The following all deal with experience with P-code.

Berry, R. E., (1978), Experience with the Pascal-P Compiler, Software — Practice
and Experience, 8,617-627.

Daniels, M. C. and Pemberton, S. (1980), Implementing a Pascal Compiler on an
8085a System, Journal of Microcomputer Applications, 4.

Shimashi, M. et al. (1980), An Analysis of Pascal Programs in Compiler Writing,
Software-Practice and Experience, 10,231-240.
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Other Reading

Addyman, A. N, et al. (1979), A Draft Description of Pascal, Software — Practice
and Experience, 9, 381-424.

Barron, D. W., (Ed) (1981), Pascal — The Language and Its Implementation,
Wiley, Chichester.

Hartmann, A. C., (1977), A Concurrent Pascal Compiler for Minicomputers,
Springer-Verlag, Berlin.

Jensen, K., and Wirth, N., (1975), Pascal User Manual and Report, second ed.,
Springer-Verlag, Berlin.

Nori, K. V., et al., (1981), Pascal — Implementation Notes, in (Barron, 1981).
Pemberton, S., (1980), Comments on an Error-recovery Scheme by Hartmann,
Software — Practice and Experience, 10, 231-240.

Welsh, J., (1978), Economic Range Checks in Pascal, Software — Practice and
Experience, 8, 85-97.

Welsh, J., er al., (1981), Ambiguities and Insecurities in Pascal, in (Barron,
1981).
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