Jens Grabowski
Brian Nielsen (Eds.)

Formal Approaches
to Software Testing

4th International Workshop, FATES 2004
Linz, Austria, September 2004
Revised Selected Papers

LNCS 3395

-5-53 3 Springer

Jens Grabowski Brian Nielsen (Eds.)

Formal Approaches
to Software Testing

4th International Workshop, FATES 2004
Linz, Austria, September 21, 2004
Revised Selected Papers

B
\\1

L S

E200500904

@ Springer

Volume Editors

Jens Grabowski

University of Gottingen

Institute for Informatics

Lotzestr. 16-18, 37083 Gottingen, Germany
E-mail: grabowski @informatik.uni-goettingen.de

Brian Nielsen

Aalborg University

Department of Computer Science

Fredrik Bajersvej 7B, 9220 Aalborg, Denmark
E-mail: bnielsen@cs.auc.dk

Library of Congress Control Number: 2005921470

CR Subject Classification (1998): D.2, D.3, E.3, K.6

ISSN 0302-9743
ISBN 3-540-25109-X Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11400752 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3395

o

Lecture Notes in Computer Science

For information about Vols. 1-3315

please contact your bookseller or Springer

Vol. 3418: U. Brandes, T. Erlebach (Eds.), Network Anal-
ysis. XII, 471 pages. 2005.

Vol. 3416: M. Bohlen, J. Gamper, W. Polasek, M.A. Wim-
mer (Eds.), E-Government: Towards Electronic Democ-
racy. XIII, 311 pages. 2005. (Subseries LNAI).

Vol. 3414: M. Morari, L. Thiele (Eds.), Hybrid Systems:
Computation and Control. XII, 684 pages. 2005.

Vol. 3412: X. Franch, D. Port (Eds.), COTS-Based Soft-
ware Systems. X VI, 312 pages. 2005.

Vol. 3411: S.H. Myaeng, M. Zhou, K.-F. Wong, H.-J.
Zhang (Eds.), Information Retrieval Technology. XIII,
337 pages. 2005.

Vol. 3410: C.A. Coello Coello, A. Herndndez Aguirre,
E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimiza-
tion. XVI, 912 pages. 2005.

Vol. 3409: N. Guelfi, G. Reggio, A. Romanovsky (Eds.),
Scientific Engineering of Distributed Java Applications.
X, 127 pages. 2005.

Vol. 3406: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. XVII, 829 pages. 2005.

Vol. 3404: V. Diekert, B. Durand (Eds.), STACS 2005.
XVI, 706 pages. 2005.

Vol. 3403: B. Ganter, R. Godin (Eds.), Formal Concept
Analysis. XI, 419 pages. 2005. (Subseries LNAI).

Vol. 3401: Z. Li, L. Vulkov, J. Wasniewski (Eds.), Numer-
ical Analysis and Its Applications. XIII, 630 pages. 2005.

Vol. 3398: D.-K. Baik (Ed.), Systems Modeling and Sim-
ulation: Theory and Applications. XIV, 733 pages. 2005.
(Subseries LNAI).

Vol. 3397: T.G. Kim (Ed.), Artificial Intelligence and Sim-
ulation. XV, 711 pages. 2005. (Subseries LNAI).
Vol. 3396: R.M. van Eijk, M.-P. Huget, F. Dignum (Eds.),

Advances in Agent Communication. X, 261 pages. 2005.
(Subseries LNAI).

Vol. 3395: J. Grabowski, B. Nielsen (Eds.), Formal Ap-
proaches to Software Testing. X, 225 pages. 2005.

Vol. 3393: H.-J. Kreowski, U. Montanari, F. Orejas, G.
Rozenberg, G. Taentzer (Eds.), Formal Methods in Soft-
ware and Systems Modeling. XXVII, 413 pages. 2005.

Vol. 3391: C. Kim (Ed.), Information Networking. X VII,
936 pages. 2005.

Vol. 3390: R. Choren, A. Garcia, C. Lucena, A. Ro-
manovsky (Eds.), Software Engineering for Multi-Agent
Systems III. XII, 291 pages. 2005.

Vol. 3388: J. Lagergren (Ed.), Comparative Genomics.
VIII, 133 pages. 2005. (Subseries LNBI).

Vol. 3387: J. Cardoso, A. Sheth (Eds.), Semantic Web
Services and Web Process Composition. VIII, 147 pages.
2005.

Vol. 3386: S. Vaudenay (Ed.), Public Key Cryptography -
PKC 2005. IX, 436 pages. 2005.

Vol. 3385: R. Cousot (Ed.), Verification, Model Checking,
and Abstract Interpretation. XII, 483 pages. 2005.

Vol. 3383: J. Pach (Ed.), Graph Drawing. XII, 536 pages.
2005.

Vol. 3382: J. Odell, P. Giorgini, J.P. Miiller (Eds.), Agent-
Oriented Software Engineering V. X, 239 pages. 2005.

Vol. 3381: P. Vojtas, M. Bielikovd, B. Charron-Bost, O.
Sykora (Eds.), SOFSEM 2005: Theory and Practice of
Computer Science. XV, 448 pages. 2005.

Vol. 3379: M. Hemmyje, C. Niederee, T. Risse (Eds.), From
Integrated Publication and Information Systems to Infor-
mation and Knowledge Environments. XXIV, 321 pages.
2005.

Vol. 3378: J. Kilian (Ed.), Theory of Cryptography. XII,
621 pages. 2005.

Vol. 3377: B. Goethals, A. Siebes (Eds.), Knowledge Dis-
covery in Inductive Databases. VII, 190 pages. 2005.

Vol. 3376: A. Menezes (Ed.), Topics in Cryptology — CT-
RSA 2005. X, 385 pages. 2004.

Vol. 3375: M.A. Marsan, G. Bianchi, M. Listanti, M. Meo
(Eds.), Quality of Service in Multiservice IP Networks.
XIII, 656 pages. 2005.

Vol. 3374: D. Weyns, H.V.D. Parunak, F. Michel (Eds.),
Environments for Multi-Agent Systems. X, 279 pages.
2005. (Subseries LNAI).

Vol. 3372: C. Bussler, V. Tannen, I. Fundulaki (Eds.), Se-
mantic Web and Databases. X, 227 pages. 2005.

Vol. 3369: V.R. Benjamins, P. Casanovas, J. Breuker, A.
Gangemi (Eds.), Law and the Semantic Web. XII, 249
pages. 2005. (Subseries LNAI).

Vol. 3368: L. Paletta, J.K. Tsotsos, E. Rome, G.W.
Humphreys (Eds.), Attention and Performance in Com-
putational Vision. VIII, 231 pages. 2005.

Vol. 3366: 1. Rahwan, P. Moraitis, C. Reed (Eds.), Argu-
mentation in Multi-Agent Systems. XII, 263 pages. 2005.
(Subseries LNAI).

Vol. 3365: G. Mauri, G. Pdun, M.J. Pérez-Jiménez, G.
Rozenberg, A. Salomaa (Eds.), Membrane Computing.
1X, 415 pages. 2005.

Vol. 3363: T. Eiter, L. Libkin (Eds.), Database Theory -
ICDT 2005. XI, 413 pages. 2004.

Vol. 3362: G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
T. Muntean (Eds.), Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices. IX, 257 pages.
2005.

Vol. 3361: S. Bengio, H. Bourlard (Eds.), Machine Learn-
ing for Multimodal Interaction. XII, 362 pages. 2005.
Vol. 3360: S. Spaccapietra, E. Bertino, S. Jajodia, R. King,
D. McLeod, M.E. Orlowska, L. Strous (Eds.), Journal on
Data Semantics II. XI, 223 pages. 2005.

Vol. 3359: G. Grieser, Y. Tanaka (Eds.), Intuitive Human
Interfaces for Organizing and Accessing Intellectual As-
sets. XIV, 257 pages. 2005. (Subseries LNAI).

Vol. 3358: J. Cao, L.T. Yang, M. Guo, F. Lau (Eds.), Par-
allel and Distributed Processing and Applications. XXIV,
1058 pages. 2004.

Vol. 3357: H. Handschuh, M.A. Hasan (Eds.), Selected
Areas in Cryptography. X1, 354 pages. 2004.

Vol. 3356: G. Das, V.P. Gulati (Eds.), Intelligent Informa-
tion Technology. XII, 428 pages. 2004.

Vol. 3355: R. Murray-Smith, R. Shorten (Eds.), Switching
and Learning in Feedback Systems. X, 343 pages. 2005.

Vol. 3353: J. Hromkovi¢, M. Nagl, B. Westfechtel (Eds.),
Graph-Theoretic Concepts in Computer Science. XI, 404
pages. 2004.

Vol. 3352: C. Blundo, S. Cimato (Eds.), Security in Com-
munication Networks. XI, 381 pages. 2005.

Vol. 3351: G. Persiano, R. Solis-Oba (Eds.), Approxima-
tion and Online Algorithms. VIII, 295 pages. 2005.

Vol. 3350: M. Hermenegildo, D. Cabeza (Eds.), Practical
Aspects of Declarative Languages. VIII, 269 pages. 2005.

Vol. 3349: B.M. Chapman (Ed.), Shared Memory Parallel
Programming with Open MP. X, 149 pages. 2005.

Vol. 3348: A. Canteaut, K. Viswanathan (Eds.), Progress in
Cryptology - INDOCRYPT 2004. X1V, 431 pages. 2004.

Vol. 3347: R.K. Ghosh, H. Mohanty (Eds.), Distributed
Computing and Internet Technology. XX, 472 pages.
2004.

Vol. 3346: R.H. Bordini, M. Dastani, J. Dix, A.EF.
Seghrouchni (Eds.), Programming Multi-Agent Systems.
X1V, 249 pages. 2005. (Subseries LNAI).

Vol. 3345:Y. Cai (Ed.), Ambient Intelligence for Scientific
Discovery. XII, 311 pages. 2005. (Subseries LNAI).

Vol. 3344: J. Malenfant, B.M. @stvold (Eds.), Object-
Oriented Technology. ECOOP 2004 Workshop Reader.
VIII, 215 pages. 2005.

Vol. 3343: C. Freksa, M. Knauff, B. Krieg-Briickner, B.
Nebel, T. Barkowsky (Eds.), Spatial Cognition IV. Rea-
soning, Action, and Interaction. XIII, 519 pages. 2005.
(Subseries LNAI).

Vol. 3342: E. Sahin, W.M. Spears (Eds.), Swarm Robotics.
IX, 175 pages. 2005.

Vol. 3341: R. Fleischer, G. Trippen (Eds.), Algorithms and
Computation. XVII, 935 pages. 2004.

Vol. 3340: C.S. Calude, E. Calude, M.J. Dinneen (Eds.),
Developments in Language Theory. XI, 431 pages. 2004.

Vol. 3339: G.I. Webb, X. Yu (Eds.), AI 2004: Advances in
Artificial Intelligence. XXII, 1272 pages. 2004. (Subseries
LNAI).

Vol. 3338: S.Z. Li, J. Lai, T. Tan, G. Feng, Y. Wang (Eds.),
Advances in Biometric Person Authentication. X VIII, 699
pages. 2004.

Vol. 3337: J.M. Barreiro, F. Martin-Sanchez, V. Maojo, F.
Sanz (Eds.), Biological and Medical Data Analysis. XI,
508 pages. 2004.

Vol. 3336: D. Karagiannis, U. Reimer (Eds.), Practical
Aspects of Knowledge Management. X, 523 pages. 2004.
(Subseries LNAI).

Vol. 3335: M. Malek, M. ReitenspieB, J. Kaiser (Eds.),
Service Availability. X, 213 pages. 2005.

Vol. 3334: Z. Chen, H. Chen, Q. Miao, Y. Fu, E. Fox, E.-p.
Lim (Eds.), Digital Libraries: International Collaboration
and Cross-Fertilization. XX, 690 pages. 2004.

Vol. 3333: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part III. XXXV, 785 pages. 2004.

Vol. 3332: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part IT. XXXVI, 1051 pages. 2004.

Vol. 3331: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part I. XXXVI, 667 pages. 2004.

Vol. 3330: J. Akiyama, E.T. Baskoro, M. Kano (Eds.),
Combinatorial Geometry and Graph Theory. VIII, 227
pages. 2005.

Vol. 3329: PJ. Lee (Ed.), Advances in Cryptology - ASI-
ACRYPT 2004. XVI, 546 pages. 2004.

Vol. 3328: K. Lodaya, M. Mahajan (Eds.), FSTTCS 2004:
Foundations of Software Technology and Theoretical
Computer Science. XVI, 532 pages. 2004.

Vol. 3327:Y. Shi, W. Xu, Z. Chen (Eds.), Data Mining and
Knowledge Management. XIII, 263 pages. 2005. (Sub-
series LNAI).

Vol. 3326: A. Sen, N. Das, S.K. Das, B.P. Sinha (Eds.),
Distributed Computing - IWDC 2004. XIX, 546 pages.
2004.

Vol. 3325: C.H. Lim, M. Yung (Eds.), Information Security
Applications. XI, 472 pages. 2005.

Vol. 3323: G. Antoniou, H. Boley (Eds.), Rules and Rule
Markup Languages for the Semantic Web. X, 215 pages.
2004.

Vol. 3322: R. Klette, J. Zuni¢ (Eds.), Combinatorial Image
Analysis. XII, 760 pages. 2004.

Vol. 3321: M.J. Maher (Ed.), Advances in Computer Sci-
ence - ASIAN 2004. Higher-Level Decision Making. XII,
510 pages. 2004.

Vol. 3320: K.-M. Liew, H. Shen, S. See, W. Cai (Eds.), Par-
allel and Distributed Computing: Applications and Tech-
nologies. XXIV, 891 pages. 2004.

Vol. 3319: D. Amyot, A.W. Williams (Eds.), System Anal-
ysis and Modeling. XII, 301 pages. 2005.

Vol. 3318: E. Eskin, C. Workman (Eds.), Regulatory Ge-
nomics. VII, 115 pages. 2005. (Subseries LNBI).

Vol. 3317: M. Domaratzki, A. Okhotin, K. Salomaa, S.
Yu (Eds.), Implementation and Application of Automata.
XII, 336 pages. 2005.

Vol. 3316: N.R. Pal, N.K. Kasabov, R.K. Mudi, S. Pal,
S.K. Parui (Eds.), Neural Information Processing. XXX,
1368 pages. 2004.

Preface

Testing often accounts for more than 50% of the required effort during system
development. The challenge for research is to reduce these costs by providing new
methods for the specification and generation of high-quality tests. Experience
has shown that the use of formal methods in testing represents a very important
means for improving the testing process. Formal methods allow for the analysis
and interpretation of models in a rigorous and precise mathematical manner. The
use of formal methods is not restricted to system models only. Test models may
also be examined. Analyzing system models provides the possibility of generating
complete test suites in a systematic and possibly automated manner whereas
examining test models allows for the detection of design errors in test suites
and their optimization with respect to readability or compilation and execution
time. Due to the numerous possibilities for their application, formal methods
have become more and more popular in recent years.

The Formal Approaches in Software Testing (FATES) workshop series also
benefits from the growing popularity of formal methods. After the workshops in
Aalborg (Denmark, 2001), Brno (Czech Republic, 2002) and Montréal (Canada,
2003), FATES 2004 in Linz (Austria) was the fourth workshop of this series.
Similar to the workshop in 2003, FATES 2004 was organized in affiliation with
the IEEE/ACM Conference on Automated Software Engineering (ASE 2004).
FATES 2004 received 41 submissions. Each submission was reviewed by at least
three independent reviewers from the Program Committee with the help of some
additional reviewers. Based on their evaluations, 14 full papers and one work-
in-progress paper from 11 different countries were selected for presentation.

This volume contains revised versions of the presented papers. The revisions
reflect the lively discussions among the presenters and participants during the
FATES workshop. The papers use different formal methods and languages, e.g.,
automata, labelled transition systems, TTCN-3 or UPPAAL, and apply them to
symbolic test generation, the use of model-checking techniques in testing, the test
of nonfunctional properties, and test optimization. This diversity of formal meth-
ods and application domains in conjunction with the high number of submissions
to and participants of the FATES 2004 workshop emphasize the increased impor-
tance attributed to the research on formal approaches in software testing.

We would like to express our gratitude to all authors for their valuable contri-
butions and to the Workshop Organizing Committee of the ASE 2004 conference.
In addition, we would like to thank all members of the FATES Program Commit-
tee and the additional reviewers, who were given the essential task of reviewing
many papers in a short period of time. The individuals who contributed to this
effort are listed on the following pages.

December 2004 Jens Grabowski and Brian Nielsen
Goettingen and Aalborg Program Chairs

FATES 2004

Program Chairs

Jens Grabowski
Brian Nielsen

Program Committee

Rachel Cardell-Oliver
Shing-Chi Cheung

Marie-Claude Gaudel
Wolfgang Grieskamp
Robert M. Hierons
Thierry Jron

David Lee

Jose Carlos Maldonado
Manuel Nunez

Jeff Offutt

Alexandre Petrenko
Ina Schieferdecker
Jan Tretmans
Andreas Ulrich

Carsten Weise
Clay Williams

Organization

University of Goettingen, Germany
Aalborg University, Denmark

University of Western Australia, Crawley,
Australia

Hong Kong University of Science and Technology,
Hong Kong, China

Université de Paris-Sud, France

Microsoft Research, USA

Brunel University, UK

IRISA/INRIA, France

Bell Labs, Beijing, China

University of Sao Paulo, Brazil

Universidad Complutense de Madrid, Spain

George Mason University, USA

Computer Research Institute of Montréal, Canada

Fraunhofer FOKUS, Berlin, Germany

Radboud University, Nijmegen, The Netherlands

Siemens AG, Corporate Technology, Munich,
Germany

Ericsson Eurolab Deutschland GmbH, Germany

IBM Research, Thomas J. Watson Research
Center, New York, USA

VIII

Organization

Additional Reviewers

Aynur Abdurazik
Roger Alexander

George Mason University, USA
Colorado State University, USA

Ellen Francine Barbosa University of Sao Paulo, Brazil

Machiel van der Bijl
Henrik Bohnenkamp
Sergiy Boroday
Ricky W.K. Chan
Caixia Chi

Lars Frantzen

Tim French

University of Twente, The Netherlands
University of Twente, The Netherlands

CRIM, Canada

University of Hong Kong, Hong Kong, China
Bell Labs, China

Radboud University, Nijmegen, The Netherlands
University of Western Australia, Australia

David de Frutos-Escrig Universidad Complutense de Madrid, Spain

Roland Groz
Yuri Gurevich
Cedric S.C. Ho

Jin Bei-Hong
Jia Le Huo
Matthew Kaplan

Tim Klinge

Pieter Koopman
Keqin Li

Zhijun Liu

Marius Mikucionis
Helmut Neukirchen
Vikram Reddy
Ismael Rodrguez
Fernando Rubio
Guoqgiang Shu
Arne Skou

Tatiana Sugeta
Nikolai Tillmann
Margus Veanes
Auri M.R. Vincenzi
Bijendra Vishal
Frdric Voisin

Dong Wang

Edith Werner

Tim Willemse

INPG-ENSIMAG, Canada,

Microsoft Research, Redmond, USA

Hong Kong University of Science
and Technology, Hong Kong, China

Chinese Academy of Sciences, China

CRIM, Canada

IBM Research, Thomas J. Watson Research Center
New York, USA

IBM Research, Thomas J. Watson Research Center
New York, USA

Radboud University, Nijmegen, The Netherlands

Bell Labs, China

Ohio State University, USA

Aalborg University, Denmark

University of Goettingen, Germany

Ohio State University, USA

Universidad Complutense de Madrid, Spain

Universidad Complutense de Madrid, Spain

Ohio State University, USA

Aalborg University, Denmark

University of Sao Paulo, Brazil

Microsoft Research, Redmond, USA

Microsoft Research, Redmond, USA

University of Sao Paulo, Brazil

Ohio State University, USA

LRI, Université de Paris-Sud and CNRS, France

Bell Labs, China

University of Goettingen, Germany

Radboud University Nijmegen, The Netherlands

b

b

Table of Contents

Symbolic Test Generation

Test Generation Based on Symbolic Specifications
Lars Frantzen, Jan Tretmans, Tim A.C. Willemse 1

Symbolic Test Case Generation for Primitive Recursive Functions
Achim D. Brucker, Burkhart Wolff 16

Preserving Contexts for Soft Conformance Relation
David de Frutos Escrig, Carlos Gregorio Rodriguez 33

Testing Non-functional Properties

Testing of Symbolic-Probabilistic Systems
Natalia Lopez, Manuel Ninez, Ismael Rodriguez

A Test Generation Framework for quiescent Real-Time Systems
Laura Branddn Briones, Ed Brinksma

Online Testing of Real-Time Systems Using UPPAAL
Kim G. Larsen, Marius Mikucionis, Brian Nielsen

Testing Deadlock-Freeness in Real-Time Systems; A Formal Approach
Behzad Bordbar, Kozo Okano.oiiiuiiiiineinennenn. 95

Test Development with Model Checking Techniques

Using Model Checking for Reducing the Cost of Test Generation
Hyoung Seok Hong, Hasan Ural.................., 110

Specifying and Generating Test Cases Using Observer Automata
Johan Blom, Anders Hessel, Bengt Jonsson, Paul Pettersson

Semi-formal Development of a Fault-Tolerant Leader Election Protocol
in Erlang
Thomas Arts, Koen Claessen, Hans Svensson 140

An Automata-Theoretic Approach for Model-Checking Systems with
Unspecified Components
Gaoyan Xie, Zhe Dang

X Table of Contents

Test Optimization

Test Patterns with TTCN-3

Alain Vouffo-Feudjio, Ina Schieferdecker
High-Level Restructuring of TTCN-3 Test Data

Antal Wu-Hen-Chang, Dung Le Viet, Gabor Batori, Roland Gecse,

Gyula CSopakio
Ordering Mutants to Minimise Test Effort in Mutation Testing

Kalpesh Kapoor;. Jonathan P, Bowen: « st w:s s w v wimmin s smi msessms
Testing COM Components Using Software Fault Injection and
Mutation Analysis, and Its Empirical Study

Hoijin Yoon, FEunhee Kim, Joo Young Seo, Byoungju Choi

Author Index

Test Generation Based on
Symbolic Specifications

Lars Frantzen*, Jan Tretmans, and Tim A.C. Willemse**

Nijmegen Institute for Computing and Information Sciences (NIII),
Radboud University Nijmegen — The Netherlands
{1f, tretmans, timw}@cs.ru.nl

Abstract. Classical state-oriented testing approaches are based on sim-
ple machine models such as Labelled Transition Systems (LTSs), in which
data is represented by concrete values. To implement these theories, data
types which have infinite universes have to be cut down to finite vari-
ants, which are subsequently enumerated to fit in the model. This leads
to an explosion of the state space. Moreover, exploiting the syntactical
and/or semantical information of the involved data types is non-trivial
after enumeration. To overcome these problems, we lift the family of test-
ing relations iocor to the level of Symbolic Transition Systems (STSs).
We present an algorithm based on STSs, which generates and executes
tests on-the-fly on a given system. It is sound and complete for the ioco
testing relations.

1 Introduction

Testing is an important technique to assess the quality of systems. In testing, ex-
periments are conducted with a System Under Test (SUT) to determine whether
it behaves as expected. There are many different kinds of testing. We focus on
formal, specification based, black box, functionality testing. This basically means
that the SUT can only be observed (and controlled) via its external interfaces.
Moreover, a mathematical, unambiguous specification of the causal order be-
tween (appropriate) inputs and expected outputs of the SUT is the starting
point for the generation and the analysis of the test results.

Several (formal) test generation tools have been developed for specification
based, black box testing. Most of these tools use (variations of) state machines
or transition systems as the underlying model for test generation. We refer to
these types of tools as state oriented tools. For an overview of such tools see [2].
A problem, often encountered in such tools is the state space explosion, which is

* Lars Frantzen is supported by the Netherlands Organisation for Scientific Research
(NWO) under project: STRESS — Systematic Testing of Realtime Embedded Soft-
ware Systems.

** Tim Willemse carried out this work as part of the TANGRAM project under the
responsibility of the Embedded Systems Institute. Tangram is partially supported
by the Netherlands Ministry of Economic Affairs under grant TSIT2026.

J. Grabowski and B. Nielsen (Eds.): FATES 2004, LNCS 3395, pp. 1-15, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 L. Frantzen, J. Tretmans, and T.A.C. Willemse

due to the fact that they use an explicit internal representation for the states of
the specification. This is particularly true when the specification uses complex
data structures with large or infinite data domains, because each value in the
data domain potentially leads to another state. Consequently, many tools can
only cope with very restricted data structures with finite domains.

Opposed to state oriented tools are data type oriented tools, which are tools
tailored to deal with test generation for complicated data structures, such as
QUICKCHECK (3] and GAST [5]. These tools employ the structure of data types
to generate test data. However, they lack a built-in concept of state, which makes
them less suited to test, e.g., concurrent systems. The way to handle state in
such tools is to explicitly define a data structure that represents a state space,
but this is not always satisfactory.

The combination of the state oriented and the data type oriented approaches
looks promising, and it is exactly this what we investigate in this paper. As our
basis we take a state oriented approach to testing, viz. the ioco test theory [8].
To the underlying model of Labelled Transition Systems, we add the concept
of location variables, and the concept of data, which can be communicated over
gates. Both influence the flow of control, thereby allowing us to specify data-
dependent behaviour. We refer to these augmented Labelled Transition Systems
as Symbolic Transition Systems (STSs). We subsequently lift the ioco test theory
to STSs. As a result, we obtain a sound and complete test derivation algorithm
from specifications expressed as ST'Ss.

The test derivation algorithm for STSs allows to treat data symbolically.
Rather than elaborating our approach for a specific data formalism, data types
are treated as sets of values (algebras) and first order formulas are used to specify
values or predicates. This allows to combine STSs with any formalism of choice
(with corresponding test tools) for the specification and manipulation of data.
This is further elaborated into a tractable algorithm.

From a theoretical point of view, it is also interesting to give an algorithm
which generates symbolic test cases (STCs). This requires a purely symbolic
version of the iocor relations. This is depicted in Fig. 1. The front triangle

Fig. 1. Classical ioco test theory and symbolic ioco test theory

Test Generation Based on Symbolic Specifications 3

represents the classical ioco test theory, as presented in [8]. Test cases (I'C)) are
generated out of a specification LTS, and subsequently executed (||) on an SUT,
assumed to be modelled by an IOTS. The rear triangle consists of a purely sym-
bolic test theory. In this paper, we concentrate on the relation between STSs,
LTSs and IOTSs, and on the generation and execution of test cases, i.e. the
relation between STSs and T'Cs. Elaborating on the dashed lines and the corre-
sponding models is another line of research we are pursuing.

Related Work. The idea of combining data type oriented and state oriented ap-
proaches is not entirely new in testing. We mention a few noteworthy approaches.

The approach which comes closest to ours is the one described in [7]. There,
Input-Output Symbolic Transition Systems (IOSTSs) are used, which are very
similar to our STSs. The conformance relation they use corresponds to ioconf =
i0COrqces(z), but they do not deal with quiescence. In [7] test purposes are
chosen as a way to tackle the state space explosion problem. These are used
to compute a subgraph of the IOSTS representing a specific issue of interest.
Such test purposes are again (special) IOSTSs. The result is a test case which
is still symbolic in the sense that it is a deterministic IOSTS with special states
Pass, Fail and Inconclusive. The verdict Inconclusive is necessary to judge a
behaviour which conforms to a given specification, but does not satisfy the given
test purpose. Our approach does not rely on test purposes, even though the set
F which identifies the relation iocor can be seen as some form of test purpose.

The data-type oriented GAST tool [5] was recently extended in [6] to deal
with specifications given as (possibly nondeterministic) Extended Finite State
Machines (EFSMs). Such EFSMs are also symbolic specifications, but in some
senses more restrictive than STSs or IOSTSs. GAST basically implements a
generic algorithm to enumerate the elements of an arbitrary algebraic data type.
Such a type can be an input value, but also a whole path through the EFSM.
Since the list of all elements of a recursive type is infinitely long, lazy evaluation
is employed to generate only the fraction of this list that is actually needed.
The elements are generated in increasing size, both the executed paths and the
input values. GAST can be used to execute the generated tests on an SUT in an
on-the-fly manner.

Owverview. This paper is structured as follows. In Sect. 2 we briefly repeat notions
from first order logic. The ioco test theory is summarised in Sect. 3. The frame-
work of Symbolic Transition Systems is introduced in Sect. 4. We present an
on-the-fly implementation for generating and executing test cases for Symbolic
Transition Systems in Sect. 5. We finish with conclusions and future extensions
in Sect. 6.

2 First Order Logic

We use basic concepts from first order logic as our framework for dealing with
data. For a general introduction into logic we refer to [4]. From hereon we assume
a first order structure as given, i.e.:

4 L. Frantzen, J. Tretmans, and T.A.C. Willemse

— A logical signature & = (F, P) with

e Fis a set of function symbols. Each f€F has a corresponding arity n€N.

If n = 0 we call f a constant.

e P is a set of predicate symbols. Each p€ P has a corresponding arity n>0.
— A model M = (U, (fon)rer, (Pm)pep) With

e il being a nonempty set called universe.

e For all feF with arity n, for is a function of type U —il.

e For every peP with arity n we have pgny C U™.

For simplicity, and without loss of generality we restrict to one-sorted signatures.
Let X be a set of variables. Terms over X, denoted T(X), are built from function
symbols F' and variables X C X. We write var(t) to denote the set of variables
appearing in a term ¢. Terms t€%(0) are called ground terms.

Ezample 1. Assume we have X = {z,y}. Let & = (F, P) be given by F =
{zero, succ,add} (with arities 0,1 and 2, resp.), and P = {leq} (with arity 2).
An obvious model for this signature is the natural numbers with 0, successor,
addition and the less-or-equal predicate; any other model that sticks to the given
arities is fine too. Terms are, e.g. z, succ(z) and add(succ(z), y). Ground terms
are, e.g. zero and add(zero, succ(zero)). 0

A term-mapping is a function 0:X — T(X). The term-mapping id, referred to as
the identity mapping, is defined as id(z) = z for all zeX. We use the following
notation. For sets X,Y with X UY C X, we write T(Y)X for the set of term-
mappings that assign to each variable z€ X a term te¥(Y"), and to each variable
z ¢ X the term z. Given a term-mapping c€%T(Y)*X we overload the var-notation
as follows: var(0) =ges U, x var(o(z)).

The set of free variables of a first order formula ¢ is denoted free(p); the
set of bound variables is denoted bound(y). The set of first order formulas ¢
over X C X is denoted §(X); we have free(p) U bound(p) C X. A tautology is
represented by T. The ezistential closure of a formula o, denoted 3o, is defined
as 3o =gdes Jx1322 ... 3Ty : @ with {z1,...,2,} = free(p).

Given a term-mapping o and a formula ¢, the substitution of o(z) for z&free(p)
in ¢ is denoted ¢[o]. Substitutions are side-effect free, i.e. they do not add bound
variables. This is achieved using a-renaming. The substitution of terms o (z) for
variables x€ var(t), in a term ¢ using a term-mapping o, is denoted t[o].

Ezample 2. An example of a term mapping for X = {z,y} is 0 = {z —
succ(y), y — zero}e€T (X)X, with var(o) = {y}. The existential closure of
the formula ¢ = Vy : leq(z,y) with bound(y) = {y} and free(p) = {z} is
Jip = JzVy : leq(x,y). The substitution of o in ¢ is not side-effect free, but can
be achieved by renaming variable y to z, i.e. p[o] = Vz : leq(succ(y), z). o

A waluation ¥ is a function ¢:X — 4. We denote the set of all valuations as
U =45 {9:X — U | 9 is a valuation of X}. For a given X C X we write 9eiX
when only the values of the variables in X are of interest. For all the other
variables yeX \ X we set ¥(y) = %, where % is an arbitrary element of set il.

Test Generation Based on Symbolic Specifications 5

Having two valuations 9€UX and ¢eY with X N'Y = 0, their union is defined
as:

I(z) if zeX
(FUS)(z) =gef § s(z) if z€Y
* otherwise

The satisfaction of a formula ¢ w.r.t. a given valuation ¥ is denoted ¥ = ¢.
When free(p) = 0 we write 9 |= ¢ because the satisfaction is independent of a
concrete valuation.

The extension to evaluate whole terms based on a valuation ¥ is called a
term-evaluation and denoted Yeya:T(X) — U. The evaluation of ground terms is
denoted eval: () — 4L

To ease notation, we often treat a tuple (z1,...,z,)€A; X --- x A, as the
set {z1,...,z,}. We denote the composition of functions f:B—C and ¢:A—B
as fog.

Ezample 3. Assuming the standard model for natural numbers as given in ex-
ample 1, an example valuation is 9 = {z — 24, y 7}611{”1’}. For the formula
¢ of example 2, the valuation ¢ and the standard model for natural numbers we
find 9 £ ¢ and 9 = Jp and we get Veval(add(z, succ(y))) = 32. a

Our example of a logical structure for natural numbers shows that many, even
infinite ground terms may evaluate to the same value, e.g. the ground terms zero
and add(zero, zero) both evaluate to 0. We assume we have a unique ground
term representative for every value to facilitate the bidirectional translation.

3 Testing Labelled Transition Systems

We briefly review the iocor test theory on which this paper is based. For a
more detailed overview, we refer to [8]. The semantical model we use to model
reactive systems is based on Labelled Transition Systems (LTSs).

Definition 1. A Labelled Transition System is a tuple £ = (S, 59, X, —), where

— S is a (possibly infinite) set of states.

— 80€S is the initial state.

— X is a (possibly infinite) set of action labels. The special action label T ¢ X
denotes an unobservable action. In contrast, all other actions are observable.
We write X» to denote the set X U {7}.

— — C Sx X, xS is the transition relation. When (s, u, s')€— we write s 2 .
We often identify an LTS L with its initial state sq.

Unobservable actions can be used to model events that cannot be seen by an
observer of a system. The generalised transition relation =C S x Y* x S
captures this phenomenon: it abstracts from 7 actions preceding, in-between
and following a (possibly empty) sequence of observable actions. Given an LTS

6 L. Frantzen, J. Tretmans, and T.A.C. Willemse

Table 1. Deduction rules for generalised transitions

o T o "
. " s" s T g g s s" g w ?é T
s= s - T
S — 8 S — S8

L = (S, s0, X, —), this relation is defined by the deduction rules of Table 1. We
define two operations on LTSs. Given an LTS £ = (S, so, X, —) and a (possibly
new) action u. The action prefiz u; L is defined as

i £ =ges (SU{s}, s, XU {u},—>U{s i>so}) (1)

with s ¢ S being a fresh state. For a set of LTSs £ = {L,...,£,} with n > 0 of

the form £; = (‘21, 50i, 2, —i), we define the alternative composition of all LTSs
L;, denoted (L), as follows:

Y @) =aer (U Siu{shs, | Zn J(=iUls & s | 50 £ 5'})) (2)

i<n i<n i<n

with s ¢ |J;<,, Si being a fresh state. The operator Y is associative and com-
mutative. We sometimes write £; + Lo instead of > {L;, £3}.

3.1 The Test Relation iocor

We introduce the following shorthand notation. For a pe X, we write s -5 when

there is a state s’ such that s % &', and, likewise, given a c€X* we write s ==
when there is a state s’ such that s == '

Definition 2. Let £ = (S, s0,X,—) be an LTS and let s€S.

1. init(s) =gey { peZ | s 5 }.

2. traces(s) =gef { 0€EX* | s == }.

3. L has finite behaviour if all o€traces(so) satisfy |o| < n for some neN.
4. L is deterministic if for all o€ X*, |{s' | so == s'}| < 1.

We assume that implementations of a reactive system can be given as an input-
output transition system (I0TSs). An IOTS is an LTS in which the set of action
labels X is partitioned in a set of input actions £ and a set of output actions
XYy, and for which it is assumed that all input actions are enabled in all states.

Definition 3. Let £ = (S, 50, X1UXy,—) be an LTS. A state s€S is quiescent,
denoted by 6(s), if YueXy U {7} : s /.

Let 6 be a special action label, not part of any action label set. For a given set
of action labels Y, we abbreviate X U {§} with Xs. The suspension transitions
=sC 5 x X5 x S are given by the deduction rules of Table 2. The set of all

suspension traces of L is denoted Straces(L) = {o€X} | L ==5}.

