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Preface

Testing often accounts for more than 50% of the required effort during system
development. The challenge for research is to reduce these costs by providing new
methods for the specification and generation of high-quality tests. Experience
has shown that the use of formal methods in testing represents a very important
means for improving the testing process. Formal methods allow for the analysis
and interpretation of models in a rigorous and precise mathematical manner. The
use of formal methods is not restricted to system models only. Test models may
also be examined. Analyzing system models provides the possibility of generating
complete test suites in a systematic and possibly automated manner whereas
examining test models allows for the detection of design errors in test suites
and their optimization with respect to readability or compilation and execution
time. Due to the numerous possibilities for their application, formal methods
have become more and more popular in recent years.

The Formal Approaches in Software Testing (FATES) workshop series also
benefits from the growing popularity of formal methods. After the workshops in
Aalborg (Denmark, 2001), Brno (Czech Republic, 2002) and Montréal (Canada,
2003), FATES 2004 in Linz (Austria) was the fourth workshop of this series.
Similar to the workshop in 2003, FATES 2004 was organized in affiliation with
the IEEE/ACM Conference on Automated Software Engineering (ASE 2004).
FATES 2004 received 41 submissions. Each submission was reviewed by at least
three independent reviewers from the Program Committee with the help of some
additional reviewers. Based on their evaluations, 14 full papers and one work-
in-progress paper from 11 different countries were selected for presentation.

This volume contains revised versions of the presented papers. The revisions
reflect the lively discussions among the presenters and participants during the
FATES workshop. The papers use different formal methods and languages, e.g.,
automata, labelled transition systems, TTCN-3 or UPPAAL, and apply them to
symbolic test generation, the use of model-checking techniques in testing, the test
of nonfunctional properties, and test optimization. This diversity of formal meth-
ods and application domains in conjunction with the high number of submissions
to and participants of the FATES 2004 workshop emphasize the increased impor-
tance attributed to the research on formal approaches in software testing.

We would like to express our gratitude to all authors for their valuable contri-
butions and to the Workshop Organizing Committee of the ASE 2004 conference.
In addition, we would like to thank all members of the FATES Program Commit-
tee and the additional reviewers, who were given the essential task of reviewing
many papers in a short period of time. The individuals who contributed to this
effort are listed on the following pages.

December 2004 Jens Grabowski and Brian Nielsen
Goettingen and Aalborg Program Chairs

FATES 2004
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Test Generation Based on
Symbolic Specifications

Lars Frantzen*, Jan Tretmans, and Tim A.C. Willemse**

Nijmegen Institute for Computing and Information Sciences (NIII),
Radboud University Nijmegen — The Netherlands
{1f, tretmans, timw}@cs.ru.nl

Abstract. Classical state-oriented testing approaches are based on sim-
ple machine models such as Labelled Transition Systems (LTSs), in which
data is represented by concrete values. To implement these theories, data
types which have infinite universes have to be cut down to finite vari-
ants, which are subsequently enumerated to fit in the model. This leads
to an explosion of the state space. Moreover, exploiting the syntactical
and/or semantical information of the involved data types is non-trivial
after enumeration. To overcome these problems, we lift the family of test-
ing relations iocor to the level of Symbolic Transition Systems (STSs).
We present an algorithm based on STSs, which generates and executes
tests on-the-fly on a given system. It is sound and complete for the ioco
testing relations.

1 Introduction

Testing is an important technique to assess the quality of systems. In testing, ex-
periments are conducted with a System Under Test (SUT) to determine whether
it behaves as expected. There are many different kinds of testing. We focus on
formal, specification based, black box, functionality testing. This basically means
that the SUT can only be observed (and controlled) via its external interfaces.
Moreover, a mathematical, unambiguous specification of the causal order be-
tween (appropriate) inputs and expected outputs of the SUT is the starting
point for the generation and the analysis of the test results.

Several (formal) test generation tools have been developed for specification
based, black box testing. Most of these tools use (variations of) state machines
or transition systems as the underlying model for test generation. We refer to
these types of tools as state oriented tools. For an overview of such tools see [2].
A problem, often encountered in such tools is the state space explosion, which is

* Lars Frantzen is supported by the Netherlands Organisation for Scientific Research
(NWO) under project: STRESS — Systematic Testing of Realtime Embedded Soft-
ware Systems.

** Tim Willemse carried out this work as part of the TANGRAM project under the
responsibility of the Embedded Systems Institute. Tangram is partially supported
by the Netherlands Ministry of Economic Affairs under grant TSIT2026.

J. Grabowski and B. Nielsen (Eds.): FATES 2004, LNCS 3395, pp. 1-15, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 L. Frantzen, J. Tretmans, and T.A.C. Willemse

due to the fact that they use an explicit internal representation for the states of
the specification. This is particularly true when the specification uses complex
data structures with large or infinite data domains, because each value in the
data domain potentially leads to another state. Consequently, many tools can
only cope with very restricted data structures with finite domains.

Opposed to state oriented tools are data type oriented tools, which are tools
tailored to deal with test generation for complicated data structures, such as
QUICKCHECK (3] and GAST [5]. These tools employ the structure of data types
to generate test data. However, they lack a built-in concept of state, which makes
them less suited to test, e.g., concurrent systems. The way to handle state in
such tools is to explicitly define a data structure that represents a state space,
but this is not always satisfactory.

The combination of the state oriented and the data type oriented approaches
looks promising, and it is exactly this what we investigate in this paper. As our
basis we take a state oriented approach to testing, viz. the ioco test theory [8].
To the underlying model of Labelled Transition Systems, we add the concept
of location variables, and the concept of data, which can be communicated over
gates. Both influence the flow of control, thereby allowing us to specify data-
dependent behaviour. We refer to these augmented Labelled Transition Systems
as Symbolic Transition Systems (STSs). We subsequently lift the ioco test theory
to STSs. As a result, we obtain a sound and complete test derivation algorithm
from specifications expressed as ST'Ss.

The test derivation algorithm for STSs allows to treat data symbolically.
Rather than elaborating our approach for a specific data formalism, data types
are treated as sets of values (algebras) and first order formulas are used to specify
values or predicates. This allows to combine STSs with any formalism of choice
(with corresponding test tools) for the specification and manipulation of data.
This is further elaborated into a tractable algorithm.

From a theoretical point of view, it is also interesting to give an algorithm
which generates symbolic test cases (STCs). This requires a purely symbolic
version of the iocor relations. This is depicted in Fig. 1. The front triangle

Fig. 1. Classical ioco test theory and symbolic ioco test theory



Test Generation Based on Symbolic Specifications 3

represents the classical ioco test theory, as presented in [8]. Test cases (I'C)) are
generated out of a specification LTS, and subsequently executed (||) on an SUT,
assumed to be modelled by an IOTS. The rear triangle consists of a purely sym-
bolic test theory. In this paper, we concentrate on the relation between STSs,
LTSs and IOTSs, and on the generation and execution of test cases, i.e. the
relation between STSs and T'Cs. Elaborating on the dashed lines and the corre-
sponding models is another line of research we are pursuing.

Related Work. The idea of combining data type oriented and state oriented ap-
proaches is not entirely new in testing. We mention a few noteworthy approaches.

The approach which comes closest to ours is the one described in [7]. There,
Input-Output Symbolic Transition Systems (IOSTSs) are used, which are very
similar to our STSs. The conformance relation they use corresponds to ioconf =
i0COrqces(z), but they do not deal with quiescence. In [7] test purposes are
chosen as a way to tackle the state space explosion problem. These are used
to compute a subgraph of the IOSTS representing a specific issue of interest.
Such test purposes are again (special) IOSTSs. The result is a test case which
is still symbolic in the sense that it is a deterministic IOSTS with special states
Pass, Fail and Inconclusive. The verdict Inconclusive is necessary to judge a
behaviour which conforms to a given specification, but does not satisfy the given
test purpose. Our approach does not rely on test purposes, even though the set
F which identifies the relation iocor can be seen as some form of test purpose.

The data-type oriented GAST tool [5] was recently extended in [6] to deal
with specifications given as (possibly nondeterministic) Extended Finite State
Machines (EFSMs). Such EFSMs are also symbolic specifications, but in some
senses more restrictive than STSs or IOSTSs. GAST basically implements a
generic algorithm to enumerate the elements of an arbitrary algebraic data type.
Such a type can be an input value, but also a whole path through the EFSM.
Since the list of all elements of a recursive type is infinitely long, lazy evaluation
is employed to generate only the fraction of this list that is actually needed.
The elements are generated in increasing size, both the executed paths and the
input values. GAST can be used to execute the generated tests on an SUT in an
on-the-fly manner.

Owverview. This paper is structured as follows. In Sect. 2 we briefly repeat notions
from first order logic. The ioco test theory is summarised in Sect. 3. The frame-
work of Symbolic Transition Systems is introduced in Sect. 4. We present an
on-the-fly implementation for generating and executing test cases for Symbolic
Transition Systems in Sect. 5. We finish with conclusions and future extensions
in Sect. 6.

2 First Order Logic

We use basic concepts from first order logic as our framework for dealing with
data. For a general introduction into logic we refer to [4]. From hereon we assume
a first order structure as given, i.e.:
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— A logical signature & = (F, P) with

e Fis a set of function symbols. Each f€F has a corresponding arity n€N.

If n = 0 we call f a constant.

e P is a set of predicate symbols. Each p€ P has a corresponding arity n>0.
— A model M = (U, (fon)rer, (Pm)pep) With

e il being a nonempty set called universe.

e For all feF with arity n, for is a function of type U —il.

e For every peP with arity n we have pgny C U™.

For simplicity, and without loss of generality we restrict to one-sorted signatures.
Let X be a set of variables. Terms over X, denoted T(X), are built from function
symbols F' and variables X C X. We write var(t) to denote the set of variables
appearing in a term ¢. Terms t€%(0) are called ground terms.

Ezample 1. Assume we have X = {z,y}. Let & = (F, P) be given by F =
{zero, succ,add} (with arities 0,1 and 2, resp.), and P = {leq} (with arity 2).
An obvious model for this signature is the natural numbers with 0, successor,
addition and the less-or-equal predicate; any other model that sticks to the given
arities is fine too. Terms are, e.g. z, succ(z) and add(succ(z), y). Ground terms
are, e.g. zero and add(zero, succ(zero)). 0

A term-mapping is a function 0:X — T(X). The term-mapping id, referred to as
the identity mapping, is defined as id(z) = z for all zeX. We use the following
notation. For sets X,Y with X UY C X, we write T(Y)X for the set of term-
mappings that assign to each variable z€ X a term te¥(Y"), and to each variable
z ¢ X the term z. Given a term-mapping c€%T(Y)*X we overload the var-notation
as follows: var(0) =ges U, x var(o(z)).

The set of free variables of a first order formula ¢ is denoted free(p); the
set of bound variables is denoted bound(y). The set of first order formulas ¢
over X C X is denoted §(X); we have free(p) U bound(p) C X. A tautology is
represented by T. The ezistential closure of a formula o, denoted 3o, is defined
as 3o =gdes Jx1322 ... 3Ty : @ with {z1,...,2,} = free(p).

Given a term-mapping o and a formula ¢, the substitution of o(z) for z&free(p)
in ¢ is denoted ¢[o]. Substitutions are side-effect free, i.e. they do not add bound
variables. This is achieved using a-renaming. The substitution of terms o (z) for
variables x€ var(t), in a term ¢ using a term-mapping o, is denoted t[o].

Ezample 2. An example of a term mapping for X = {z,y} is 0 = {z —
succ(y), y — zero}e€T (X)X, with var(o) = {y}. The existential closure of
the formula ¢ = Vy : leq(z,y) with bound(y) = {y} and free(p) = {z} is
Jip = JzVy : leq(x,y). The substitution of o in ¢ is not side-effect free, but can
be achieved by renaming variable y to z, i.e. p[o] = Vz : leq(succ(y), z). o

A waluation ¥ is a function ¢:X — 4. We denote the set of all valuations as
U =45 {9:X — U | 9 is a valuation of X}. For a given X C X we write 9eiX
when only the values of the variables in X are of interest. For all the other
variables yeX \ X we set ¥(y) = %, where % is an arbitrary element of set il.
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Having two valuations 9€UX and ¢eY with X N'Y = 0, their union is defined
as:

I(z) if zeX
(FUS)(z) =gef § s(z) if z€Y
* otherwise

The satisfaction of a formula ¢ w.r.t. a given valuation ¥ is denoted ¥ = ¢.
When free(p) = 0 we write 9 |= ¢ because the satisfaction is independent of a
concrete valuation.

The extension to evaluate whole terms based on a valuation ¥ is called a
term-evaluation and denoted Yeya:T(X) — U. The evaluation of ground terms is
denoted eval: () — 4L

To ease notation, we often treat a tuple (z1,...,z,)€A; X --- x A, as the
set {z1,...,z,}. We denote the composition of functions f:B—C and ¢:A—B
as fog.

Ezample 3. Assuming the standard model for natural numbers as given in ex-
ample 1, an example valuation is 9 = {z — 24, y 7}611{”1’}. For the formula
¢ of example 2, the valuation ¢ and the standard model for natural numbers we
find 9 £ ¢ and 9 = Jp and we get Veval(add(z, succ(y))) = 32. a

Our example of a logical structure for natural numbers shows that many, even
infinite ground terms may evaluate to the same value, e.g. the ground terms zero
and add(zero, zero) both evaluate to 0. We assume we have a unique ground
term representative for every value to facilitate the bidirectional translation.

3 Testing Labelled Transition Systems

We briefly review the iocor test theory on which this paper is based. For a
more detailed overview, we refer to [8]. The semantical model we use to model
reactive systems is based on Labelled Transition Systems (LTSs).

Definition 1. A Labelled Transition System is a tuple £ = (S, 59, X, —), where

— S is a (possibly infinite) set of states.

— 80€S is the initial state.

— X is a (possibly infinite) set of action labels. The special action label T ¢ X
denotes an unobservable action. In contrast, all other actions are observable.
We write X» to denote the set X U {7}.

— — C Sx X, xS is the transition relation. When (s, u, s')€— we write s 2 .
We often identify an LTS L with its initial state sq.

Unobservable actions can be used to model events that cannot be seen by an
observer of a system. The generalised transition relation =C S x Y* x S
captures this phenomenon: it abstracts from 7 actions preceding, in-between
and following a (possibly empty) sequence of observable actions. Given an LTS
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Table 1. Deduction rules for generalised transitions

o T o "
. " s" s T g g s s" g w ?é T
s= s - T
S — 8 S — S8

L = (S, s0, X, —), this relation is defined by the deduction rules of Table 1. We
define two operations on LTSs. Given an LTS £ = (S, so, X, —) and a (possibly
new) action u. The action prefiz u; L is defined as

i £ =ges (SU{s}, s, XU {u},—>U{s i>so}) (1)

with s ¢ S being a fresh state. For a set of LTSs £ = {L,...,£,} with n > 0 of

the form £; = (‘21, 50i, 2, —i), we define the alternative composition of all LTSs
L;, denoted (L), as follows:

Y @) =aer (U Siu{shs, | Zn J(=iUls & s | 50 £ 5'})) (2)

i<n i<n i<n

with s ¢ |J;<,, Si being a fresh state. The operator Y is associative and com-
mutative. We sometimes write £; + Lo instead of > {L;, £3}.

3.1 The Test Relation iocor

We introduce the following shorthand notation. For a pe X, we write s -5 when

there is a state s’ such that s % &', and, likewise, given a c€X* we write s ==
when there is a state s’ such that s == '

Definition 2. Let £ = (S, s0,X,—) be an LTS and let s€S.

1. init(s) =gey { peZ | s 5 }.

2. traces(s) =gef { 0€EX* | s == }.

3. L has finite behaviour if all o€traces(so) satisfy |o| < n for some neN.
4. L is deterministic if for all o€ X*, |{s' | so == s'}| < 1.

We assume that implementations of a reactive system can be given as an input-
output transition system (I0TSs). An IOTS is an LTS in which the set of action
labels X is partitioned in a set of input actions £ and a set of output actions
XYy, and for which it is assumed that all input actions are enabled in all states.

Definition 3. Let £ = (S, 50, X1UXy,—) be an LTS. A state s€S is quiescent,
denoted by 6(s), if YueXy U {7} : s /.

Let 6 be a special action label, not part of any action label set. For a given set
of action labels Y, we abbreviate X U {§} with Xs. The suspension transitions
=sC 5 x X5 x S are given by the deduction rules of Table 2. The set of all

suspension traces of L is denoted Straces(L) = {o€X} | L ==5}.



