Encyclopedia of Chemical Processing and Design

50

Executive Editor John J. McKetta

Encyclopedia of Chemical Processing and Design

EXECUTIVE EDITOR

MARCEL DEKKER, INC.

John J. McKetta

NEW YORK • BASEL • HONG KONG

Library of Congress Cataloging in Publication Data

Main entry under title:

Encyclopedia of chemical processing and design.

Includes bibliographical references.

1. Chemical engineering—Dictionaries 2. Chemistry, Technical—Dictionaries. I. McKetta, John J.

II. Cunningham, William Aaron.

Tp9.E66 660.2'8'003 75-40646

ISBN: 0-8247-2601-4

COPYRIGHT © 1995 by MARCEL DEKKER, INC. ALL RIGHTS RESERVED.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

MARCEL DEKKER, INC. 270 Madison Avenue, New York, New York, 10016

Current printing (last digit): 10987654321

PRINTED IN THE UNITED STATES OF AMERICA

Encyclopedia of Chemical Processing and Design

50

EXECUTIVE EDITOR
JOHN J. McKETTA
The University of Texas at Austin
Austin, Texas
EDITORIAL ADVISORY BOARD

LYLE F. ALBRIGHT Purdue University Lafayette, Indiana

JAMES R. FAIR
Professor of Chemical Engineering
The University of Texas
Austin, Texas

JOHN HAPPEL Columbia University New York, New York

ERNEST E. LUDWIG Ludwig Consulting Engineers, Inc. Baton Rouge, Louisiana

R. A. McKETTA
Chemical Engineer
Purvin and Gertz, Inc.
Houston, Texas

International Advisory Board

RAY C. ADAM

Former Chairman of the Board N. L. Industries, Inc. New York, New York

CARL W. ALBERS

Senior Process Engineer M. W. Kellogg Houston, Texas

M. A. ALLAWALA

Managing Director National Refinery Ltd. Karachi, Pakistan

HAMED H. AMER

Chairman Agiba Petroleum Co. Cairo, Egypt

R. G. ANTHONY

Professor, Department of Chemical Engineering Texas A & M University College Station, Texas

H. J. AROYAN

Former Vice President Chevron Research Company Richmond, California

F. SID ASKARI

President
Technolog, Inc.
Engineering and Industrial
Consultants
Tehran, Iran

DONALD L. BAEDER

Former Executive Vice President— Science and Technology Occidental Petroleum Corporation Los Angeles, California

WM. A. BAILEY, Jr.

Former Director, MTM Process Research and Development Lab Shell Development Company Houston, Texas

TRAVIS W. BAIN

Vice President National Sales, Inc. Jackson, Mississippi

GAREN BALEKJIAN

C. F. Braun Arcadia, California

CESAR BAPTISTE

Vice President Petroleos Mexicanos Mexico City, Mexico

LEON R. MARTINEZ BASS

Sales Manager—Northern Mexico Zincamex, S. A. Saltillo, Mexico

ROBERT O. BATHIANY

Technical Planner Weyerhauser Company Tacoma, Washington

LUCIANO BENINCAMPI

Manager of Public Relations CTIP—Compagnia Tecnica Industrie Rome, Italy

LLOYD BERG

Professor Department of Chemical Engineering Montana State University Bozeman, Montana

NEIL S. BERMAN

Professor of Chemical Engineering Engineering Center Arizona State University Tempe, Arizona

D. J. BLICKWEDE

Former Vice President and Director of Research Bethlehem Steel Corp. Bethlehem, Pennsylvania

M. J. P. BOGART

Fluor Engineers and Constructors, Inc.

Santa Ana, California

Z. D. BONNER
Vice Chairman of the Board
Tesoro Petroleum Corp.
San Antonio, Texas

JOSEPH F. BOSICH

Bosich Consultants Humble, Texas

WILLIAM H. BOSLER

President Texas Consultants, Inc. Houston, Texas

ARCHIE BROODO

President AID, Inc. Dallas, Texas

ARTHUR W. BUSCH

Environmental Engineer Consultant Dallas, Texas

ROBERT C. BUTLER

Administrative Assistant and Planning Manager, Petroleum Chemicals Division F. I. du Pont de Nemours and Co

E. I. du Pont de Nemours and Co. Wilmington, Delaware

J. MORSE CAVENDER

President
The Mactan Company
Dusseldorf, Federal Republic of
Germany

PRAMOTE CHAIYAVICH

Chief Technologist
The Tahi Oil Refinery Co., Ltd.
Bangkok, Thailand

S. D. CHELLAPPAN

Process Engineering Manager Occidental Chemical Corporation Houston, Texas

NICHOLAS P. CHOPEY

Editor-in-Chief Chemical Engineering Magazine McGraw-Hill, Inc. New York, New York

FRANK CHRENCIK

Vulcan Materials Co. Birmingham, Alabama

R. JAMES COMEAUX

Vice President American Petrofina Dallas, Texas

C. W. COOK

Chairman, Executive Committee General Foods Corp. White Plains, New York

CHARLES F. COOK

Vice President Research and Development Phillips Petroleum Bartlesville, Oklahoma

EARL J. COUCH

Research Associate
Mobil Research and Development
Corp.
Dallas, Texas

JAMES R. COUPER

Professor
Department of Chemical Engineering
University of Arkansas
Fayetteville, Arkansas

HORACE R. CRAWFORD

Senior Staff Scientist CONOCO Corp. Houston, Texas

ORAN L. CULBERSON

Chemical Engineer
Oak Ridge National Lab
Chemical Technology Division
Oak Ridge, Tennessee

DONALD A. DAHLSTROM

Vice President, Research and Development Process Equipment Group Envirotech Corp. Salt Lake City, Utah

PERRY P. DAWSON Production Engineer

Dow Chemical Co. Freeport, Texas

ELBERT M. DeFOREST

Former Director of Technology, Chemicals and Metals Vulcan Materials Co. Wichita, Kansas

ROBERT G. DENKEWALTER

Corporate Vice President Technology Allied Corp. Morristown, New Jersey

J. P. de SOUSA

Publisher Chemical Age of India Technical Press Publication Bombay, India

JAMES D. D'IANNI

Former Director of Research The Goodyear Tire and Rubber Co. Akron, Ohio

JUAN M. DIAZ

Production General Manager Rohm and Haas Mexico, S. A. C. V. Mexico City, Mexico

WERNER DIMMLING

Dipl-Chemist Friedrich Uhde GmbH Dortmund, Federal Republic of Germany

S. W. DREW

Executive Director MCMC Technical Operations Merck & Co., Inc. Rahway, New Jersey

BARRETT S. DUFF

Barrett S. Duff and Associates South Pasadena, California

P. K. DUTTA

Project Manager
Chemical and Metallurgical Design
Company, Private Ltd.
New Delhi, India

WILLIAM F. EARLY

Vice President
Stone & Webster Environmental
Services
Houston, Texas

WALTER EMRICH

Consultant Teterboro, New Jersey

E. FREDERICO ENGEL

Member of the Board of Management Chemische Werke Hüls AG Marl, Federal Republic of Germany

P. E. G. M. EVERS

Operations Manager Anzo Salt Chemical Delfzÿl Delfzÿl, The Netherlands

ALEXANDRE EVSTAFIEV

Director, Division of Technological Research and Higher Education UNESCO—Paris Paris, France

GERALD L. FARRAR

President Farrer Associates Tulsa, Oklahoma

F. M. FARRELL

Technical Director 3M Company St. Paul, Minnesota

C. SHULTS FAULKNER President

C. S. Faulkner, Inc. Houston, Texas

RALPH T. FERRELL

Senior Vice President, Corporate Development Vista Chemical Company Houston, Texas

LOUIS FEUVRAIS

Directeur Général Ecole Nationale Supérieure D'Arts et Métiers Paris. France

R. A. FINDLAY

Former Director, Fuels and Lubricants, Research and Development Phillips Petroleum Company Bartlesville, Oklahoma

DALE FRIDLEY

Manager, Intermediates Technology Division Exxon Chemical America Baton Rouge, Louisiana

ROBERT H. FRITZ

President Loss Control Consultants, Inc. Alvin, Texas

GARY L. FUNK

Director, Advanced Process Control Technology Brown & Root/ITI Division Houston, Texas

BILL F. GALLOWAY

Plant Manager Quantum USI Division Port Arthur, Texas

DONALD E. GARRETT

President Saline Processors Ojai, California

L. W. GARRETT, Jr.

President Garrett Associates, Inc. San Mateo, California

ROY D. GERARD

General Manager Westhollow Research Center Shell Development Company Houston, Texas

ION GHEJAN

Department of Chemical Engineering Institute of Petroleum, Gas, and Geology Bucharest, Romania

Bucharest, Romania

JIM GILLINGHAM
General Manager, Process
Engineering
Diamond Shamrock
San Antonio, Texas

R GENE GOAR

Goard, Allison, and Associates, Inc. Tyler, Texas

MARCEL GOLDENBERG

SAMIN Corp., Inc. New York, New York

OM P GOYAL

Technagement Consultant New Bombay, India

WILHELM GRAULICH

Director, Manager, Rubber Division Bayer AG Leverkusen, Federal Republic of Germany

E. HENRY GROPPE

Groppe, Long, & Littell Houston, Texas

GIANFRANCO GUERRERI

INGECO Altech Group Societa per Azioni Con Sede in Milano Milan, Italy

KENNETH M. GUTHRIE

Cost Consultant Marina Del Rey, California

NORMAN HACKERMAN

Former President Rice University Houston, Texas

VLADIMIR HAENSEL

Vice President, Science and Technology Universal Oil Products Co. Des Plaines, Illinois

HENRY E. HALEY

Vice President Arthur D. Little, Inc. Cambridge, Massachusetts

R. L. HARVEL

Project Manager Dow Chemical International Ltd. Tokyo, Japan

J. W. HAUN

Former Vice President and Director of Engineering General Mills, Inc. Minneapolis, Minnesota

TERUAKI HIGUCHI

President Japan Fody Corp. Osaka, Japan

JOHN R. HILL, Jr.

President and Chief Executive Officer Gifford-Hill & Co., Inc. Dallas, Texas

PAUL E. HIME

Former Vice President Operation & Technical Hoechst Celanese Chemical Group Dallas, Texas

HAROLD L. HOFFMAN

Editor Hydrocarbon Processing Houston, Texas

NORBERT IBL

Professor
Eidg. Techn. Hochscule
Zürich Techn.—Chemie
Zürich, Switzerland

RUBEN F. INGA

President
Confederacion Interamerican de
Ingeniera Quimica
Lima. Peru

JAMES R. JOHNSON

Former Executive Scientist and Director, Advanced Research Programs Laboratory 3M Company, Central Research Labs Saint Paul, Minnesota

NAJI A. KADIR

President Scientific Research Council Baghdad, Iraq

JOHN E. KASCH

Former Vice President Standard Oil Indiana Escondido, California

RAPHAEL KATZEN

Managing Partner Ralph Katzen Associates Cincinnati, Ohio

JOHN J. KELLY

Department of Chemical Engineering University College, Dublin Dublin Ireland

HENNO KESKKULA

Research Fellow Chemical Engineering Department The University of Texas at Austin Austin, Texas

O. P. KHARBANDA

O. P Kharbanda & Associates Cost and Management Consultants Bombay, India

WLODZIMIERZ KISIELOW

Professor of Petroleum Technology, Director of Research Department of Petroleum and Coal Centre of Polish Academy of Sciences Krzywoustego, Poland

ROBERT A. KLEIN

President and Chief Executive Officer Continental Controls, Inc. Houston, Texas

MOHAN SINGH KOTHARI

Chief Consultant Punjab Industrial Consultancy Organisation Chandigarh, India

G. R. KRUGER

President Semarck, Inc. Houston, Texas

A. P. KUDCHADKER

Professor of Chemical Engineering and Dean of Student Affairs Indian Institute of Technology, Kanpur Kanpur, India

RALPH LANDAU

Former Chairman Halcon International, Inc. New York, New York

W. S. LANIER

Project Manager Seadrift Expansion Projects Union Carbide Corp. Houston, Texas

CLARK P. LATTIN, Jr.

Former President The M. W. Kellogg Company Houston, Texas

ISIDORO LAZARRAGA-LEANZA

Chief of Engineering and Control Empresa Nacional del Petroleo Viña del Mar, Chile

JEAN Le BRETON

Managing Director Elf Aquitaine Indonesie Jakarta, Indonesia

IRV LEIBSON

Vice President Bechtel Corp. San Francisco, California

PIERRE Le PRINCE

Director of Refining and Engineering Center Institut Française de Petrole Malmaison, Françe

C. E. LETSCHER

Caltex Petroleum Company New York, New York

C. J. LIDDLE

White Young & Partners Ltd. Herts, England

NORMAN N. LI

Director, Chemical & Process Technology Allied Signal Engineered Materials Research Center Des Plaines, Illinois

DAVID C. K. LIN

Senior Engineer Owens Corning Fiberglas Corp. Newark, Ohio

CHARLES E. LOEFFLER

Technical Manager Celanese Chemical Company Pampa, Texas

T. N. LOLADZE

Vice-Rector, Professor of the Georgian Polytechnic Institute Tbilisi, USSR

STANLEY L. LOPATA

Chairman of the Board Carboline Company Saint Louis, Missouri

PHILIPS S. LOWELL

Chemical Engineer Consultant Austin, Texas

W. D. LUEDEKE

Former Planning Manager E. I. du Pont de Nemours Wilmington, Delaware

BRYCE I. MacDONALD

Manager, Environmental Engineering General Electric Company Fairfield, Connecticut

R. N. MADDOX

Professor School of Chemical Engineering Oklahoma State University Stillwater, Oklahoma

KLAUS MAI

Former President Shell Development Houston, Texas

STANLEY D. MARTS

Supply Specialist Shell Oil Company Houston, Texas

F. DREW MAYFIELD

Drew Mayfield & Associates Baton Rouge, Louisiana

GUY McBRIDE

Former President Colorado School of Mines Golden, Colorado

CLYDE McKINELY

Former Director, Allentown Labs Air Products and Chemicals, Inc. Allentown, Pennsylvania

RICARDO MILLARES

President
Papel Satinado, S. A.
Mexico City, Mexico

ROBERT L. MITCHELL

Former Vice Chairman of the Board Celanese Corp. New York, New York

RICHARD MOLLISON

General Manager Colpapel, S. A. Pereira, Columbia

DONALD D. MULRANEY

C. F. Braun Co. Alhambra, California

CARLOS EPSTEIN MURGUIA

General Manager and President of the Board Industrias Guillermo Murguia, S. A. Naucalpan, Mexico

TAKAYUKI NATE

Plastics Sales Department Tonen Petrochemical Co. Ltd. Tokyo, Japan

JAMES K. NICKERSON

Research Associate
Esso Research and Engineering
Company
Summit, New Jersey

ALEX G. OBLAD

Distinguished Professor of Chemistry Mining, and Fuels Engineering University of Utah Salt Lake City, Utah

H. E. O'CONNEL

Former President Tenneco Chemicals Inc. Houston, Texas

ERNEST O. OHSOL

Consultant Ohsol Technical Associates Crosby, Texas

I. O. OLADAPO

Dean of Engineering University of Lagos Lagos, Nigeria

GORDON F. PALM

President Gordon, F. Palm & Associates Lakeland, Florida

F. F. PAPA-BLANCO

Advisor of Educational Technology Instituto Latino Americano de la Communicacion Educativa Mexico City, Mexico

DILIP M. PATEL

Manager of Process Design & Technology John Brown E & C, Inc. Houston, Texas

MARCELLO PICCIOTTI

Technical Promotion Manager TechniPetrol-Rome Rome, Italy

THOMAS C. PONDER

Petrochemicals Editor Hydrocarbon Processing Houston, Texas

R. G. H. PRINCE

Professor, Head of Department Chemical Engineering University of Sydney Sydney, Australia

HUGH S. PYLANT

Project Manager The Pace Consultants, Inc. Houston, Texas

EDWIN L. RAINWATER

Dow Chemical USA Texas Operations Industrial Chemicals Division Freeport, Texas

J. S. RATCLIFFE

Professor of Chemical Engineering University of New South Wales Kensington, Australia

FRANCIS E. REESE

Former Vice President and Managing Director International Monsanto Company Saint Louis, Missouri

AURELIO REITER

Former Research Manager of Esso Standard Italiana Roma-Italy Rome, Italy

LARRY RESEN

Larry Resen Associates Wilton, Connecticut

H. KEN RIGSBEE

Project Manager Phillips 66 Natural Gas Company Houston, Texas

FRANK S. RIORDAN, JR.

Director, Technology Planning Monsanto Textiles Company Saint Louis, Missouri

DENNIS F. RIPPLE

Technical Manager, Process Technology Hoechst Celanese Corporation Corpus Christi, Texas

LOUIS R. ROBERTS

Director, Planning and Source Evaluation Texas Air Control Board Austin, Texas

RICCARDO ROBITSCHEK

Direttore Divisione Resine Societa Italiana Resine Milano, Italy

ROBERTO RODRIGUEZ

INTEVED

Caracas, Venezuela

GERHARD ROUVÉ

Director of the Institute for Water Resources Development Technical University Aachen Aachen, Federal Republic of Germany

JOHN H. SANDERS

Vice President and Assistant General Manager Eastman Chemicals Division Eastman Kodak Company Kingsport, Tennessee

HIDESHI SATO

General Manager Technical Information Office Technical Development Department Nippon Steel Corp. Tokyo, Japan

GEORGE E. SCHAAL

Manager, Research and Development Produits Chimiques Ugine Kuhlmann Pierre-Benite, France

GERT G. SCHOLTEN

Managing Director Edeleanu Gesellschaft mbH Frankfurt/Main. Federal Republic of Germany

DOUGLAS M. SELMAN

Vice President Business Development & Technology Exxon Chemical Company Darien, Connecticut

M. L. SHARRAH

Former Senior Vice President Continental Oil Company Stamford, Connecticut

JOHN W. SHEEHAN

Vice President, Manufacturing and Marketing Champlin Petroleum Company Kerrville, Texas

PIERRE SIRRA

Designer Esso Engineering Services Ltd. Surrey, England

PHILIP M. SIGMUND

Professor of Chemical Engineering University of Calgary Alberta, Canada

ARTHUR L. SMALLEY, Jr.

President Matthew Hall Inc. Houston, Texas

CARL I. SOPCISAK

Technical Consultant Synthetic Fuels Wheat Ridge, Colorado

PETER H. SPITZ

President Chemicals Systems Inc. New York, New York

SAM STRELZOFF

Consultant Marlboro, Vermont

MARK B. STRINGFELLOW

President & Chief Executive Officer Environmental Control Group, Inc. Maple Shade, New Jersey

Y. S. SURY

CIBA-Geigy Chemical Corp. Saint Gabriel, Louisiana

MICHAEL W. SWARTZLANDER

Staff Engineer Union Carbide Corp. South Charleston, West Virginia

T. SZENTMARTONY

Associate Professor Technical University Budapest Budapest, Hungary

M. TAKENOUCHI

General Manager of Manufacturing Department Maruzen Oil Co., Ltd. Tokyo, Japan

VLADIMIR TEPLYAKOV

Head of Membrane Research Center A. V. Tochiev Institute of Petrochemical Synthesis The USSR Academy of Sciences Moscow, Russia

SOONTHORN THAVIPHOKE

Managing Director S. Engineering Services Co., Ltd. Bangkok, Thailand

ROBERT S. TIMMINS

Core Laboratory Aurora, Colorado

International Advisory Board

A. A. TOPRAC

President Interchem-Hellas Athens, Greece

YORGI A. TOPRAKCLOGLU

Chairman of the Board of Directors Marshall Boya ve Vernik Sanayii A. S. Istanbul, Turkey

HERNANCO VASQUEZ-SILVA

President Hernando Vasqez & Associates, Ltd. Bogota, Columbia

M. A. VELA

President VELCO Engineering, Inc. Houston, Texas

JUAN JOSE URRUELA VILLACORTA

Ingeniero Fabrica de Jabon "La Luz, S. A." Guatemala

S. P. VOHRA

Managing Director Bakelite Hylam, Ltd. Bombay, India

A. L. WADDAMS

Former Manager, Marketing Services Division BP Chemicals International Ltd. London, England

T. J. WALKER

Former Production Manager Dow Chemical Europe S. A. Zürich, Switzerland

J. C. WALTER, Jr.

J. C. Walter Interests Houston, Texas

THEODORE WEAVER

Director of Licensing Fluor Corporation Los Angeles, California

ALBERT H. WEHE

Chief, Cost and Energy U. S. Government Raleigh, North Carolina

GUY E. WEISMANTEL

President Weismantel International Houston, Texas

PAUL B. WEISZ

Distinguished Professor Chemical and Bio-Engineering University of Pennsylvania Philadelphia, Pennsylvania

JACK W. WESTERFIELD

Manager, Project Engineering Diamond Shamrock San Antonio, Texas

D. L. WILEY

Former Senior Vice President Union Carbide Corp. Danbury, Connecticut

JACK C. WILLIAMS

Former Vice President Texaco, Inc. Houston, Texas

MASAMI YABUNE

Section Head, Technical Section Tonen Petrochemical Co., Ltd. Tokyo, Japan

LEWIS C. YEN

Manager, Technical Data M. W. Kellogg Company Houston, Texas

STANELY B. ZDONIK

Vice President and Manager Process Department Stone and Webster Engineering Corp. Boston, Massachusetts

Contributors to Volume 50

- V. Dean Allred, Ph.D. Denver Research Center (retired), Associated Marathon Oil Company, Littleton, Colorado: Shale Oil
- **Gordon T. Austin** Commodity Specialist, U.S. Bureau of Mines, Washington, D.C.: Silicon Carbide, Supply-Demand Relationships
- Joseph E. Burke, Ph.D. Manager, Ceramics (retired), General Electric Corporate Research and Development Center, Schenectady, New York: *Sintering*
- Peter J. Close President, KBC Advanced Technologies, Inc., Metairie, Louisiana: Site Energy Efficiency
- John D. Constance Consulting Engineer, Cliffside Park, New Jersey: Sheave Size Versus RPM; Sheet Metal Ducts, Weight Estimation
- **Duncan Gooper** Manager, Chemical Sector, KBC Process Technology Ltd., Weybridge, Surrey, United Kingdom: Site Energy Efficiency
- Larry D. Cunningham Silicon Specialist, Branch of Metals, U.S. Bureau of Mines, Washington, D.C.: Silicon, Supply-Demand Relationships
- Paul E. France Dampney Company, Inc. (retired), Everett, Massachusetts: Silicone-Based Coatings, Heat Resistant
- Gary L. Funk, Ph.D., P.E. Chief Scientist, SHL SYSTEMHOUSE, Houston, Texas: Signal Processing and System Identification Applications
- James E. Granger Chief Industrial Engineer, Stearns Catalytic Corporation, Philadelphia, Pennsylvania: Site Selection
- James Hand, Ph.D. Dow Corning Corporation, Midland, Michigan: Silicones
- Peter Hagen, Ph.D. Dow Corning Corporation, Midland, Michigan: Silicones
- Howard R. Huff, Ph.D. Sematech, Austin, Texas: Silicon Materials for Mega-integrated Circuit Applications; Silicon, Semiconductor
- David H. Johnston, Ph.D. Senior Research Specialist, Exxon Production Research Company, Houston, Texas: Shale Properties
- Ivan V. Klumpar, Ph.D. former Director of Development, Sturtevant, Inc., Boston, Massachusetts: Size Reduction Calculations, Size Reduction, Cryogenic and Inert Gas Use
- Larry Larrinaga Project Manager, The Dow Chemical Company, Freeport, Texas: Shell-and-Tube Heat Exchangers, Induced Turbulence
- T. O. Llewellyn Tuscaloosa Research Center, U.S. Bureau of Mines, Tuscaloosa, Alabama: Silicon Carbide, Flotation Recovery
- John J. McKetta, Ph.D., P.E. The Joe C. Walter Professor of Chemical Engineering, The University of Texas at Austin, Austin, Texas: Sewers and Sewer Design
- **Douglas N. Moir** Principal Scientific Officer, Warren Spring Laboratory, Mineral Processing Division, Stevenage, Hertfordshire, England: Size Reduction
- Nanda L. Mukherjee, Ph.D. Environmental Engineer, U.S. Army Aberdeen Proving Ground, Aberdeen, Maryland: Shale Oil Hydroprocessing
- John K. Onderdonk Engineering Consultant, Alamo, California: Shutdown Systems, Emergency Situations

- John Oxley, Ph.D. Dow Corning Corporation, Midland, Michigan: Silicones
- G. P. Purohit Consultant, Fluor Corporation, Irvine, California: Shell-and-Tube Heat Exchangers, Cost Estimation
- Robert G. Reese U.S. Bureau of Mines, Washington, D.C.: Silver, Supply-Demand Relationships
- Preston L. Richey, P. E. President, Shiftwork Technology, Inc., Ogden, Utah: Shift Work
- Joseph H. Rosolowski, Ph.D. Physicist, General Electric Research and Development Center, Schenectady, New York: Sintering
- **B. Sigales** Istituto Petrolquimica Aplicada, Polytecnic University of Barcelona, Barcelona, Spain: Settling Drums, Design of
- C. W. Smith Tuscaloosa Research Center, U.S. Bureau of Mines, Tuscaloosa, Alabama: Silicon Carbide, Flotation Recovery
- Cheryl Cvetic Solomon Commodity Specialist, U.S. Bureau of Mines, Washington, D.C.: Slag, Iron and Steel, Supply-Demand Relationships
- **G. V. Sullivan** Tuscaloosa Research Center, U.S. Bureau of Mines, Tuscaloosa, Alabama: Silicon Carbide, Flotation Recovery
- William M. Vatavuk, P. E. Senior Chemical Engineer, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina: Significant Figures
- Stanley M. Walas, Ph.D. Professor, Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas: Size Enlargement; Size Separation
- Adam Zanker, Ch.E., M.Sc. Senior Research Engineer, Oil Refineries, Ltd., Haifa, Israel: Settling Velocity, Flocs; Settling Velocity, Solid-Liquid Systems; Settling Velocity, Terminal, Estimation; Shaft Sizing; Size Distribution Approximation

Conversion to SI Units

To convert from	То	Multiply by
acre	square meter (m ²)	4.046×10^{3}
angstrom	meter (m)	1.0×10^{-10}
are	square meter (m ²)	1.0×10^{2}
atmosphere	newton/square meter (N/m ²)	1.013×10^{5}
bar ·	newton/square meter (N/m ²)	1.0×10^{5}
barrel (42 gallon)	cubic meter (m ³)	0.159
Btu (International Steam Table)	joule (J)	1.055×10^{3}
Btu (mean)	joule (J)	1.056×10^{3}
Btu (thermochemical)	joule (J)	1.054×10^{3}
bushel	cubic meter (m ³)	3.52×10^{-2}
calorie (International Steam Table)	joule (J)	4.187
calorie (mean)	joule (J)	4.190
calorie (thermochemical)	joule (J)	4.184
centimeter of mercury	newton/square meter (N/m ²)	1.333×10^{3}
centimeter of water	newton/square meter (N/m ²)	98.06
cubit	meter (m)	0.457
degree (angle)	radian (rad)	1.745×10^{-2}
denier (international)	kilogram/meter (kg/m)	1.0×10^{-7}
dram (avoirdupois)	kilogram (kg)	1.772×10^{-3}
dram (troy)	kilogram (kg)	3.888×10^{-3}
dram (U.S. fluid)	cubic meter (m ³)	3.697×10^{-6}
	newton (N)	1.0×10^{-5}
dyne	joule (J)	1.60×10^{-19}
electron volt	joule (J)	1.00×10^{-7}
erg	cubic meter (m ³)	2.96×10^{-5}
fluid ounce (U.S.)		0.305
foot	meter (m)	2.01×10^{2}
furlong	meter (m) cubic meter (m³)	4.404×10^{-3}
gallon (U.S. dry)	cubic meter (m ³)	3.785×10^{-3}
gallon (U.S. liquid)		1.183×10^{-4}
gill (U.S.)	cubic meter (m³)	6.48×10^{-5}
grain	kilogram (kg)	1.0×10^{-3}
gram	kilogram (kg)	7.457×10^{2}
horsepower	watt (W)	9.81×10^{3}
horsepower (boiler)	watt (W)	7.46×10^{2}
horsepower (electric)	watt (W)	
hundred weight (long)	kilogram (kg)	50.80
hundred weight (short)	kilogram (kg)	45.36
inch	meter (m)	2.54×10^{-2}
inch mercury	newton/square meter (N/m ²)	3.386×10^3
inch water	newton/square meter (N/m ²)	2.49×10^{2}
kilogram force	newton (N)	9.806
kip	newton (N)	4.45×10^3
knot (international)	meter/second (m/s)	0.5144
league (British nautical)	meter (M)	5.559×10^3

To convert from	То	Multiply by	
league (statute)	meter (m)	4.83×10^{3}	
light year	meter (m)	9.46×10^{15}	
liter	cubic meter (m ³)	0.001	
micron	meter (m)	1.0×10^{-6}	
mil	meter (m)	2.54×10^{-6}	
mile (U.S. nautical)	meter (m)	1.852×10^{3}	
mile (U.S. statute)	meter (m)	1.609×10^{3}	
millibar	newton/square meter (N/m ²)	100.0	
millimeter mercury	newton/square meter (N/m ²)	1.333×10^{2}	
oersted	ampere/meter (A/m)	79.58	
ounce force (avoirdupois)	newton (N)	0.278	
ounce mass (avoirdupois)	kilogram (kg)	2.835×10^{-2}	
ounce mass (troy)	kilogram (kg)	3.11×10^{-2}	
ounce (U.S. fluid)	cubic meter (m ³)	2.96×10^{-5}	
pascal	newton/square meter (N/m ²)	1.0	
peck (U.S.)	cubic meter (m ³)	8.81×10^{-3}	
pennyweight	kilogram (kg)	1.555×10^{-3}	
pint (U.S. dry)	cubic meter (M ³)	5.506×10^{-4}	
pint (U.S. liquid)	cubic meter (m ³)	4.732×10^{-4}	
poise	newton second/square meter $(N \cdot s/m^2)$	0.10	
pound force (avoirdupois)	newton (N)	4.448	
pound mass (avoirdupois)	kilogram (kg)	0.4536	
pound mass (troy)	kilogram (kg)	0.373	
poundal	newton (N)	0.138	
quart (U.S. dry)	cubic meter (m ³)	1.10×10^{-3}	
quart (U.S. liquid)	cubic meter (m ³)	9.46×10^{-4}	
rod	meter (m)	5.03	
roentgen	coulomb/kilogram (c/kg)	2.579×10^{-4}	
second (angle)	radian (rad)	4.85×10^{-6}	
section	square meter (m ²)	2.59×10^{6}	
slug	kilogram (kg)	14.59	
span	meter (m)	0.229	
stoke	square meter/second (m ² /s)	1.0×10^{-4}	
ton (long)	kilogram (kg)	1.016×10^{3}	
ton (metric)	kilgram (kg)	1.0×10^{3}	
ton (short, 2000 pounds)	kilogram (kg)	9.072×10^{2}	
torr	newton/square meter (N/m ²)	1.333×10^{2}	
yard	meter (m)	0.914	

Bringing Costs up to Date

Cost escalation via inflation bears critically on estimates of plant costs. Historical costs of process plants are updated by means of an escalation factor. Several published cost indexes are widely used in the chemical process industries:

Nelson Cost Indexes (Oil and Gas J.) quarterly
Marshall and Swift (M&S) Equipment Cost Index, updated monthly
CE Plant Cost Index (Chemical Engineering), updated monthly
ENR Construction Cost Index (Engineering News-Record), updated weekly

All of these indexes were developed with various elements such as material availability and labor productivity taken into account. However, the proportion allotted to each element differs with each index. The differences in overall results of each index are due to uneven price changes for each element. In other words, the total escalation derived by each index will vary because different bases are used. The engineer should become familiar with each index and its limitations before using it.

Table 1 compares the CE Plant Index with the M&S Equipment Cost Index.

TABLE 1 Chemical Engineering and Marshall and Swift Plant and Equipment Cost Indexes since 1950

Year	CE Index	M&S Index	Year	CE Index	M&S Index
1950	73.9	167.9	1971	132.3	321.3
1951	80.4	180.3	1972	137.2	332.0
1952	81.3	180.5	1973	144.1	344.1
1953	84.7	182.5	1974	165.4	398.4
1954	86.1	184.6	1975	182.4	444.3
1955	88.3	190.6	1976	192.1	472.1
1956	93.9	208.8	1977	204.1	505.4
1957	98.5	225.1	1978	218.8	545.3
1958	99.7	229.2	1979	238.7	599.4
1959	101.8	234.5	1980	261.2	659.6
1960	102.0	237.7	1981	297.0	721.3
1961	101.5	237.2	1982	314.0	745.6
1962	102.0	238.5	1983	316.9	760.8
1963	102.4	239.2	1984	322.7	780.4
1964	103.3	241.8	1985	325.3	789.6
1965	104.2	244.9	1986	318.4	797.6
1966	107.2	252.5	1987	323.8	813.6
1967	109.7	262.9	1988	342.5	852.0
1968	113.6	273.1	1989	355.4	895.1
1969	119.0	285.0	1990	357.6	915.1
1970	125.7	303.3	1991	361.3	930.6
			1992	358.2	943.1

TABLE 2 Nelson-Farrar Inflation Petroleum Refinery Construction Indexes since 1946 (1946 = 100)

	(1946 = 100)			
	Materials	Labor	Miscellaneous	Nelson Inflation
Date	Component	Component	Equipment	Index
	100.0	100.0		
1946			100.0	100.0
1947	122.4	113.5	114.2	117.0
1948	139.5	128.0	122.1	132.5
1949	143.6	137.1	121.6	139.7
1950	149.5	144.0	126.2	146.2
1951	164.0	152.5	145.0	157.2
1952	164.3	163.1	153.1	163.6
1953	172.4	174.2	158.8	173.5
1954	174.6	183.3	160.7	179.8
1955	176.1	189.6	161.5	184.2
1956	190.4	198.2	180.5	195.3
1957	201.9	208.6	192.1	205.9
1958	204.1	220.4	192.4	213.9
1959	207.8	231.6	196.1	222.1
1960	207.6	241.9	200.0	228.1
1961	207.7	249.4	199.5	232.7
1962	205.9	258.8	198.8	237.6
1963	206.3	268.4	201.4	243.6
1964	209.6	280.5	206.8	252.1
1965	212.0	294.4	211.6	261.4
1966	216.2	310.9	220.9	273.0
1967	219.7	331.3	226.1	286.7
1968	224.1	357.4	228.8	304.1
1969	234.9	391.8	239.3	329.0
1970	250.5	441.1	254.3	364.9
1971	265.2	499.9	268.7	406.0
1972	277.8	545.6	278.0	438.5
1973	292.3	585.2	291.4	468.0
1974	373.3	623.6	361.8	522.7
1975	421.0	678.5	415.9	575.5
1976	445.2	729.4	423.8	615.7
1977	471.3	774.1	438.2	653.0
1978	516.7	824.1	474.1	701.1
1979	573.1	879.0	515.4	756.6
1980	629.2	951.9	578.1	822.8
1981	693.2	1044.2	647.9	903.8
1982	707.6	1154.2	622.8	976.9
1983	712.4	1234.8	656.8	1025.8
1984	735.3	1278.1	665.6	1061.0
1985	739.6	1297.6	673.4	1074.4
1986	730.0	1330.0	684.4	1089.9
1987	748.9	1370.0	703.1	1121.5
1988	802.8	1405.6	732.5	1164.5
1989	829.2	1440.4	769.9	1195.9
1990	832.8	1487.7	797.5	1225.7
1991	832.3	1533.3	827.5	1252.9
1992	824.6	1579.2	837.6	1277.3

Table 2 shows the Nelson-Farrar Inflation Petroleum Refinery Construction Indexes since 1946. It is recommended that the CE Index be used for updating total plant costs and the M&S Index or Nelson-Farrar Index for updating equipment costs. The Nelson-Farrar Indexes are better suited for petroleum refinery materials, labor, equipment, and general refinery inflation.

Since

$$C_B = C_A (B/A)^n \tag{1}$$

Here, A = the size of units for which the cost is known, expressed in terms of capacity, throughput, or volume; B = the size of unit for which a cost is required, expressed in the units of A; n = 0.6 (i.e., the six-tenths exponent); $C_A =$ actual cost of unit A; and $C_B =$ the cost of B being sought for the same time period as cost C_A .

To approximate a current cost, multiply the old cost by the ratio of the current index value to the index at the date of the old cost:

$$C_B = C_A I_B / I_A \tag{2}$$

Here, $C_A = \text{old cost}$; $I_B = \text{current index value}$; and $I_A = \text{index value}$ at the date of old cost.

Combining Eqs. (1) and (2),

$$C_B = C_A (B/A)^n (I_B/I_A) (3)$$

For example, if the total investment cost of plant A was \$25,000,000 for 200-million-lb/yr capacity in 1974, find the cost of plant B at a throughput of 300 million lb/yr on the same basis for 1986. Let the sizing exponent, n, be equal to 0.6.

From Table 1, the CE Index for 1986 was 318.4, and for 1974 it was 165.4. Via Eq. (3),

$$C_B = C_A (B/A)^n (I_B/I_A)$$

= 25.0(300/200)^{0.6}(318.4/165.4)
= \$61,200,000

JOHN J. McKETTA