Paola Inverardi
Mehdi Jazayeri (Eds.)

(go]
st
(@)
o
s
|_

Software Engineering
Education
in the Modern Age

Software Education and Training Sessions

at the International Conference

on Software Engineering, ICSE 2005

St. Louis, MO, USA, May 2005, Revised Lectures

LNCS 4309

< % ?.,anla Inverardi Mehdi Jazayeri (Eds.)

Software Engineering
Education
in the Modern Age

Software Education and Training Sessions
at the International Conference

on Software Engineering, ICSE 2005

St. Louis, MO, USA, May 15-21, 2005
Revised Lectures

@ Springer E2007001432

Volume Editors

Paola Inverardi

University of L’ Aquila
Computer Science Department
67010 L’ Aquila, Italy

E-mail: inverard @di.univagq.it

Mehdi Jazayeri

University of Lugano

and Technical University of Vienna
E-mail: mehdi.jazayeri @unisi.ch

Library of Congress Control Number: 2006938014

CR Subject Classification (1998): K.3, K.4, D.2, J.1
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-68203-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68203-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11949374 06/3142 543210

Preface

Software Engineering is a multifaceted and expanding topic. It aims to provide
theories, methods and tools to tackle the complexity of software systems, from
development to maintenance. Its complexity is made even more severe today by
rapid advances in technology, the pervasiveness of software in all areas of society,
and the globalization of software development. The continuous expansion of the
field presents the problem of how to keep up for practitioners. For educators,
the key questions are how should software engineers be educated and what are
the core topics and key technologies?

Even looking only at the last decade, the tremendous changes that have
taken place in the software engineering industry, and in the industrial world in
general, raise many questions. What are the effects of: Outsourcing? Distributed
software development? Open source? Standardization? Software patents? Model-
driven development? How should these developments change the way we teach
software engineering? Should textbooks be updated? Should software engineering
play a different role in the computer science curriculum, for example, be more
pervasive? How are instructors in universities handling these issues?

All these issues were discussed at the Software Education and Training ses-
sions at the International Conference on Software Engineering (ICSE 2005) by
leading researchers, educators, and practitioners in software engineering, who
presented their—sometimes controversial—views and insights on software engi-
neering education in the new millennium. In this volume we have collected some
of the most representative and innovative approaches that were presented at the
workshop. The authors revised their papers based on discussions at the confer-
ence and the comments they received from the reviews. Together, these papers
show the state of the art and practice and the significant challenges facing our
field in educating the next generation of software engineers.

The contributions are grouped in two parts. The first part discusses the
present. It is introduced by two papers that discuss respectively the limits and
the realities of today’s software engineering education. The following four pa-
pers address the critical problem of teaching software modeling and design, that
is, the problem of teaching at the same time, creativity and abstraction, rig-
orous specifications and easy formalization. The second part of the book deals
with the future. In the two introductory papers, representatives from indus-
try and academia, respectively, give their perspectives on the future. The last
four papers address different challenges of future software engineering education.
On-line education, in-context software engineering education, education to mas-
ter outsourcing and other distributed software development, organizational soft-
ware engineering are all concerned with widening the scope of interest of software
engineers, intersecting with other disciplines and sciences.

VI Preface

This book provides a snapshot of the state of software engineering education
at the beginning of the twenty-first century. It is a good starting point for soft-
ware engineering researchers and educators alike. It is also a source of ideas for
instructors who are looking to improve their software engineering courses.

This book is the result of the work of many people. Paola Inverardi and Mehdi
Jazayeri organized the Software Engineering Education and Training Track at
ICSE 2005. They requested contributions from the research and education com-
munity. The organizers selected the most appropriate contributions and invited
the authors to present their positions at the conference. The presentations were
followed by active discussions from the audience. In all, a few hundred people
participated in the three days of meetings. After the meeting, we asked several
of the participants to prepare papers on their contributions for this volume.

We would like to thank all the people who submitted their work to the confer-
ence, the people who participated in the sessions, and the authors of the present
volume. We also would like to thank Catalin Roman, General Chair of ICSE
2005, who asked us to organize the track. Finally, we would like to thank Jochen
Wuttke for helping us to prepare this volume.

September 2006 Paola Inverardi
Mehdi Jazayeri

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

-

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4309

Lecture Notes in Computer Science

For information about Vols. 1-4242

please contact your bookseller or Springer

Vol. 4345: N. Maglaveras, 1. Chouvarda, V. Koutkias,
R.W. Brause (Eds.), Biological and Medical Data Anal-
ysis. XIII, 496 pages. 2006. (Sublibrary LNBI).

Vol. 4338: P. Kalra, S. Peleg (Eds.), Computer Vision,
Graphics and Image Processing. XV, 965 pages. 2006.

Vol. 4337: S. Arun-Kumar, N. Garg (Eds.), FSTTCS
2006: Foundations of Software Technology and Theo-
retical Computer Science. XIII, 430 pages. 2006.

Vol. 4333: U. Reimer, D. Karagiannis (Eds.), Practical
Aspects of Knowledge Management. XII, 338 pages.
2006. (Sublibrary LNAI).

Vol. 4331: G. Min, B. Di Martino, L.T. Yang, M. Guo, G.
Ruenger (Eds.), Frontiers of High Performance Comput-
ing and Networking — ISPA 2006 Workshops. XXX VII,
1141 pages. 2006.

Vol. 4330: M. Guo, L.T. Yang, B. Di Martino, H.P. Zima,
J. Dongarra, F. Tang (Eds.), Parallel and Distributed Pro-
cessing and Applications. XVIII, 953 pages. 2006.

Vol. 4329: R. Barua, T. Lange (Eds.), Progress in Cryp-
tology - INDOCRYPT 2006. X, 454 pages. 2006.

Vol. 4326: S. Gobel, R. Malkewitz, I. Iurgel (Eds.), Tech-
nologies for Interactive Digital Storytelling and Enter-
tainment. X, 384 pages. 2006.

Vol. 4325:J. Cao, I. Stojmenovic, X. Jia, S.K. Das (Eds.),
Mobile Ad-hoc and Sensor Networks. XIX, 887 pages.
2006.

Vol. 4319: L.-W. Chang, W.-N. Lie, R. Chiang (Eds.),
Advances in Image and Video Technology. XX VI, 1347
pages. 2006.

Vol. 4318: H. Lipmaa, M. Yung, D. Lin (Eds.), Informa-
tion Security and Cryptology. XI, 305 pages. 2006.
Vol. 4313: T. Margaria, B. Steffen (Eds.), Leveraging
Applications of Formal Methods. IX, 197 pages. 2006.
Vol. 4312: S. Sugimoto, J. Hunter, A. Rauber, A. Mor-
ishima (Eds.), Digital Libraries: Achievements, Chal-
lenges and Opportunities. XVIII, 571 pages. 2006.

Vol. 4311: K. Cho, P. Jacquet (Eds.), Technologies for
Advanced Heterogeneous Networks II. XI, 253 pages.
2006.

Vol. 4309: P. Inverardi, M. Jazayeri (Eds.), Software En-
gineering Education in the Modern Age. VIII, 207 pages.
2006.

Vol. 4307: P. Ning, S. Qing, N. Li (Eds.), Information
and Communications Security. XIV, 558 pages. 2006.

Vol. 4306: Y. Avrithis, Y. Kompatsiaris, S. Staab, N.E.
O’Connor (Eds.), Semantic Multimedia. XII, 241 pages.
2006.

Vol. 4305: A.A. Shvartsman (Ed.), Principles of Dis-
tributed Systems. XIII, 441 pages. 2006.

Vol. 4304: A. Sattar, B.-H. Kang (Eds.), AI 2006: Ad-
vances in Artificial Intelligence. XXVII, 1303 pages.
2006. (Sublibrary LNAI).

Vol. 4302: J. Domingo-Ferrer, L. Franconi (Eds.), Pri-
vacy in Statistical Databases. X1, 383 pages. 2006.

Vol. 4301: D. Pointcheval, Y. Mu, K. Chen (Eds.), Cryp-
tology and Network Security. XIII, 381 pages. 2006.

Vol. 4300: Y.Q. Shi (Ed.), Transactions on Data Hiding
and Multimedia Security I. IX, 139 pages. 2006.

Vol. 4296: M.S. Rhee, B. Lee (Eds.), Information Se-
curity and Cryptology — ICISC 2006. XIII, 358 pages.
2006.

Vol. 4295: J.D. Carswell, T. Tezuka (Eds.), Web and
Wireless Geographical Information Systems. XI, 269
pages. 2006.

Vol. 4294: A. Dan, W. Lamersdorf (Eds.), Service-
Oriented Computing — ICSOC 2006. XIX, 653 pages.
2006.

Vol. 4293: A. Gelbukh, C.A. Reyes-Garcia (Eds.), MI-
CAI 2006: Advances in Artificial Intelligence. XX VIII,
1232 pages. 2006. (Sublibrary LNAI).

Vol. 4292: G. Bebis, R. Boyle, B. Parvin, D. Koracin, P.
Remagnino, A. Nefian, G. Meenakshisundaram, V. Pas-
cucci, J. Zara, J. Molineros, H. Theisel, T. Malzbender
(Eds.), Advances in Visual Computing, Part IT. XXXII,
906 pages. 2006.

Vol. 4291: G. Bebis, R. Boyle, B. Parvin, D. Koracin, P.
Remagnino, A. Nefian, G. Meenakshisundaram, V. Pas-
cucci, J. Zara, J. Molineros, H. Theisel, T. Malzbender
(Eds.), Advances in Visual Computing, Part I. XXXI,
916 pages. 2006.

Vol. 4290: M. van Steen, M. Henning (Eds.), Middleware
2006. XIII, 425 pages. 2006.

Vol. 4289: M. Ackermann, B. Berendt, M. Grobelnik,
A. Hotho, D. Mladeni¢, G. Semeraro, M. Spiliopoulou,
G. Stumme, V. Svatek, M. van Someren (Eds.), Seman-
tics, Web and Mining. X, 197 pages. 2006. (Sublibrary
LNAI).

Vol. 4288: T. Asano (Ed.), Algorithms and Computation.
XX, 766 pages. 2006.

Vol. 4286: P. Spirakis, M. Mavronicolas, S. Kontogiannis
(Eds.), Internet and Network Economics. X1, 401 pages.
2006.

Vol. 4285: Y. Matsumoto, R. Sproat, K.-F. Wong, M.
Zhang (Eds.), Computer Processing of Oriental Lan-
guages. XVII, 544 pages. 2006. (Sublibrary LNAI).

Vol. 4284: X. Lai, K. Chen (Eds.), Advances in Cryptol-
ogy — ASIACRYPT 2006. XIV, 468 pages. 2006.

Vol. 4283: Y.Q. Shi, B. Jeon (Eds.), Digital Watermark-
ing. XII, 474 pages. 2006.

Vol. 4282: Z. Pan, A. Cheok, M. Haller, R.W.H. Lau, H.
Saito, R. Liang (Eds.), Advances in Artificial Reality and
Tele-Existence. XXIII, 1347 pages. 2006.

Vol. 4281: K. Barkaoui, A. Cavalcanti, A. Cerone (Eds.),
Theoretical Aspects of Computing - ICTAC 2006. XV,

+ 371 pages. 2006.

Vol. 4280: A.K. Datta, M. Gradinariu (Eds.), Stabiliza-
tion, Safety, and Security of Distributed Systems. X VII,
590 pages. 2006.

Vol. 4279: N. Kobayashi (Ed.), Programming Languages
and Systems. XI, 423 pages. 2006.

Vol. 4278: R. Meersman, Z. Tari, P. Herrero (Eds.), On
the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops, Part I1. XLV, 1004 pages. 2006.

Vol. 4277: R. Meersman, Z. Tari, P. Herrero (Eds.), On
the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops, Part I. XLV, 1009 pages. 2006.

Vol. 4276: R. Meersman, Z. Tari (Eds.), On the Move
to Meaningful Internet Systems 2006: CooplS, DOA,
GADA, and ODBASE, Part I1. XXXII, 752 pages. 2006.

Vol. 4275: R. Meersman, Z. Tari (Eds.), On the Move
to Meaningful Internet Systems 2006: CooplS, DOA,
GADA, and ODBASE, Part I. XXXI, 1115 pages. 2006.
Vol. 4274: Q. Huo, B. Ma, E.-S. Chng, H. Li (Eds.), Chi-
nese Spoken Language Processing. XXIV, 805 pages.
2006. (Sublibrary LNAI).

Vol. 4273: 1. Cruz, S. Decker, D. Allemang, C. Preist,
D. Schwabe, P. Mika, M. Uschold, L. Aroyo (Eds.), The
Semantic Web - ISWC 2006. XXIV, 1001 pages. 2006.
Vol. 4272: P. Havinga, M. Lijding, N. Meratnia, M. Weg-
dam (Eds.), Smart Sensing and Context. XI, 267 pages.
2006.

Vol. 4271: E.V. Fomin (Ed.), Graph-Theoretic Concepts
in Computer Science. XIII, 358 pages. 2006.

Vol. 4270: H. Zha, Z. Pan, H. Thwaites, A.C. Addison,
M. Forte (Eds.), Interactive Technologies and Sociotech-
nical Systems. XVI, 547 pages. 2006.

Vol. 4269: R. State, S. van der Meer, D. O’Sullivan, T.

' “Pfeifer (Eds.), Large Scale Management of Distributed

Systems. XIII, 282 pages. 2006.

_ Vol. 4268: G. Parr, D. Malone, M. 10) Foghli (Eds.), Au-

tonomic Principles of IP Operations and Management.
XIII, 237 pages. 2006.

Vol. 4267: A. Helmy, B. Jennings, L. Murphy, T. Pfeifer
(Eds.), Autonomic Management of Mobile Multimedia
Services. XIII, 257 pages. 2006.

Vol. 4266: H. Yoshiura, K. Sakurai, K. Rannenberg, Y.
Murayama, S. Kawamura (Eds.), Advances in Informa-
tion and Computer Security. XIII, 438 pages. 2006.

Vol. 4265: L. Todorovski, N. Lavra¢, K.P. Jantke (Eds.),
Discovery Science. XIV, 384 pages. 2006. (Sublibrary
LNAI).

Vol. 4264: J.L. Balcdzar, PM. Long, F. Stephan (Eds.),
Algorithmic Learning Theory. XIII, 393 pages. 2006.
(Sublibrary LNAI).

Vol. 4263: A. Levi, E. Savas, H. Yenigiin, S. Balcisoy,
Y. Saygin (Eds.), Computer and Information Sciences —
ISCIS 2006. XXIII, 1084 pages. 2006.

B PN Y %

Vol. 4262: K. Havelund, M. Niiiez, B. Wolff, G. Rosu
(Eds.), Formal Approaches to Software Testing and Run-
time Verification. VIII, 255 pages. 2006.

Vol. 4261: Y. Zhuang, S. Yang, Y. Rui, Q. He (Eds.),
Advances in Multimedia Information Processing - PCM
2006. XXII, 1040 pages. 2006. -

Vol. 4260: Z. Liu, J. He (Eds.), Formal Methods and
Software Engineering. XII, 778 pages. 2006.

Vol. 4259: S. Greco, Y. Hata, S. Hirano, M. Inuiguchi,
S. Miyamoto, H.S. Nguyen, R. Stowiriski (Eds.), Rough
Sets and Current Trends in Computing. XXII, 951 pages.
2006. (Sublibrary LNAI):

Vol. 4257: 1. Richardson, P. Runeson, R. Messnarz
(Eds.), Software Process Improvement. XI, 219 pages.
2006.

Vol. 4256: L. Feng, G. Wang, C. Zeng, R. Huang (Eds.),
Web Information Systems — WISE 2006 Workshops.
X1V, 320 pages. 2006.

Vol. 4255: K. Aberer, Z. Peng, E.A. Rundensteiner, Y.
Zhang, X. Li (Eds.), Web Information Systems — WISE
2006. XIV, 563 pages. 2006.

Vol. 4254: T. Grust, H. Hopfner, A. Illarramendi, S.
Jablonski, M. Mesiti, S. Miiller, P.-L. Patranjan, K.-
U. Sattler, M. Spiliopoulou, J. Wijsen (Eds.), Current
Trends in Database Technology — EDBT 2006. XXXI,
932 pages. 2006.

Vol. 4253: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part III. XXXII, 1301 pages. 2006. (Subli-
brary LNAI).

Vol. 4252: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part IT. XXXIII, 1335 pages. 2006. (Subli-
brary LNAI).

Vol. 4251: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part 1. LXVI, 1297 pages. 2006. (Sublibrary
LNAI).

Vol. 4250: H.J. van den Herik, S.-C. Hsu, T.-s.
Hsu, H.H.L.M. Donkers (Eds.), Advances in Computer
Games. XIV, 273 pages. 2006.

Vol. 4249: L. Goubin, M. Matsui (Eds.), Cryptographic
Hardware and Embedded Systems - CHES 2006. XII,
462 pages. 2006.

Vol. 4248: S. Staab, V. Svitek (Eds.), Managing Knowl-
edge in a World of Networks. XIV, 400 pages. 2006.
(Sublibrary LNAI).

Vol. 4247: T.-D. Wang, X. Li, S.-H. Chen, X. Wang,
H. Abbass, H. Iba, G. Chen, X. Yao (Eds.), Simulated
Evolution and Learning. XXI, 940 pages. 2006.

Vol. 4246: M. Hermann, A. Voronkov (Eds.), Logic
for Programming, Artificial Intelligence, and Reasoning.
XIII, 588 pages. 2006. (Sublibrary LNAI).

Vol. 4245: A. Kuba, L.G. Nyuil, K. Paldgyi (Eds.), Dis-
crete Geometry for Computer Imagery. XIII, 688 pages.
2006.

Vol. 4244: S. Spaccapietra (Ed.), Journal on Data Se-
mantics VIIL. XI, 267 pages. 2006.

Vol. 4243: T. Yakhno, E.J. Neuhold (Eds.), Advances in
Information Systems. XIII, 420 pages. 2006.

Table of Contents

On Software Engineering Education

Reflections on Software Engineering Education
Hans van Vliet

Reflections on Software Engineering 2004, the ACM/IEEE-CS
Guidelines for Undergraduate Programs in Software Engineering
Joanne M. Atlee, Richard J. LeBlanc Jr., Timothy C. Lethbridge,

Ann Sobel, J. Barrie Thompson

State of the Art and Practice: Creativity and Rigor

Deciding What to Design: Closing a Gap in Software Engineering
Education.
Mary Shaw, Jim Herbsleb, Ipek Ozkaya, Dave Root

A Pedagogical View on Software Modeling and Graph-Structured
DDYGETATIS: o515 05505655 6805 5818614 8 605 615 6512605 550505 0w o om0 05 55
Tetsuo Tamai

Do Students Recognize Ambiguity in Software Specifications?
A Multi-national, Multi-institutional Report....................
Tammy VanDeGrift, Beth Simon, Dean Sanders, Ken Blaha

The Groupthink Specification Exercise.........................
Michael D. Ernst

Challenges for Industries and Academia

The Making of a Software Engineer
Clemens Szyperski

The Challenges of Software Engineering Education
Carlo Ghezzi, Dino Mandrioli

Future Directions

A Strategy for Content Reusability with Product Lines Derived
from Experience in Online Education
Victor Pankratius, Wolffried Stucky

VIII Table of Contents

Informatics: A Novel, Contextualized Approach to Software Engineering
BEdUcation. s s s mvessenimenmiss snsmesns@asniems s soi0ssspmasn: dmas
André van der Hoek, David G. Kay, Debra J. Richardson

Software Engineering Education in the Era of Outsourcing,

Distributed Development, and Open Source Software: Challenges

and Opportunities
Matthew J. Hawthorne, Dewayne E. Perry

On the Education of Future Software Engineers.......................
Andrea Bolognesi, Paolo Ciancarini, Rocco Moretti

Author Index

Reflections on Software Engineering Education

Hans van Vliet

Vrije Universiteit, Amsterdam
hans@cs.vu.nl

Abstract. The “engineering” focus in software engineering education
leaves instructors vulnerable to several traps. It also misleads students
as to SE’s essential human and social dimensions. In this paper we argue
that there’s more to SE than engineering. A major challenge is to recon-
cile the engineering dimension with the human and social dimension.

1 Introduction

In recent years, the SE community has focused on organizing our existing knowl-
edge and finding ways to transform it into a curriculum. These efforts pro-
duced SWEBOK (the Guide to the Software Engineering Body of Knowledge;
www.swebok.org) and Software Engineering 2004 (http:/ /sites.computer.org/
ccse). SWEBOK reflects a widely agreed-upon view of what a software engi-
neer who has a bachelor’s degree and four years’ experience should know. SE
2004 offers curriculum guidelines for undergraduate SE degree programs. We can
view SE 2004 as SWEBOK’s education counterpart.

Both SE 2004 and SWEBOK are important milestones resulting from par-
ticipants’ extensive real-world experience and working-group discussions. Both
heavily emphasize the ‘engineering’ in software engineering [1,2,3]. This focus
influences the contents of a typical SE course as well as the students’ under-
standing of what SE entails. However, SE has an important social dimension
that’s easily squeezed out by the omnipresent engineering attitude. Here, I dis-
cuss how this limited conception of SE contributes to five assumptions that can
trap SE educators:

— An SE course needs an industrial project.

— SE is like other branches of engineering.

— Planning in SE is poorly done relative to other fields.
— The user interface is part of low-level design.
SWEBOK represents the state of the practice.

The traps idea isn’t highly original. Several authors have published similar arti-
cles on the myths of formal methods, requirements engineering, and SE programs
[4]. In the latter case, the authors discuss whether the new SE degree programs
are a silver bullet. The traps I discuss focus on a typical SE course’s content and
how it represents SE to beginning students. My aim is both to provoke discussion
and to highlight the challenges these traps present to SE educators.

P. Inverardi and M. Jazayeri (Eds.): ICSE 2005 Education Track, LNCS 4309, pp. 1-10, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 H. van Vliet
2 Context

My teaching situation partly determines and bounds the traps I discuss. Typ-
ically, Dutch universities don’t offer separate computer science (CS) and SE
degrees. They have a three-year bachelor’s program and a two-year master’s
program in CS. Most students enroll in the bachelor’s program right after high
school. The program doesn’t have much specialization and usually has one gen-
eral SE course. Typically, this course includes theory and project work. The
master’s program generally contains a series of more specialized SE courses.

The Vrije Universiteit rates its SE course’s theoretical and practical parts at
4 and 8 ECTS credits, respectively. (In the European Credit Transfer System, 1
ECTS amounts to approximately 28 study hours; a full year is 60 ECTS.) The
course lasts 12 weeks. Students are scheduled to take it in the second year of their
bachelor’s program, which means they have little maturity in CS or SE when
they enroll. The course is compulsory for students in CS, AI, and information
science. Typically, 150 to 200 students enroll each year.

In terms of SE 2004, we follow a CS-first approach: students aren’t introduced
to SE in a serious way until the second year. Our course’s content strongly resem-
bles that of SE 2004’s proposed SE201 course, presenting SE’s basic principles
and concepts.

3 Software Education Traps

At one time or another, I've fallen into most of the traps discussed here, as have
many colleagues with whom I've discussed SE education over the years.

Trap 1: An SE course needs an industrial project

The idea behind this assumption is that we should prepare students for “the
real world,” which is complex, full of inconsistencies, and ever changing. The
real world also involves participants from different domains and has political and
cultural aspects. To meet this challenge, we might base projects on real industry
examples [5] or introduce obstacles and dirty tricks into student exercises [6].
The question is, how helpful is this?

Student overload. Prior to their second year, students usually have taken courses
on programming, data structures, computer organization, and so on. In such
courses, instructors typically structure the work clearly and give students un-
ambiguous problems. And too often, the problems have only one right answer.
In the SE course, students are suddenly overwhelmed with many new topics.
Of course, it might be possible to gently introduce some SE principles in other
introductory courses. In practice, this isn’t easy in a CS environment.

So, at the start of our SE course, students aren’t familiar with requirements
engineering (RE) and don’t know how to

— write unambiguous requirements or elicit them from stakeholders from other
domains,

Reflections on Software Engineering Education 3

— prioritize requirements,

— relate requirements to effort (to them, all requirements are equal, regardless
of their content), or

— document requirements.

Last but not least, students don’t (yet) appreciate RE’s value. For example, only
a few years ago, I asked students to write a requirements document as their first
task. In response, one student complained, “How can I possibly write down what
the system does when I haven’t programmed the damned thing yet?”

The problem isn’t limited to RE. Design, testing, configuration management,
quality assurance, and so on all face the same issues. Combining an introduction
to all these topics with a real-life case simply asks for too much. Additionally,
the students aren’t mature enough to appreciate the importance of many SE
topics. On one hand, many issues sound obvious: pay attention to documenta-
tion, apply configuration control, test thoroughly, and so on. On the other hand,
our students have difficulty appreciating issues—such as team organization and
cost estimation—that software professionals know from the trenches.

Simplify (when possible). In my SE textbook [7], I use a swimming-lessons anal-
ogy. Around 1900, Amsterdam schoolchildren typically learned to swim on the
school playground, practicing proper movements while lying on wooden benches.
In contrast, my father grew up in the countryside and learned to swim the hard
way. His father simply tied a rope around his middle, threw him into the river,
and shouted: “Swim.” Nowadays, swimming lessons start off gently, in a tod-
dler pool with Mama and plenty of flotation devices. Gradually, the amount of
floating material is reduced and the pool gets deeper.

I favor a similar approach. In my SE course, I view my students as toddlers
on the SE playground. I concentrate on (at most) a few issues in an orchestrated
environment. While I cover all the requisite course topics—and tell my favorite
anecdotes—the class project highlights only a few targeted issues. In later years
and other courses, students will confront additional real-life aspects. I've often
noticed that students’ appreciation for my initial SE course comes only years
after they’ve suffered through it.

Design is one key SE issue that instructors can address in an orchestrated
way—and that’s also a major hurdle for most students. Design is “wicked” [8]
because of the following:

— It has no definite formulation. We can’t neatly separate the design process
from the preceding or subsequent phases because they all overlap and influ-
ence each other.

— There is no stopping rule. No criterion exists to tell us when we’ve reached
the solution.

— Solutions aren’t true or false. Design involves trade-offs between potentially
conflicting concerns. Stakeholders in the design process might define different
acceptable solutions rather than one best solution.

The latter point, in particular, opens up interesting project possibilities. An
instructor might ask different student groups to design the same system but

4 H. van Vliet

with different priorities (with respect to quality requirements or requirements
priorities, for example). The groups might later collectively study and discuss
the different designs. (My colleague and I have reported on experiences with this
approach at the software architecture level [9].)

An interesting and often-applied option is to have a dual program, in which
students spend, say, half a year in industry and half a year at school. This
reduces the pressure on the university to include “real-life” course elements while
also increasing the likelihood that students will appreciate typical SE topics.
Unfortunately, that’s not an option for all instructors (yours truly included),
mainly because of university systems that target full-time students who enter
the university right after high school.

Trap 2: SE is like other branches of engineering

All SE texts discuss the similarities between SE and other engineering branches—
as well, of course, as the differences (interesting examples compare SE with bridge
design [10] and high-pressure steam engines [11]). The overall message, however,
is that the similarities prevail.

Engineering’s limits. Although the engineering metaphor is useful, there’s a
downside to it. Our field uses numerous engineering words: building software,
requirements, specification, process, maintenance, and so on. Altogether, this
induces a model of how we view the software development practice; the engi-
neering metaphor plays an active role in our thought processes [12]. For example,
we generally characterize the RE process as follows:

— Information (the requirements) flows from A (the user) to B (the software
engineer).

— Good communication doesn’t involve any frictions or blockages.

— Good reception of the information involves only extraction.

The underlying model is that requirements exist somewhere; we just have to
capture them. Thus, it’s a documentation issue. If we run into problems, there
must be a blockage or breakdown in the communication channel: “Why can’t
the users express their real demands?”

But there are other options, such as viewing RE as an understanding issue. It
then becomes a dialog between parties, with the requirements engineer acting as
a kind of midwife. The requirements aren’t something immutable “out there,”
but rather, they’re constructs of the human mind [13].

Social dimensions. Numerous approaches—such as participatory design, rapid
application design, joint application design, facilitated workshops, early user
involvement, and so on—try to overcome the traditional, functionalist view’s
disadvantages with respect to RE. Given the clear assignments students are
accustomed to from earlier courses, they often perceive the more open attitude
toward RE as confusing. One student spoke for many others in labeling it “a
badly organized educational exercise.”

At a larger scale, a similar tension exists between the heavyweight, document-
and planning-driven life-cycle models from SE’s engineering realm and the various

Reflections on Software Engineering Education 5

lightweight approaches that emphasize software development’s human aspects.
Combining the virtues of both is a major challenge. This is true for the state of
the practice and even more so for the educational environment, where students
are entrenched in the engineering view of the software development world and are
not mature enough to perceive the limits of that view.

The latter became apparent recently when several students majoring in mul-
timedia and culture took our SE course. These students clashed with the regular
CS students, who held a rather one-sided, traditional view and failed to see and
appreciate the nontechnical issues involved.

Today, engineers from all disciplines need social competences, including com-
munication, organization, and conflict-resolution skills. Also, technological pos-
sibility is no longer the only driving force behind success. Increasingly, engineers
must weigh competing values such as those related to economics, quality of life,
and the social and economic impact of job eliminations [14]. We must prepare
our students for this future.

Trap 3: Planning in SE is poorly done relative to other fields

Many papers on SE and SE education have quotes like “Approximately 75 per-
cent of all software projects are either late or cancelled.” [15] In his wonderful
book, Death March, Edward Yourdon quotes the Standish Group and gurus such
as Capers Jones and Howard Rubin, stating that, “The average project is likely
to be 6 to 12 months behind schedule and 50 to 100 percent over budget.” And
“the grim reality is that you should expect that your project will operate under
conditions that will almost certainly lead to some degree of death march behav-
ior on the part of the project manager and his or her technical staff.” [16] The
sometimes explicit, sometimes implicit message is this: A better software educa-
tion will help, and might eventually even do away with most runaway projects.
I question this connection between SE education level and planning accuracy.

Findings on other fields’ infrastructure projects. Looking to other fields can
be instructive here. Engineers are currently building an expensive high-speed
railway connection to carry freight from Rotterdam’s harbor to Germany (and
beyond). In 1992, officials estimated total costs at 2.3 billion euro; by 2000, they
raised the estimate to 4.7 billion euro. Over the same period, the connection’s
freight estimates continuously dropped. Many people think the connection will
never make money.

In 2005, the Dutch parliament launched an inquiry into the project. It first in-
terviewed Danish economist Bent Flyvbjerg and his coauthors Nils Bruzelius and
Werner Rothengatter, who studied over 250 international infrastructure projects
[17]. They found that nine out of 10 projects underestimate costs, and almost all
projects overestimate revenues. The combination makes projects look good and
helps ensure decision makers’ approval. Now, people naturally overestimate the
good and underestimate the bad, particularly in cases of uncertainty. If you ask
people whether they think more people die of cancer or diabetes, they’ll most
likely say cancer. In fact, it’s diabetes, which most people consider to be the less
dangerous disease. But there are other explanations as well.

6 H. van Vliet

Flyvbjerg, Bruzelius, and Rothengatter cite several well-known projects with
spectacular overruns:

— Suez Canal (1869): 1,900 percent over budget

— Sydney Opera House (1973): 1,400 percent over budget
— Concorde (first flight in 1969): 1,100 percent over budget
— Panama Canal (1913): 200 percent over budget
Brooklyn Bridge (1883): 100 percent over budget

On railway projects, they found that the average project overrun is 45 percent.
Next come bridges and tunnels, which have an average overrun of 34 percent.

The authors dismiss technical explanations for such project overruns. If it
were simply a matter of technology, then statistically, they would have also
found projects with cost underruns. They didn’t. Likewise, they dismiss psycho-
logical explanations related to estimators’ natural optimism. If that were true,
we could assume that estimators don’t learn from past mistakes. The conclu-
sion? Estimators intentionally underestimate project costs for political reasons:
the pressure is high, the parties involved have already made a deal, the project
“must be done,” and so on.

Software analogue. Many of the arguments that hold for infrastructure project
cost and schedule overruns are also valid for software development projects.
Educating future software engineers to better count function points, engineer
requirements, and approach other key tasks won’t on its own resolve overrun
issues. As Tom DeMarco put it in 1982, “One chief villain is the policy that
estimates shall be used to create incentives.” [18] This is as true today as it was
then.

In one interesting software cost-estimation experiment [19], the authors stud-
ied the “winner’s curse,” which has the following characteristics:

— Software providers differ in their estimate optimism: some are overly opti-
mistic, some are realistic, and some are pessimistic.

— Software providers with overly optimistic estimates tend to have the lowest
bids.

— Software clients require a fixed-price contract.

— Software clients tend to select a provider with a low bid.

The resulting contract often delivers low or negative profits to the bidder; it can
also be risky for the client. In one experiment [19], for example, Magne Jorgensen
and Stein Gromstad asked 35 companies for bids on a certain requirements
specification. They then asked four companies to implement the system. They
found that the companies with the lowest bids incurred the greatest risks.

Both Flyvbjerg and Jgrgensen emphasize the need for careful risk manage-
ment. As one experienced project manager told me, “Risk management is project
management for adults.” Risk management definitely deserves a front seat in a
full-fledged SE curriculum.

Reflections on Software Engineering Education 7

Trap 4: The user interface is part of low-level design

We can’t worry about these user interface issues now. We haven’t even
gotten this thing to work yet!—R. Mulligan et al. [20]

A system’s user interface is important: In an interactive system, about half
the code is devoted to the user interface. In a recent study, researchers found
that 60 percent of software defects arose from usability errors, while only 15
percent related to functionality [21]. In addition, adequate attention to user
interface quality can increase sales of e-commerce sites by 100 percent [22]. For
Web-based systems, usability goals are business goals. To improve the state of
the practice, we should integrate appropriate user interface design techniques
into our software development process. The place to start this practice is SE
education.

Ignoring human factors. Is the SE community integrating user interface design
techniques into the development process? SWEBOK and SE 2004 offer the most
relevant answers here. SWEBOK lists human-computer interface (HCI) as a
“related discipline” of SE, concerned with understanding the interactions among
humans and other system elements. SE 2004 takes a similar position, describing
an HCI course in which user interface design concerns topics such as “use of
modes” and “response time and feedback.”

Both organizations reflect Mulligan and colleagues’ limited view of the user
interface. This view totally ignores the fact that many current and future soft-
ware development projects will aim to develop systems in which human use and
related human factors are decisive elements of product quality.

A broader view. Interface design and functionality design go hand in hand. We
might even say that the user interface is the system. There are two main reasons
to take this broader view of the user interface. First, the system—and hence
its interface—should help users perform certain tasks. The user interface should
therefore reflect the task domain’s structure. The design of tasks and their cor-
responding user interfaces influence each other and should be part of the same
iterative refinement process. Like quality, the user interface isn’t a supplement.
Second, dialog and representation alone don’t provide users with sufficient in-
formation. To work with a system, users sometimes need to know “what’s going
on behind the screen.”

Various studies corroborate the need to better attend to HCI in SE and CS
curricula. Timothy Lethbridge [23], for example, addresses the question of what
software professionals need to know. He found that HCI is one of the topics
with the widest educational knowledge gap. As Lethbridge reports, practition-
ers called HCI an important topic but one they’d learned little about in school.
Nigel Bevan [24] shows that we must expand the traditional quality assurance
approach-—which emphasizes software’s static and dynamic properties—to in-
corporate quality-in-use aspects that address broader ergonomic issues.

Proponents of traditional SE see user interface design as a separate activity
and don’t include it in the mainstream software development process model.
We need a more eclectic approach in which we attend to user interface issues

