Dror Feitelson
Larry Rudolph
Uwe Schwiegelshohn (Eds.)

Job Scheduling
Strategies
for Parallel Processing

10th International Workshop, JSSPP 2004
New York, NY, USA, June 2004
Revised Selected Papers

LNCS 3277

@ Springer

Dror Feitelson Larry Rudolph
Uwe Schwiegelshohn (Eds.)

Job Scheduling
Strategies
for Parallel Processing

10th International Workshop, JSSPP 2004
New York, NY, USA, June 13, 2004
Revised Selected Papers

@ Springer

Volume Editors

Dror Feitelson

The Hebrew University

School of Computer Science and Engineering
91904 Jerusalem, Israel

E-mail: feit@cs.huji.ac.il

Larry Rudolph

CSAIL — Massachusetts Institute of Technology
32 Vassar Street, Cambridge, MA 02139, USA
E-mail: rudolph @csail. mit.edu

Uwe Schwiegelshohn

University of Dortmund

Computer Engineering Institute

44221 Dortmund, Germany

E-mail: uwe.schwiegelshohn@udo.edu

Library of Congress Control Number: 2005925176

CR Subject Classification (1998): D.4,D:1.3, E2.2, C.1.2, B.2.1, B.6, F.1.2

ISSN 0302-9743
ISBN-10 3-540-25330-0 Spri erlin Heidelberg New York
ISBN-13 978-3-540-25330-3 Yprilig@uBerlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11407522 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar)

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3277

Lecture Notes in Computer Science

“For information about Vols. 1-3360

please contact your bookseller or Springer

Vol. 3492: P. Blache, E. Stabler (Eds.), Logical Aspects
of Computational Linguistics. X, 363 pages. 2005. (Sub-
series LNAI).

Vol. 3467: J. Giesl (Ed.), Term Rewriting and Applica-
tions. XIII, 517 pages. 2005.

Vol. 3465: M. Bernardo, A. Bogliolo (Eds.), Formal Meth-
ods for Mobile Computing. VII, 271 pages. 2005.

Vol. 3463: M. Dal Cin, M. Kaéniche, A. Pataricza (Eds.),
Dependable Computing - EDCC 2005. X VI, 472 pages.
2005.

Vol. 3461: P. Urzyczyn (Ed.), Typed Lambda Calculi and
Applications. XI, 433 pages. 2005.

Vol. 3459: R. Kimmel, N. Sochen, J. Weickert (Eds.), Scale
Space and PDE Methods in Computer Vision. XI, 634
pages. 2005.

Vol. 3456: H. Rust, Operational Semantics for Timed Sys-
tems. XII, 223 pages. 2005.

Vol. 3455: H. Treharne, S. King, M. Henson, S. Schneider
(Eds.), ZB 2005: Formal Specification and Development
in Z and B. XV, 493 pages. 2005.

Vol. 3454: J.-M. Jacquet, G.P. Picco (Eds.), Coordination
Models and Languages. X, 299 pages. 2005.

Vol. 3453: L. Zhou, B.C. Ooi, X. Meng (Eds.), Database
Systems for Advanced Applications. XXVII, 929 pages.
2005.

Vol. 3452: F. Baader, A. Voronkov (Eds.), Logic for Pro-
gramming, Artificial Intelligence, and Reasoning. XI, 562
pages. 2005. (Subseries LNAI).

Vol. 3450: D. Hutter, M. Ullmann (Eds.), Security in Per-
vasive Computing. XI, 239 pages. 2005.

Vol. 3449: F. Rothlauf, J. Branke, S. Cagnoni, D.W. Corne,
R. Drechsler, Y. Jin, P. Machado, E. Marchiori, J. Romero,
G.D. Smith, G. Squillero (Eds.), Applications on Evolu-
tionary Computing. XX, 631 pages. 2005.

Vol. 3448: G.R. Raidl, J. Gottlieb (Eds.), Evolutionary
Computation in Combinatorial Optimization. XI, 271
pages. 2005.

Vol. 3447: M. Keijzer, A. Tettamanzi, P. Collet, J.v.

Hemert, M. Tomassini (Eds.), Genetic Programming.
XIII, 382 pages. 2005.

Vol. 3444: M. Sagiv (Ed.), Programming Languages and
Systems. XIII, 439 pages. 2005.

Vol. 3443: R. Bodik (Ed.), Compiler Construction. XI, 305
pages. 2005.

Vol. 3442: M. Cerioli (Ed.), Fundamental Approaches to
Software Engineering. XIII, 373 pages. 2005.

Vol. 3441: V. Sassone (Ed.), Foundations of Software Sci-

ence and Computational Structures. XVIII, 521 pages.
2005.

Vol. 3440: N. Halbwachs, L.D. Zuck (Eds.), Tools and
Algorithms for the Construction and Analysis of Systems.
XVII, 588 pages. 2005.

Vol. 3439: R.H. Deng, F. Bao, H. Pang, J. Zhou (Eds.),
Information Security Practice and Experience. XII, 424
pages. 2005.

Vol. 3437: T. Gschwind, C. Mascolo (Eds.), Software En-
gineering and Middleware. X, 245 pages. 2005.

Vol. 3436: B. Bouyssounouse, J. Sifakis (Eds.), Embedded
Systems Design. XV, 492 pages. 2005.

Vol. 3434: L. Brun, M. Vento (Eds.), Graph-Based Repre-
sentations in Pattern Recognition. XII, 384 pages. 2005.
Vol. 3433: S. Bhalla (Ed.), Databases in Networked Infor-
mation Systems. VII, 319 pages. 2005.

Vol. 3432: M. Beigl, P. Lukowicz (Eds.), Systems Aspects

in Organic and Pervasive Computing - ARCS 2005. X,
265 pages. 2005.

Vol. 3431: C. Dovrolis (Ed.), Passive and Active Network
Measurement. XII, 374 pages. 2005.

Vol. 3429: E. Andres, G. Damiand, P. Lienhardt (Eds.),
Discrete Geometry for Computer Imagery. X, 428 pages.
2005.

Vol. 3427: G. Kotsis, O. Spaniol (Eds.), Wireless Systems
and Mobility in Next Generation Internet. VIII, 249 pages.
2005.

Vol. 3423: J.L. Fiadeiro, P.D. Mosses, F. Orejas (Eds.), Re-
cent Trends in Algebraic Development Techniques. VIII,
271 pages. 2005.

Vol. 3422: R.T. Mittermeir (Ed.), From Computer Literacy
to Informatics Fundamentals. X, 203 pages. 2005.

Vol. 3421: P. Lorenz, P. Dini (Eds.), Networking - ICN
2005, Part I1. XXXV, 1153 pages. 2005.

Vol. 3420: P. Lorenz, P. Dini (Eds.), Networking - ICN
2005, Part I. XXXV, 933 pages. 2005.
Vol. 3419: B. Faltings, A. Petcu, F. Fages, F. Rossi (Eds.),

Constraint Satisfaction and Constraint Logic Program-
ming. X, 217 pages. 2005. (Subseries LNAI).

Vol. 3418: U. Brandes, T. Erlebach (Eds.), Network Anal-
ysis. XII, 471 pages. 2005.

Vol. 3416: M. Bohlen, J. Gamper, W. Polasek, M.A. Wim-
mer (Eds.), E-Government: Towards Electronic Democ-
racy. XIII, 311 pages. 2005. (Subseries LNAI).

Vol. 3415: P. Davidsson, B. Logan, K. Takadama (Eds.),
Multi-Agent and Multi-Agent-Based Simulation. X, 265
pages. 2005. (Subseries LNAI).

Vol. 3414: M. Morari, L. Thiele (Eds.), Hybrid Systems:
Computation and Control. XII, 684 pages. 2005.

Vol. 3412: X. Franch, D. Port (Eds.), COTS-Based Soft-
ware Systems. XVI, 312 pages. 2005.

¢Vol. 3411: S.H. Myaeng, M. Zhou, K.-F. Wong, H.-J.
Zhang (Eds.), Information Retrieval Technology. XIII,
337 pages. 2005.

Vol. 3410: C.A. Coello Coello, A. Herndndez Aguirre,
_E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimiza-
tion. XVI, 912 pages. 2005.

“Vol. 3409: N. Guelfi, G. Reggio, A. Romanovsky (Eds.),
Scientific Engineering of Distributed Java Applications.
-X, 127 pages. 2005.
~Vol. 3408: D.E. Losada, J.M. Ferndndez-Luna (Eds.), Ad-
vances in Information Retrieval. XVII, 572 pages. 2005.

Vol. 3407: Z. Liu, K. Araki (Eds.), Theoretical Aspects of
Computing - ICTAC 2004. XIV, 562 pages. 2005.

.Vol. 3406: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. XVII, 829 pages. 2005.

Vol. 3404: V. Diekert, B. Durand (Eds.), STACS 2005.
XVI, 706 pages. 2005.

Vol. 3403: B. Ganter, R. Godin (Eds.), Formal Concept
Analysis. X1, 419 pages. 2005. (Subseries LNAI).

Vol. 3401: Z. Li, L.G. Vulkov, J. Wasniewski (Eds.), Nu-
merical Analysis and Its Applications. XIII, 630 pages.
2005.

Vol. 3399: Y. Zhang, K. Tanaka, J.X. Yu, S. Wang, M. Li
(Eds.), Web Technologies Research and Development -
APWeb 2005. XXII, 1082 pages. 2005.

Vol. 3398: D.-K. Baik (Ed.), Systems Modeling and Sim-
ulation: Theory and Applications. XIV, 733 pages. 2005.
(Subseries LNAI).

Vol. 3397: T.G. Kim (Ed.), Artificial Intelligence and Sim-
ulation. XV, 711 pages. 2005. (Subseries LNAI).

Vol. 3396: R.M. van Eijk, M.-P. Huget, E. Dignum (Eds.),
Agent Communication. X, 261 pages. 2005. (Subseries
LNAI).

Vol. 3395: J. Grabowski, B. Nielsen (Eds.), Formal Ap-
proaches to Software Testing. X, 225 pages. 2005.

Vol. 3394: D. Kudenko, D. Kazakov, E. Alonso (Eds.),
Adaptive Agents and Multi-Agent Systems II. VIII, 313
pages. 2005. (Subseries LNAI).

Vol. 3393: H.-J. Kreowski, U. Montanari, F. Orejas, G.
Rozenberg, G. Taentzer (Eds.), Formal Methods in Soft-
ware and Systems Modeling. XXVII, 413 pages. 2005.

Vol. 3392: D. Seipel, M. Hanus, U. Geske, O. Barten-
stein (Eds.), Applications of Declarative Programming
and Knowledge Management. X, 309 pages. 2005. (Sub-
series LNAI).

Vol. 3391: C. Kim (Ed.), Information Networking. XVII,
936 pages. 2005.

Vol. 3390: R. Choren, A. Garcia, C. Lucena, A. Ro-
manovsky (Eds.), Software Engineering for Multi-Agent
Systems IIL. XII, 291 pages. 2005.

Vol. 3389: P. Van Roy (Ed.), Multiparadigm Programming
in Mozart/Oz. XV, 329 pages. 2005.

Vol. 3388: J. Lagergren (Ed.), Comparative Genomics.
VII, 133 pages. 2005. (Subseries LNBI).

Vol. 3387: J. Cardoso, A. Sheth (Eds.), Semantic Web

Services and Web Process Composition. VIII, 147 pages.
2005.

Vol. 3386: S. Vaudenay (Ed.), Public Key Cryptography -
PKC 2005. IX, 436 pages. 2005.

Vol. 3385: R. Cousot (Ed.), Verification, Model Checking,
and Abstract Interpretation. XII, 483 pages. 2005.

Vol. 3383: J. Pach (Ed.), Graph Drawing. XII, 536 pages.
2005.

Vol. 3382: J. Odell, P. Giorgini, J.P. Miiller (Eds.), Agent-
Oriented Software Engineering V. X, 239 pages. 2005.

Vol. 3381: P. Vojtas, M. Bielikovd, B. Charron-Bost, O.
Sykora (Eds.), SOFSEM 2005: Theory and Practice of
Computer Science. XV, 448 pages. 2005.

Vol. 3380: C. Priami (Ed.), Transactions on Computa-
tional Systems Biology I. IX, 111 pages. 2005. (Subseries
LNBI).

Vol. 3379: M. Hemmje, C. Niederee, T. Risse (Eds.), From
Integrated Publication and Information Systems to Infor-
mation and Knowledge Environments. XXIV, 321 pages.
2005.

Vol. 3378: J. Kilian (Ed.), Theory of Cryptography. XII,
621 pages. 2005.

Vol. 3377: B. Goethals, A. Siebes (Eds.), Knowledge Dis-
covery in Inductive Databases. VII, 190 pages. 2005.

Vol. 3376: A. Menezes (Ed.), Topics in Cryptology — CT-
RSA 2005. X, 385 pages. 2005.

Vol. 3375: M.A. Marsan, G. Bianchi, M. Listanti, M. Meo
(Eds.), Quality of Service in Multiservice IP Networks.
XIII, 656 pages. 2005.

Vol. 3374: D. Weyns, H.V.D. Parunak, F. Michel (Eds.),
Environments for Multi-Agent Systems. X, 279 pages.
2005. (Subseries LNAI).

Vol. 3372: C. Bussler, V. Tannen, I. Fundulaki (Eds.), Se-
mantic Web and Databases. X, 227 pages. 2005.

Vol. 3371: M.W. Barley, N. Kasabov (Eds.), Intelligent
Agents and Multi-Agent Systems. X, 329 pages. 2005.
(Subseries LNAI).

Vol. 3370: A. Konagaya, K. Satou (Eds.), Grid Computing
in Life Science. X, 188 pages. 2005. (Subseries LNBI).

Vol. 3369: V.R. Benjamins, P. Casanovas, J. Breuker, A.
Gangemi (Eds.), Law and the Semantic Web. XII, 249
pages. 2005. (Subseries LNAI).

Vol. 3368: L. Paletta, J.K. Tsotsos, E. Rome, G.W.
Humphreys (Eds.), Attention and Performance in Com-
putational Vision. VIII, 231 pages. 2005.

Vol. 3367: W.S. Ng, B.C. Ooi, A. Ouksel, C. Sartori (Eds.),
Databases, Information Systems, and Peer-to-Peer Com-
puting. X, 231 pages. 2005.

Vol. 3366: 1. Rahwan, P. Moraitis, C. Reed (Eds.), Argu-

mentation in Multi-Agent Systems. XII, 263 pages. 2005.
(Subseries LNAI).

Vol. 3365: G. Mauri, G. Paun, M.J. Pérez-Jiménez, G.
Rozenberg, A. Salomaa (Eds.), Membrane Computing.
IX, 415 pages. 2005.

Vol. 3363: T. Eiter, L. Libkin (Eds.), Database Theory -
ICDT 2005. XI, 413 pages. 2004.

Vol. 3362: G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
T. Muntean (Eds.), Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices. IX, 257 pages.
2005.

Vol. 3361: S. Bengio, H. Bourlard (Eds.), Machine Learn-
ing for Multimodal Interaction. XII, 362 pages. 2005.

Preface

This volume contains the papers presented at the 10th Anniversary Workshop on Job
Scheduling Strategies for Parallel Processing. The workshop was held in New York
City, on June 13, 2004, at Columbia University, in conjunction with the
SIGMETRICS 2004 conference.

Although it is a workshop, the papers were conference-reviewed, with the full
versions being read and evaluated by at least five and usually seven members of the
Program Committee. We refer to it as a workshop because of the very fast turnaround
time, the intimate nature of the actual presentations, and the ability of the authors to
revise their papers after getting feedback from workshop attendees. On the other
hand, it was actually a conference in that the papers were accepted solely on their
merits as decided upon by the Program Committee.

We would like to thank the Program Committee members, Su-Hui Chiang, Walfredo
Cime, Allen Downey, Eitan Frachtenberg, Wolfgang Gentzsch, Allan Gottlieb, Moe
Jette, Richard Lagerstrom, Virginia Lo, Reagan Moore, Bill Nitzberg, Mark
Squillante, and John Towns, for an excellent job.

Thanks are also due to the authors for their submissions, presentations, and final
revisions for this volume. Finally, we would like to thank the MIT Computer Science
and Artificial Intelligence Laboratory (CSAIL), The Hebrew University, and
Columbia University for the use of their facilities in the preparation of the workshop
and these proceedings.

This year saw a continued interest in scheduling in grid and cluster environments,
with a growing representation of real-system issues such as workload studies, network
topology issues, and the effect of failures. At the same time, there was also a strong
representation of research relating to classical multiprocessor systems, and lively
discussions contrasting the academic point of view with that of administrators of
‘real’ systems. We hope that the papers in this volume capture this range of interests
and approaches, and that you, the reader, find them interesting and useful.

This was the tenth annual workshop in this series, which reflects a consistent and
ongoing interest; the organizers believe that the workshop satisfies a real need. The
proceedings of previous workshops are available from Springer as LNCS volumes
949, 1162, 1291, 1459, 1659, 1911, 2221, 2537, and 2862 (and since 1998 they have
also been available online). We look forward to the next workshop in 2005, and
perhaps even to the next decade of workshops!

September 2004 Dror Feitelson
Larry Rudolph
Uwe Schwiegelshohn

Table of Contents

Parallel Job Scheduling — A Status Report 1
Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn

Scheduling on the Top 50 Machineso 17
Carsten Ernemann, Martin Krogmann, Joachim Lepping, and
Ramin Yahyapour

Parallel Computer Workload Modeling with Markov Chains 47
Baiyi Song, Carsten Ernemann, and Ramin Yahyapour

Enhancements to the Decision Process of the Self-Tuning
dynP Scheduler 63
Achim Streit

Reconfigurable Gang Scheduling Algorithm........................... 81
Luis Fabricio Wanderley Gées and
Carlos Augusto Paiva da Silva Martins

Time-Critical Scheduling on a Well Utilised HPC System at ECMWF
Using Loadleveler with Resource Reservation 102
Graham Holt

Inferring the Topology and Traffic Load of Parallel Programs Running
in a Virtual Machine Environment 125
Ashish Gupta and Peter A. Dinda

Multi-toroidal Interconnects: Using Additional Communication Links

to Improve Utilization of Parallel Computers 144
Yariv Aridor, Tamar Domany, Oleg Goldshmidt, Edi Shmueli,

Jose E. Moreira, and Larry Stockmeier

Costs and Benefits of Load Sharing in the Computational Grid 160
Darin England and Jon B. Weissman

Workload Characteristics of a Multi-cluster Supercomputer............. 176
Hui Li, David Groep, and Lex Walters

A Dynamic Co-allocation Service in Multicluster Systems 194
Jove M.P. Sinaga, Hashim H. Mohamed, and Dick H.J. Epema

Exploiting Replication and Data Reuse to Efficiently Schedule
Data-Intensive Applications on Gridsc.couino. ... 210
Elizeu Santos-Neto, Walfredo Cirne, Francisco Brasileiro, and

Aliandro Lima

VIII Table of Contents

Performance Implications of Failures in Large-Scale Cluster Scheduling .. 233
Yanyong Zhang, Mark S. Squillante, Anand Sivasubramaniam, and
Ramendra K. Sahoo

Are User Runtime Estimates Inherently Inaccurate? 253
Cynthia Bailey Lee, Yael Schwartzman, Jeniffer Hardy, and
Allen Snavely

Improving Speedup and Response Times by Replicating Parallel
Programs on a SNOW e e 264
Gaurav D. Ghare and Scott T. Leutenegger

LOMARC — Lookahead Matchmaking for Multi-resource Coscheduling.. 288
Angela C. Sodan and Lei Lan

Author Index ... 317

Parallel Job Scheduling — A Status Report

Dror G. Feitelson!, Larry Rudolph?, and Uwe Schwiegelshohn®

! School of Computer Science and Engineering
The Hebrew University of Jerusalem
91904 Jerusalem, Israel
2 Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
3 Computer Engineering Institute
Universitat Dortmund
44221 Dortmund, Germany

1 Introduction

The popularity of research on the scheduling of parallel jobs demands a periodic
review of the status of the field. Indeed, several surveys have been written on
this topic in the context of parallel supercomputers [17, 20]. The purpose of
the present paper is to update that material, and to extend it to include work
concerning clusters and the grid.

The paper is divided into three major parts. The first part addresses algo-
rithmic and research issues covering the two main approaches: backfilling and
gang scheduling. For each, recent advances are reviewed, both in terms of how to
perform the scheduling and in terms of understanding the performance results.
An underlying theme of the surveyed results is the shift from dogmatic use of
rigid formulations to a more flexible approach. This reflects a maturation of the
field and improved concern for real-world issues.

The second part of the paper addresses current usage. It presents a short
overview of vendor offerings, and then reviews the scheduling frameworks used
by top-ranking parallel systems. For vendor offerings, we highlight the distinction
between what is done in a research setting and what is actually developed for
production use. Regarding actual usage, we consider the alternative options of
procurement of an existing system vs. the development of an in-house solution
that more directly reflects desired attributes.

The third part of the paper looks both back and forward in time. As with
any field, the success, popularity, and influence of a particular approach depends
on a range of factors. We review some less successful ones. It is possible that
some of these techniques may only be relevant to future machines. The paper,
therefor concludes with some observations about the near-term future.

This paper contains a large number of references. In order to highlight the
more recent results, i.e. those with publication dates in this millennium, their
citation will be superscripted with the last two digits of the publication date.

D. Feitelson, L. Rudolph, and U. Schwiegelshohn (Eds.): JSSPP 2004, LNCS 3277, pp. 1-16, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn
2 Advances in Parallel Job Scheduling Research

There are many different ways to schedule parallel jobs and their constituent
threads [17], but only a few mechanisms are used in practice and studied in detail.
This section reviews backfilling and gang scheduling strategies, their variants,
and their connections. The special requirements and strategies for scheduling
parallel jobs on a grid are addressed as well.

2.1 Backfilling

The most basic batch scheduling algorithm is First-Come-First-Serve (FCFS)
[43] where jobs are considered in order of arrival. Each job specifies the number
of processors it requires and is placed in a FIFO queue upon arrival. If there
are sufficient available processors to run the job at the head of the queue, the
processors are allocated and the job is started. If there are not enough, the
scheduler waits for some currently running job to terminate and free additional
Processors.

Backfilling is an optimization that tries to balance the goals of utilization and
maintaining FCFS order. It requires that each job also specifies its maximum
execution time. While the job at the head of the queue is waiting, it is possible
for other, smaller jobs, to be scheduled, especially if they would not delay the
start of the job on the head of the queue. Processors get to be used that would
otherwise remain idle.

By letting some jobs execute out of order, other jobs may get delayed. Back-
filling will never completely violate the FCFS order where some jobs are never
run (a phenomenon known as “starvation”). In particular, jobs that need to wait
are typically given a reservation for some future time.

The use of reservations was included in several early batch schedulers [29, 8].
Backfilling, in which small jobs move forward to utilize the idle resources, was
introduced by Lifka [33]. This was done in the context of EASY, the Extensible
Argonne Scheduling sYstem, which was developed for the first large IBM SP1
installation at Argonne National Lab.

Variations on Backfilling While the concept of backfilling is quite simple,
it nevertheless has several variants with subtle differences. We generalize the
behavior of backfilling by parameterizing several constants. Judicial choice of
parameter values lead to improved performance.

One parameter is the number of reservations. In the original EASY backfilling
algorithm, only the first queued job received a reservation. Jobs may be scheduled
out of order only if they do not delay the job at the head of the queue. The
scheduler estimates when a sufficient number of processors will be available for
that job and reserves them for this job. Other backfilled jobs may not violate
this reservation, they must either terminate before the time of the reservation
(known as the “shadow time”), or use only processors that are not required by
the first job [33].

Parallel Job Scheduling — A Status Report 3

Backfilling may cause delays in the execution of other waiting jobs (which
are not the first, and therefore do not get a reservation). The obvious alternative
is to make reservations for all jobs. This approach has been named “conservative
backfilling” [37]°!. Simulation results indicate, however, that delaying other jobs
is rarely a problem, and that conservative backfilling tends to achieve reduced
performance in comparison with the more aggressive EASY backfilling. The
MAUI scheduler includes a parameter that allows system administrators to set
the number of reservations [30]°. Chiang et al. suggest that making up to four
reservations is a good compromise [6]%2.

An intriguing recent suggestion is adaptive reservations depending on the
extent different jobs have been delayed by previous backfilling decisions. If a job
is delayed by too much, a reservation is made for this job [50]°2. This is essentially
equivalent to the earlier “flexible backfilling”, in which all jobs have reservations,
but backfilling is allowed to violate these reservations up to a certain slack [51].
Setting the slack to the threshold used by adaptive reservations is equivalent to
only making a reservation if the delay exceeds this threshold.

Another parameter is the order of queued jobs. The original EASY scheduler,
and many other systems and designs, use a first come, first served (FCFS) order
[33]. A general alternative is to prioritize jobs in some way, and select jobs for
scheduling (including as candidates for backfilling) according to this priority
order. Flexible backfilling combines three types of priorities: an administrative
priority set to favor certain users or projects, a user priority used to differentiate
among the jobs of the same user, and a scheduler priority used to guarantee that
no job is starved [51]. The Maui scheduler has a priority function that includes
even more components [30]°1.

A special type of prioritization depends on job characteristics. In particu-
lar, Chiang et al. have proposed a whole set of criteria based on resource con-
sumption, that are generalizations of the well-known Shortest Job First (SJF)
scheduling algorithm [6]°2. These have been shown to improve performance met-
rics, especially those that are particularly sensitive to the performance of short
jobs, such as slowdown.

A final parameter is the amount of lookahead into the queue. All previous
backfilling algorithms consider the queued jobs one at a time, and try to schedule
them. But the order in which jobs are scheduled may lead to loss of resources
to fragmentation. The alternative is to consider the whole queue at once, and
try to find the set of jobs that together maximize desired performance metrics.
This can be done using dynamic programming, leading to optimal packing and
improved performance [47]%.

Effect of User Runtime Estimates Backfilling depends on estimates of how
long each job will run to figure out when additional processors will become
available, and to verify that backfilled jobs will terminate in time so as not
to violate reservations. The source of the estimates is typically the user who
submits the job. Jobs that execute beyond their estimated runtime are usually

4 Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn

terminated by the system. Many users therefore regard these estimates as upper
bounds, rather than as tight estimates.

Initial expectations were that user runtime estimates will nevertheless be
tight, as low estimates improve the chance for backfilling. However, comparisons
of user estimates with real runtimes show that they tend to be inaccurate, even
when users are requested to provide their best possible estimate with no danger
of having their job killed if the estimate is too low [18],[37]%1,[32]%. Attempts
to derive better estimates automatically based on historical information from
previous runs have not been successful, as they suffered from too many under-
estimations (which in backfilling would lead to killed jobs).

Probably, the most surprising result demonstrated by several studies has
shown that inaccurate runtime estimates actually lead to improved average per-
formance [18, 61],[37]°1. This is not simply the result of more backfilling due to
more holes in the schedule, because inflated runtime estimates not only create
holes in the schedule, but also enlarge potential backfill jobs, making it harder
for them to fit into the holes. Rather, it is the result of a sequence of events
where small backfill jobs prevent the holes from closing up, leading to a strong
preference for short jobs and the automatic production of an SJF-like schedule
(53]%4. This also motivates the construction of algorithms that explicitly favor
short jobs such as those proposed by Chiang et al. [6]°2.

This does not, necessarily indicate that more accurate runtime estimates are
impossible and useless. Not all estimates are bad; in most cases, some users
provide reasonably accurate estimates while others do not. Some studies indicate
that those users who do provide reliable estimates do indeed benefit, as their jobs
receive better service from the scheduler [6]°2. Also, while it seems that deriving
good estimates automatically is not possible for all jobs, it might be possible to
do so for short jobs and for jobs that have exhibited especially small variability
in the past.

Incidently, inaccurate user runtime estimates have been shown to have sur-
prising effects on performance evaluations [16]°3,[15]%3. In a nutshell, it was seen
that for workloads with numerous long single-process jobs, the inaccurate esti-
mates allow for significant backfilling of these jobs under the aggressive EASY
backfilling, but not under conservative backfilling. This in turn was detrimental
for the performance of short jobs that were delayed by the long backfilled jobs.
But if accurate estimates were used the effect was reversed, leading to a situ-
ation where short jobs were favored over long ones. This has more to do with
evaluation methodology than will scheduling technology.

2.2 Gang Scheduling

The main alternative to batch scheduling is gang scheduling, where jobs are
preempted and re-scheduled as a unit, across all involved processors. The notion
was introduced by Ousterhout, using the analogy of a working set of memory
pages to argue that a “working set” of processes should be co-scheduled for the
application to make efficient progress [38]. Subsequent work emphasized gang

Parallel Job Scheduling — A Status Report 5

scheduling, which is an all-or-nothing affair, i.e. either all of the job’s processes
run or none do.

The point of gang scheduling is that it provides an environment similar to a
dedicated machine, in which all a job’s threads progress together, and at the same
time allows resources to be shared. In particular, preemption is used to improve
performance in face of unknown runtimes. This prevents short jobs from being
stuck in the queue waiting for long ones, and improves fairness [44]0.

Flexible Algorithms One problem with gang scheduling is that the require-
ment that all a job’s processes always run together causes too much fragmenta-
tion. This has led to several proposals for more flexible variants.

One such variant, called “paired gang scheduling” is designed to alleviate
inefficiencies caused by I/O activity [56]%3. In conventional gang scheduling, pro-
cessors running processes that perform I/O remain idle for the duration of the
1/0 operation. In paired gang scheduling jobs with complementary characteris-
tics are paired together, so that when the processes of one perform I/0O, those of
the other can compute. Given a good job mix, this can lead to improved resource
utilization at little penalty to individual jobs.

A more general approach is to monitor the communication behavior of all
applications, and try to determine whether they really benefit for gang scheduling
[24]°3. Gang scheduling is then used for those that need it. Processes belonging

to other jobs are used as filler to reduce the fragmentation cause by the gang
scheduled jobs.

Dealing with Memory Pressure Early evaluations of gang scheduling as-
sumed that all arriving jobs can be started immediately. Under high loads this
could lead to situations where dozens of jobs share each processor. This is un-
realistic as all these jobs would need to be memory resident or else suffer from
paging, which would interfere with the synchronization among the job’s threads.

A simple approach for avoiding this problem is to use admission controls,
and only allow additional jobs to start if enough memory is available [3]°°. An
alternative is placing an oblivious cap on the multiprogramming level (MPL),
usually in the range of 3-5 jobs [35]. While this avoids the need to estimate how
much memory a new job will need, it is more vulnerable to situations in which
memory becomes overcommitted causing excessive paging.

When admission controls are used and jobs wait in the queue the question of
queue order presents itself. The simplest option is to use a FCFS order. Improved
performance is obtained by using backfilling, and allowing small jobs to move
ahead in the queue [59]%°,[58]%%. In fact, using backfilling fully compensates for
the loss of performance due to the limited number of jobs that are actually run
concurrently [23]%3.

All the above schemes may suffer from situations in which long jobs are
allocated resources while short jobs remain in the queue and await their turn.
The solution is to use a preemptive long-range scheduling scheme. With this
construction, the long term scheduler allocates memory to waiting jobs, and

6 Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn

then the short term scheduler decides which jobs will actually run out of those
that are memory resident. The long term scheduler may decide to swap out a job
that has been in memory for a long time, to make room for a queued job that
has been waiting for a long time. Such a scheme was designed for Tera (Cray)
MTA machine [1].

System Integration The only commercially successful implementation of gang
scheduling that we know of so far was the one on the Connection Machine CM-5.
Other implementations, e.g. on the Intel Paragon, never moved beyond exper-
imentation because of significant performance overheads, probably due to the
cost of gang synchronization and coordination. Recent advances in the imple-
mentation of gang scheduling in experimental systems promise to reduce these
overheads.

Gang scheduling requires the context switching to be synchronized across
the nodes of the machine, and software-implemented synchronization on large
machines is expensive. But some modern interconnection networks provide hard-
ware support for global operations, and this can be exploited also in the runtime
system. For example, in the STORM, where all parallel system activities are
expressed in terms of three basic primitives, which in turn are supported by the
hardware of the Quadrics network. In particular, this design has resulted in a
very scalable implementation of gang scheduling [25]%2.

While high performance networks enable efficient implementation of sys-
tem primitives, they may cause problems with multiprogramming. The difficulty
arises due to the use of user-level communication, in which user processes access
the network interface cards (NICs) directly so as to avoid the overheads involved
in trapping into the operating system. As a result no protection is available, and
only one job can use the NICs. This can be solved by switching communication
buffers as part of the gang scheduling’s context switch operation [14]°L. It is also
possible that this problem will be reduced in the future, as the memory available
on NICs continues to grow.

Even tighter integration between communication and scheduling is used in
the “buffered coscheduling” scheme proposed by Petrini and Feng [39]%C,[40]%°.
In this scheme the execution of all jobs is partitioned by the system into phases.
In each phase, communication operations are buffered and at the end of the phase
all the required communications is scheduled and and performed during the next
phase. This leads to complete overlap of computation and communication.

Gang scheduling was originally developed in order to support fine-grain syn-
chronization of parallel applications [19]. But an even greater benefit may be
its contribution to reducing interference. The problem is that the nodes of par-
allel machines and clusters typically run a full operating system, with various
user-level daemons that are required for various system services. These daemons
may wake up at unpredictable times in order to perform their function. Ob-
viously this interferes with the application process running on the node [36].
If such interferences are not synchronized across nodes, the application will be
slowed considerably as different processes are delayed. But with gang scheduling

Parallel Job Scheduling — A Status Report 7

it is possible to run all the daemons on the different nodes at the same time,
and eliminate their interference when user jobs are running [41]°. When this is
done, the full capabilities of the hardware are achieved.

2.3 Parallel Job Scheduling and the Grid

More recently, parallel computers are becoming part of a so called computational
grid. The name grid has been chosen in analogy to the electrical power grid where
several power plants provide numerous consumers with electrical power without
the consumer being aware of the origin of the power. Similarly, it is the goal
of a computational grid or simply Grid to allow users to run their jobs on any
suitable computer belonging to the Grid. This way the computational load is
balanced across many machines. Clearly, the Grid is mainly of interest for large
computational jobs or jobs using a large data set as smaller jobs will usually run
locally. However, the Grid is not restricted to this kind of jobs but will cover a
wide range of general services. Nevertheless at the moment large computational
jobs form the dominant grid application.

Before addressing the scheduling problem in a grid it is necessary to point
out some differences between a parallel computer and the grid. A parallel com-
puter has a central resource management system that can control all individual
processors. However in a grid, the compute resources typically have different
owners and as in most distributed systems there is no central control. Therefore,
a compute resource typically has its own local resource management system that
implements the policy of its owner. Hence, a grid scheduling architecture must
be built on top of those existing local resource management systems. This re-
quires communication between those different layers of the scheduling system in
a grid [45]%3,[55]. As in a distributed system the use of a central grid scheduler
may result in a performance bottleneck and lead to a failure of the whole sys-
tem if the scheduler fails. It is therefore appropriate to use a decentralized grid
scheduler architecture and distributed algorithms.

Further, grid resources are heterogeneous in hardware and software which
imposes constraints on the suitability of a resource for a given job. In addi-
tion, not every user may be accepted on every machine due to the implemented
owner policy. A grid scheduler must determine which resources can be used for
a specific submitted job while such a problem is usually not encountered in a
parallel processor or even in a cluster of computers [10]°2,[12]°2. Moreover, the
grid is subject to frequent changes as some compute resources may be temporar-
ily withdrawn from the grid due to maintenance or privileged non-grid use on
request of the owner. To obtain these data, the grid scheduler needs a specific
grid information service while the necessary up-to-date information is always
assumed to be available in a parallel computer.

Today, the main purpose of grid computing is considered to be in the area of
cross-domain load balancing. To support this idea the Globus Toolbox provides
basic services that allow the construction of a grid scheduler [22]. With the help of
those basic services grid schedulers are constructed that run on top of commercial
resource management systems, like LSF, PBS or Loadleveler. Further, existing

8 Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn

Systems, like Condor [34, 42|, are adapted to include grid scheduling abilities or
allow integration with a grid scheduler.

If a parallel computer is embedded in a grid, a large variety of jobs from
different users will be run on this machine. Then it will become increasingly
difficult to implement the usage policy of an owner with the help of those simple
scheduling criteria that are used today, like utilization and response time. There-
fore, it can be assumed that the grid will also change job scheduling strategies
for parallel computers. However in practice such an effect has not been observed
yet.

Large grid application projects, like LCG, Datagrid, GriPhyn, frequently
include the construction of some grid scheduler. Unfortunately, the scope of such
a scheduler is usually restricted to the corresponding application project. On
the other hand, there are academic projects that specifically address scheduling
issues like the generation, distribution and selection of resource offerings. To this
end various means are used, for instance economic methods.

In another approach, the job itself is responsible for its scheduling. Then
we speak of an application scheduler. This is important for jobs which have a
complex workflow and are subject to complex parallelization constraints. For
example, this is the approach taken in the AppLes project [7]%.

As a continuation of some metacomputing ideas it is sometimes considered
to use a computational grid as a single parallel processor, where many compu-
tational resources, that is parallel computers in the grid, are combined to solve
a single very large problem . In this situation, the network performance varies
greatly from communication within a parallel computer to communication be-
tween two parallel computers. Some models have been derived to evaluate the
performance of so called multi site computing [26, 4, 9, 11, 13]%%. However in
practice, such an approach has not been implemented with the possible excep-
tion of the preplanned combination of a few specific parallel computers for a
specific purpose.

An important component of using the grid as a single parallel resource is co-
allocation [5, 4, 2, 48]%. This means that resources on several different machines
need to be allocated to the same job at the same time. This is hard to accomplish
due to the fact that the different resources belong to different owners, and do
not have a common resource management infrastructure. The way to circumvent
this problem is to try and reserve resources on the different machines, and then
to use them only if all required reservations are successful [49]%°.

3 Parallel Job Scheduling Practice

3.1 Vendor Offerings

Commercial scheduling software for parallel jobs comes in two types: portable,
standalone systems, and components in a specific system.

There are two main competitors in the market for scheduling software. One
is the Platform Computing Load Sharing Facility (LSF), which is based on the

