COMPUTER

SYSTEM PERFORMANCE .

LR

Computer
System
Performance

Herbert Hellerman
State University of New York at Binghamton

Thomas F. Conroy
IBM Corporation
Education Center

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Diisseldorf
Johannesburg Kuala Lumpur London Mexico Montreal New Delhi
Panama Paris Sdo Paulo Singapore Sydney Tokyo Toronto

Computer System Performance

Copyright © 1975 by McGraw-Hill, Inc.

All rights reserved. Printed in the United States of America.
No part of this publication may be reproduced,

stored in a retrieval system, or transmitted,

in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the

prior written permission of the publisher.

1234567890 KPKP 798765

This book was set in Press Roman by Scripta Graphica.

The editors were Kenneth J. Bowman and Michael Gardner;
The production supervisor was Charles Hess.

The drawings were done by J & R Services, Inc.

Kingsport Press, Inc. was printer and binder.

Library of Congress Cataloging in Publication Data

Hellerman, Herbert, date
Computer system performance.

(McGraw-Hill computer science series)

Includes bibliographical references.

1. Electronic digital computers—Evaluation.
I. Conroy, Thomas F., joint author. II. Title.
QA76.5.H447 001.6'4'044 74-19029
ISBN 0-07-027953-5

COMPUTER SYSTEM PERFORMANCE

A S i, s 2 A e -

McGraw-Hill Computer Science Series

Richard W. Hamming
Bell Telephone Laboratories

Edward Feigenbaum
Stanford University

Bell and Newell Computer Structures: Readings and Examples

Cole Introduction to Computing

Donovan Systems Programming

Gear Computer Organization and Programming

Givone Introduction to Switching Circuit Theory

Hamming Computers and Society

Hamming Introduction to Applied Numerical Analysis

Hellerman Digital Computer System Principles

Hellerman and Conroy Computer System Performance

Kain Automata Theory: Machines and Languages

Kohavi Switching and Finite Automata Theory

Liu Introduction to Combinatorial Mathematics

Madnick and Donovan Operating Systems

Manna Mathematical Theory of Computation

Newman and Sproull Principles of Interactive Computer Graphics

Nilsson Artificial Intelligence

Ralston Introduction to Programming and Computer Science

Rosen Programming Systems and Languages

Salton Automatic Information Organization and Retrieval

Stone Introduction to Computer Organization and Data Structures

Stone and Siewiorek Introduction to Computer Organization and Data Structures: PDP-11 Edition
Tonge and Feldman Computing: An Introduction to Procedures and Procedure-Followers
Tremblay and Manohar Discrete Mathematical Structures with Applications to Computer Science
Watson Timesharing System Design Concepts

Wegner Programming Languages, Information Structures, and Machine Organization
Winston The Psychology of Computer Vision

Preface

Assessing the performance of a complex and expensive computer system is both a
practical necessity and a formidable technical challenge. Performance is characterized
by a set of precisely defined descriptors of efficiency that help determine how closely
a system comes to meeting stated objectives. Because these may differ from system to
system, and even conflict within the same system, it is important to understand not
only the descriptors, but also the relationships between them and how they are
influenced by choices that must be made in system architecture, design, and
operations. The study of performance involves not only mastery of certain special
definitions and techniques, like measurement and simulation, but also a deep
understanding of many themes that thread the entire fabric of computer science and
technology.

This book is concerned primarily with performance as opposed to function. The
reader is assumed already to be familiar with functional aspects of machine
organization and programming. However, some complex topics like operating systems
are discussed, beginning with basic concepts. A performance viewpoint offers a
splendid opportunity to cap an academic program in computer science oOr
engineering, since it brings together considerations of hardware, software, human, and
management factors. This book is therefore intended for senior undergraduate or
graduate courses. It should also be of interest to working computer professionals in
research, development, and operations.

The first chapter is an overview of major performance issues in computer
systems. It is designed to introduce some of the terminology and problems in
characterizing performance and to motivate interest in the subject.

The next two chapters cover selected topics in statistics and discrete math-
ematics. They supply all tools needed later and other material useful in reading the
literature. A major objective is to explain fundamental concepts and to develop
important skills in statistics, set notation, and applied probability. For the most part,
the formulas given in text are supplied with their assumptions and derivations. For
readers having a weak background in these subjects, Chap. 2 and 3 are essential and

i et d et

X) PREFACE

help make the book self-contained. This material and the Appendixes are also valuable
for review and reference.

Chapters 4 and 5, in the middle of the book, deal with job processing and
queueing models from three viewpoints: intuitive, simulation, and mathematical. Some
of this material may be familiar to industrial engineers and operations-research
specialists, but it should also be at the fingertips of computer professionals.

The last six chapters are concerned with performance issues that are very specific
to computer systems. Chapter 6 discusses the relatively simple class of cases involving a
single job or a single component. The material includes mix and kernal techniques of
CPU evaluation, compiler performance, software measurement methods, and a simple
model of a single job where processing and input-output are overlapped in various
ways.

Since computer performance is intimately related to the way its resources are
managed, especially by its operating system, Chap. 7 describes major design options of
operating systems including relocation, loading, scheduling, and deadlock-handling
features. Chapter 8 discusses the various versions of the complex IBM 0S/360
operating system and illustrates the principles discussed in Chap. 7.

Chapter 9 is devoted to timesharing systems, beginning with the user viewpoint,
proceeding to general architecture considerations, and finally to specific cases
including MIT-CTSS, IBM-TSO, and IBM-APL.

Chapters 10 and 11 examine the theory and practice of virtual storage, which
includes some of the most sophisticated and dynamic resource-allocation strategies in
computer systems. The two design contexts of a fast CPU with a cache store and the
main-store/drum-disk memory hierarchy are both discussed with most examples from
IBM System/370 systems.

A set of exercises for each chapter is supplied at the end of the book. For those
chapters covering mathematical-analytic techniques, these exercises include numerical
and algebraic problems. For the last few chapters, which involve primarily descriptive
material, most of the exercises require word answers. These are intended not only to
help focus attention on important points in the text but also to stimulate critical
thinking and familiarity with terminology, and to give readers practice in developing
their skills of expression and exposition. The final exercises in many of the chapters
are major projects, some of which require considerable library work and nontrivial
programs to be written.

We have used the manuscript as a text in a two-semester sequence in system
performance. Since our particular curriculum required a separate course in probability
and stastics, Chap. 2 and 3 were used only for a quick review, and thereafter for
reference. Most of the first half of the first semester was spent on Chap. 4 and 5,
where the simulation and mathematical job processing models were developed. Here,
we found the use of the SIMJOB simulator program (outlined in Chap. 4) to be useful
for student experimentation. Chapter 6 was then covered rather quickly and the last
half of the term was devoted mainly to Chap. 7 and 8, which concern modern
conventional operating systems, and a part of Chap. 9, which introduces timesharing
systems. The second semester began with timesharing systems and continued with the
final chapters on virtual storage. The last four weeks were reserved for student

PREFACE %

seminars on papers selected from the references or reports on student projects, most of
which were of the simulation type. Depending on the interests and needs of the
students and the preferences of the instructor, different orderings and selections from
the text are, of course, possible.

We are pleased to acknowledge the diligent proofreading work of Mr. Steven
Lake at State University of New York at Binghamton. We also wish to express our

appreciation to Mrs. Shanna McGoff for her excellent efforts and patience in typing
the manuscript.

Herbert Hellerman
Thomas F. Conroy

HONVINIOJddd WALSAS d41NdINOD

Contents

Preface ix

Chapter 1| THE NATURE OF COMPUTER-PERFORMANCE
EVALUATION 1

1-1 Motivations for Evaluation 2
1-2 The System as a Collection of Resources 3
1-3 Performance Measures 4
1-4 Workload Selection: Benchmarks 7
1-5 Resource Exercisers: Kernels 8
1-6 Instruction Mixes 8
1-7 Measuring and Deducing System Activity 9
1-8 Operating System Classes 10
1-9 Concluding Remarks 12

References and Bibliography 12

Chapter 2 PRINCIPLES OF STATISTICS 14
2-1 Mode, Mean, and Standard Deviation 15
2-2 Standardized Variables 19
2-3 Types of Means 19
2-4 Frequency-grouped Data 20
2-5 Simulation of Observations from Frequency Functions 26
2-6 Median and Quantiles 27
2-7 Measures of Symmetry 29
2-8 Mean and Variance of the Sum of Two Variables: Correlation 29
2-9 Least Square Curve Fitting: Regression 31
2-10 More on Regression Lines and Correlation 35

References and Bibliography 37

Chapter 3 TOPICS IN DISCRETE MATHEMATICS AND APPLICATIONS 38

3-1 Elementary Combinatorial Analysis: Permutations and Combinations 39
3-2 Sets: Definitions, Specification, Equality, and Equivalence 46
3-3 Set Operators and Expressions 47
3-4 Subsets 50
3-5 Ordered Pairs, Cartesian Product, Mappings, and Functions 52
3-6 Recursive Functions 53
3-7 Probability Concepts: Sample Spaces and Axioms 56
3-8 Independent Events: The Product Principle 58

3-9 Equiprobable Sample Spaces 59

T ISRy T S T 5

T G VT P e

Chapter 4

Chapter 5

Chapter 6

3-10
311
3-12
3-13
3-14
3-15

3-16
3-17
3-18
3-19
3-20
321
3-22

CONTENTS

Hierarchy of Sample Spaces

Conditional Probability

Frequency Ratio: Law of Large Numbers

Expectation and Variance

Markov and Chebyshev Inequalities

Bernoulli Trials: Binomial, Multinomial, and Geometric
Distributions

The Poisson Distribution

Markov Chain Models

Reliability Models: Series-Parallel Structures

More General Reliability Structures

Redundancy

Mean Time to Failure

A Failure/Repair Reliability Model

References and Bibliography

JOB PROCESSING MODELS: INFORMAL AND
SIMULATION VIEWPOINTS

4-1

Nature of a System Model

4-2 Workload Descriptions

4-3
4-4
45
46
47
48

Simplest Single-Server Model

Scheduling

Job Performance Measures

Resource Performance Measures: Hardware Monitors
Multiple-Server Models

Outline of a Simple Job-processing Simulator
References and Bibliography

QUEUING THEORY

5-1
52
5-3
5-4
5-5
5-6
5-7
5-8

Poisson Arrival (Birth) Process

Fundamental Differential-Difference Equation
Steady-State Queue Behavior

Steady-State Solution: Indefinite-Length Queues
Erlang and Hyperexponential Distributions: Series of Stages
The Khintchine-Pollaczek Equations
Parallel-Server Systems

A Timesharing System Model

References and Bibliography

Appendix §-A

Appendix 5-B

SINGLE-COMPONENT AND SINGLE-JOB PERFORMANCE

6-1
6-2
6-3
6-4
6-5
6-6

Main Storage

CPU Instructions: Microprogram Control
Microprogram Control

An I/O and CPU Overlap Model

Equipment Performance Summary; IBM System/360
Compiler Performance

References and Bibliography

91

92
92
95

103
105
108
112
119

120

121
127
128
130
131
135
135
137
140
141
142

143

143
145
147
149
157
159
167

CONTENTS

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

OPERATING SYSTEMS: EVOLUTION AND
FUNDAMENTALS

7-1 Computers with No Operating Systems

7-2 Monoprogrammed Operating Systems

7-3 Multiprogramming: SPOOLing-Only Systems

7-4 Multiprogramming: Hardware Features

7-5 Multiprogramming: Time and Space Sharing

7-6 Software Monitors

7-7 Cooperating Sequential Processes: Deadlock Theory
References and Bibliography

THE IBM 0S/360 OPERATING SYSTEM

8-1 Overview

8-2 OS/MFT

8-3 OS/MVT

8-4 The HASP Scheme

8-5 Software Monitoring

8-6 Deadlock Avoidance in OS/360
References and Bibliography

TIMESHARING SYSTEMS

9-1 The User Viewpoint and Some Consequences
9-2 Choice of Time Slice
9-3 The MIT CTSS System
9-4 The APL System
9-5 Performance Measurement
9-6 A Timesharing System Simulator
9-7 IBM Timesharing Option (TSO) for System/360 or 370
9-8 The G.E. Information Services Network
References and Bibliography

VIRTUAL-STORAGE PRINCIPLES

10-1 Rationale for Virtual-Storage Organization
10-2 Address Space and Mapping: Paged Systems
10-3 Segmentation
104 Capturing an Address Stream
10-5 Characterizing Address Streams: Locality and Working Set
10-6 Page-Replacement Algorithms
10-7 Programming Style and Program Behavior
10-8 CPU-Design Context: IBM S/370 Mod 155
References and Bibliography

VIRTUAL STORAGE: SYSTEM-DESIGN CONTEXT

11-1 System-Design Considerations

11-2 Multiprogramming in an AS (1) Environment
11-3 AS(n) Virtual-Storage Systems

114 1/O Operations In Virtual-Storage Systems
11-5 Multiprogramming and Thrashing

11-6 IBM Virtual-Storage (VS) Systems

11-7 IBM Virtual-Machine (VM) Systems

vii

169

170
171
177
180
183
188
190
198

199

200
206
216
223
225
226
229

231

234
239
240
242
246
250
258
267
270

272

274
276
280
285
286
290
299
302
305

309

310
314
322
324
325
329
335

viii CONTENTS

11-8 The Multics System 337
References and Bibliography 339
APPENDIXES 342
A. Summary of Probability Functions 342
B. Principles of Continuous Probability Functions 343
Fundamentals 343
The Normal Distribution 344
The Chi-Squared Test 346
C. Tables of Probability Functions 350
1 Poisson Distribution 350
2 Ordinates (Y) of the Standard Normal Curve 351
3 Standard Normal Curve Areas 352
4 Percentile Values for the Chi-Squared Distribution 353
Problems 354

Index 373

CHAPTER 1

The Nature of
Computer-Performance
Evaluation

The evaluation of a computer system involves the following classes of considerations:

1. Performance (defined loosely as measures of system speed and resource use)
2. Cost

3. User convenience

4. Reliability

Perhaps the most fundamental property of modern data-processing systems is
their generality. The theoretical basis of this generality is due to the work of A.M.
Turing (1936). It can be shown that most commercially available computers are
logically equivalent to each other, since they can compute the same wide class of
computable functions, conditional only on the character-sets they can accept and print
and on the size of storage available (but not fundamentally on the technologies or
speed properties of the storage devices). This extreme generality of function is the
source of many of the greatest difficulties in computer evaluation. This is because any
system can be evaluated only with respect to its functions; the wider the class of
functions, the more difficult the task of characterizing its “goodness.”)

The fact that performance varies in the same direction as cost is understandable,
although the quantitative relationship is often not at all clear. The relation of user
convenience to performance is also very difficult to quantify. Like most desirable
properties, user convenience usually has its price in both system cost and performance,

T N o T TR S TILRS Ve T Pty Wy Iy

Ll i e acita Auion Lol B Sben- DoRar) Sl el ekl - Rgabadail g Sobd s Mo g ool e e e i et i o e it Sy

2 THE NATURE OF COMPUTER-PERFORMANCE EVALUATION

but this can be more than offset by increased human productivity. One reason for a
speed penalty is that convenience requires the physical system to be disguised to
user-oriented objectives through the use of resources in an indirect manner that is not
the best match to their physical structure. Also, user convenience is achieved at least in
part by system programs that automatically do tasks otherwise left to the individual
programmer. It is difficult to design such facilities to perform optimally for the
particular needs of all possible user programs. However, with care, system programs
can often perform at least as well as corresponding programs written by most
programmers.

It would be most desirable to have quantitative measures of the value of system
features to user convenience. Unfortunately, these are rarely obtainable. For example,
even today we have no measure of the worth of say the FORTRAN language over
coding in Assembly language, although there is little doubt that the benefits in human
productivity are very great. This kind of gap is a major obstacle in developing a science
of system evaluation.

Since about 1969, the literature on computer performance has burgeoned. This
reflects in part the maturing of the data-processing industry. Increasing attention is
now being given to making wise selections from among several available devices and
software components with comparable functions. The strong incentive of system
economies coupled with considerable technical effort has not yet produced a science
of system performance. Some of the obstacles still to be overcome include
considerable differences among workers in performance in the definitions of various
performance measures, the scarcity of analytic methods for relating various per-
formance measures to each other, and the lack of general methods of scaling
performance measures from one system to another. In other words, we do not have a
theory of performance evaluation. Progress toward such a theory has been slow, not
only because of technical problems in definitions and analysis, but also because
performance, user convenience, reliability, and cost have important business implica-
tions. Many tools and results are consequently being held proprietary to the business
firm that developed them.

In the remainder of this chapter, we shall briefly touch on several computer
performance issues, many of which will be discussed in greater detail later in the book.

1-1 MOTIVATIONS FOR EVALUATION

Computer system evaluation is of interest to several classes of people, each with its
own perspective. A rough classification is:

1. Hardware-software architects and designers
2. Managers of system installations and their system programmers
3. Users (application programmers and analysts)

The scope narrows in the order of the above listing. The designer must deal with
factors influenced by the entire spectrum of possible system use; the manager at a
particular installation is concerned with many users, but only in a restricted
environment; and the individual user is interested in his single program or a small

1-2 THE SYSTEM AS A COLLECTION OF RESOURCES 3

collection of programs. As the width of interest becomes more specific, performance
objectives and measures can be stated more precisely. However, less freedom is also
available to manipulate resources and meet particular objectives. Thus the designers
have a relatively large number of choices, while the installation manager working with
a delivered system is confined to available resources. However, many modern
computers are delivered with “open” parameters in their operating systems so that
each installation can make important efficiency decisions, such as the devices to be
used for program residence and scheduling options, in accordance with the properties
of its workload. Judicious setting of these can be a major factor in good performance.
Although at present most of this “tuning” is done manually, future operating systems
will be “adaptive,” i.e., they will sense the resources available, monitor activity, and
assign resources automatically. However, even here it will still be necessary for users
(e.g., installation managers) to convey their performance objectives to the system.

The individual user is most constrained in resource allocation, yet he often has a
vital influence on performance. A recent specific case in our personal experience
showed an improvement (by a factor of 50) in run time for a certain program by
changing the iteration scheme. This factor is comparable to the average internal speed
ratio between many large and small machines! Almost any experienced observer can
give similar examples. The fact is that the range of program quality is in practice
exceedingly large; this reflects the great differences in human skill in problem solving,
which is really what programming is all about.

12 THE SYSTEM AS A COLLECTION OF RESOURCES

A modern computer system is best considered as a collection of resources. These and
their typical present implementations include:

1. Storages:
(@) Registers and buffers; logic circuitry, logic arrays, and small fast core, film
arrays.
(b) Main storage; film core, integrated transistor circuits.
(c) Auxiliary storage; core, drum, disk, delay line, tape.
2. Processing Units:
(@) Arithmetic-logical and program control operations.
(b) Transmission controllers.
3. Transducers (converters of one physical form of information to another):
(@) Card-tape readers, punches.
(b) Typewriters, printers, displays.
4. System Programs:
(a) Subroutine libraries.
(b) Language processors.
(c) Resource-management utilities.

The economics of technology has thus far resulted in system structures that are
heterogeneous in speed and cost of substructures, especially storages. Although
technology is changing, the fact that different technologies yield different cost-speed
characteristics seems to be a safe extrapolation from all past experience. It follows that

4 THE NATURE OF COMPUTER-PERFORMANCE EVALUATION

whatever the particular values of speed-cost improvement, future (like past) systems
will consist of mixed technologies. Management of this hierarchy will remain a central
issue of system performance.

Since resource allocation is programmable, it has traditionally been left to each
individual user in each of his programs. This is a “fair” although burdensome task in a
nonshared system where each user has all resources available to him during his run. In
a shared (multiprogrammed) system, multiple-user demands converge at unpredictable
times on common resources. Careful space allocation is now essential, since too large a
share given to one user deprives others of this vital resource. These conflicts must be
resolved by the system, since the individual user lacks the knowledge of resource
states and the incentive and responsibility to manage resources for other users. Major
resources are thus allocated and scheduled by a system program which we shall call the
supervisor. To the user this program might as well be part of the hardware, and
although many options are available to him and his installation, important per-
formance factors are determined by the organization of the supervisor. The
system-supplied programs mentioned above are used extensively by most programs,
often in ways not obvious to the programmer. A realistic evaluation must take into
account the performance of these facilities.

Finally, it is well to recognize the important role of the human operator as a
“component” of system performance. Manual operations in the machine room
(tape-disk mounting, printer-paper bursting, etc.) as well as console interaction can and
do have significant effects on overall system performance.

1-3 PERFORMANCE MEASURES [Refs. BA,GO,HE2,LU]

Quantitative measures of performance are meaningful only when the following are
clearly specified:

1. The system configuration (all device and software parameters)
2. The workload or job stream
3. The definition of the measures

The first of these is obvious, and little can be said in general. Configuration
information can be very voluminous, although most of the performance effects are
usually due to a small fraction of the total number of parameters. The difficulties in
specifying and extrapolating workloads was mentioned earlier and will be a recurring
theme of this book (see Sec. 1-4). For now, job i in a stream will be specified by a
number-pair (4;,X;) giving its arrival and execute or service time. If all 4; are omitted,
all jobs arrive at time = 0.

The definition of performance measures involves careful consideration of the
objectives of the system, especially with regard to human expectations. Two measures
in very common use are thruput and response time.

Thruput is a commonly used measure for “batch” systems and is expressed in
units of jobs per minute, that is, the number of jobs in a stated job stream divided by
the total time to process the stream:

n

T

