. A SELFTEACHING GUIDE

y

Pascal |
Applications
for the Sciences

Richard E. Crandall

eeeeeeeeeeeeeeeeeee
eeeeeeeeeee
ooooooooooooooo

NNNNNNNNNNNNNNNNNNN
New York - Chichester - Brisbane - Toronto - Singapore

Pascal
Applications
for the Sciences

Preface

Pascal Applications for the Sciences has evolved as a result of a common dilemma
facing teachers of science: How can a diverse group of students be taught scientific
programming in a minimum amount of time? In 1978, the Reed College Physics
Department encountered such a dilemma when they decided to adopt Pascal as
the language of choice for physics courses. Even at the introductory level, students
have diverse approaches to science and may be committed to a specific field such
as biology, physics, medicine, or chemistry. The teachers had to resolve two
questions: How can these students be brought to a level of scientific programming
that is adequate for basic applications in their chosen disciplines? How can this be
done without taking too much time away from the normal course of physics study?
The dilemma was compounded by the fact that, even though some marvelous
student assistants lent their talents to the Pascal sessions, the average introductory
student had to spend considerable time alone at a terminal, in self-study mode.

This book incorporates what I have learned over a S-year period about how
students of scientific programming prefer to pace themselves. The course materials
for the Pascal sessions at Reed College have been refined, tested, and amplified to
provide a means by which students can acquire scientific programming skill in a
short time. The book is for scientists and students of science who wish to achieve
the expertise needed to solve problems in their particular disciplines. This book is
not a traditional computer science book—it is a guide for any scientist. It contains
a review of Pascal structure, but it focuses on applications. For this reason, I
recommend that students use a standard Pascal text for details on Pascal syntax
and structure. In the original college sessions, the materials in this book were used
together with a standard Pascal text. This combination proved so effective that
serious students were able to achieve good levels of expertise in one school
quarter.

Pascal Applications for the Sciences has the following sequence: Pascal
review, mathematical programming, equation solving, statistics, and graphics. The
book then branches into four advanced chapters, with applications for mathe-
matics, chemistry, physics, and biology. All the chapters include exercises that
cover typical applications, as well as exercises of an exploratory nature.

The five appendixes contain scientific libraries as Pascal include files. These
libraries have computer packages students will find useful in their studies; they
cover graphics, matrices, statistics, special functions, and dynamical models.

Throughout the book the sequence of text—exercises—text—exercises—and
so on is followed. I have found that there is a limit to how long a programmer can
read text material before an exercise series is appropriate. The length of each text
segment has been designed accordingly. For those facets of study I take to be more
important, there are noticeably more exercises following.

Above all, Pascal Applications for the Sciences is designed to provide you
with efficient, unified training. Scientists of today have so much to learn in their
chosen areas that the acquisition of programming skill should not usurp an
inordinate amount of time away from traditional scientific pursuit. You will have
been successful with this book if you can achieve a certain independence from it. It

-

vi - Preface

is my hope that you will eventually be able to address any problem in your field,
using the book only in matters of reference.

I would like to thank the introductory students whose feedback over the years
has been indispensable for this project. I also wish to thank the instructors
R. Henley, R. Whitnell, S. Swanson, W. Wood, and T. Abbott whose excellent
works are included in this book. I am indebted to faculty members D. Hoffman,
R. Reynolds, J. Delord, R. Bettega, N. Wheeler, D. Griffiths, J. Buhler, R. Mayer,
T. Dunne, and J. Dudman for programs, corrections, and general support of the
project. I thank computer colleagues C. Green, G. Schlickeiser, E. Roberts,
G. Ross, M. Penk, and D. Basin for their gracious offerings of expertise. I
especially thank S. Stearns for allowing me to transfer his insightful course
materials for Pascal as it pertains to biology. I am grateful to Intel Corporation,
Hewlett-Packard, Tektronix, and Apple Computer personnel for support in the
form of equipment, encouragement, and general interest in the project. I am
indebted to A. Marcus, M. Blair, R. Kilgore, R. Raber, M. Lindquist, and C.
Delord for their inestimable aid in generation of the manuscript.

Richard E. Crandall
Portland, Oregon

How to Use
This Book

Pascal Applications for the Sciences is designed to lead you from a novice level of
scientific programming to a level of expertise at which you can routinely solve
problems in your field of science. If you need a review of Pascal, begin with
Chapter 1. If you already have some Pascal skills, look over the exercises in
Chapter 1 to make sure that you can do them, then move on to Chapter 2 where
applications begin. If you are already an experienced scientific programmer, try
the more difficult exercises in Chapters 2 to 5 and the material in the advanced
Chapters 6 to 9.
Each chapter has the following structure:

Text
Exercises
Text
Exercises

Throughout the book the theme is “explore!” and in this spirit many of the
exercises, notably the final ones of each exercise section, have been included as
challenges for your creative abilities. There are references at the end of the book
for most chapters so that you may pursue the scientific concepts discussed in the
text.

You will notice that instructions in Chapters 6 to 9 are less direct and that the
burden of creativity is passed to you. Many of the exercises in these chapters have
the flavor of projects as opposed to test questions.

Good luck with Pascal and with science!

vii

Contents

Preface v
How To Use This Book vii
1 Pascal Review 1
Getting Started 1
Elementary Syntax 1
Writing Output 4
Identifiers and Declarations 6
Calculations in Pascal 9
2 Mathematical Programming 13
Motivation 13
Sequences 13
Series 18
Approximating Limits 22
Functions 25
3 Equation Solving 29
Computer Calculus? 29
Derivatives 30
Newton’s Method 32
Differential Equations 36
Vectors 39
Matrices 46
4 Probability Models 49
Random Real Numbers 49
Random Integers 51
Monte Carlo Methods 55
Statistics 58
Histograms 62
5 Modeling with Graphics 65
Preparation 65
Graphing of Functions 66
Parametric Curves 72
Three-Dimensional Graphics 73
Versatility of Graphics 76

x - Contents

6 Examples from Mathematics

Complex Numbers

Fourier Series

Linear Equations

Recursive Functions and Procedures
Precision Arithmetic

Orthogonal Polynomials

Special Functions

Number Theory

7 Examples from Chemistry

Stoichiometry

Reaction Models

Solubility Calculations

pH Calculations

Titration

Stereo Molecules

Quantum Mechanical Calculations

8 Examples from Physics

Mechanics

N-Body Problems
Quantum Mechanics
Scattering

Solitons

e) Examples from Biology

Population Genetics
Community Ecology
Biological Signal Processing

Appendixes

Graphics Libraries

Matrix Library

Statistics Library

Special Functions Library
Dynamical Models Library

References

mooOw>

Index

85

85
90
99
104
108
110
112
115

119

119
121
122
125
127
131
136

143

143
150
154
163
167

171

171
177
182

197
208
215
223
232

239

243

Pascal
Review

These machines have no common sense; they have not yet

learned to “‘think,’’ and they do exactly as they are told, no

more and no less. This fact is the hardest to grasp when one
first tries to use a computer.

Donald E. Knuth

The Art of Computer Programming

GETTING STARTED

Pascal can be used in a great variety of ways such as to display data,
to analyze data, to verify theoretical predictions, and to suggest new
lines of scientific thought. It is suitable for applied as well as
theoretical science. Many books only cover the abstract features of Pascal, such as
detailed syntax rules and algorithm structure. This book, however, emphasizes the
utility of the language. In order to benefit from the examples and exercises, it is
important that you first obtain a working knowledge of Pascal. Since this book
teaches you to instruct your computer to perform a wide variety of tasks, you must
learn how to tell your computer exactly what you want it to do.

Exercise

Learn how to edit programs on your computer system. Compile these programs
and arrange your files. Your own system’s documents are best for this. Use a
standard Pascal text, such as the ones listed in Chapter 1 references, for matters of
detailed syntax. It is a good idea to read this chapter with a standard text at your
side. If you can successfully do the exercises in this chapter, you are ready to move
to Chapter 2 where essential mathematical applications begin.

ELEMENTARY SYNTAX

Most Pascal references contain syntax diagrams, which are roadmaps of the
overall program and show graphically what structures are legal. Some pro-
grammers use references that have all relevant Pascal syntax diagrams; some
never use them. In any case, they are useful in the preliminary stages of
understanding. This chapter presents some diagrams that frequently occur in
application programs.

The most important diagram is for the program itself (Figure 1.1). The syntax
diagram in Figure 1.1 shows how to start editing a Pascal program. You follow the
diagram from left to right and always start with the word ““‘program.”

2 - Pascal Applications for the Sciences

identifier

identifier

O—

Figure 1.1

s

The word ‘“‘program,” enclosed in an oval box, is a keyword, or reserved
word, in Pascal. The circled items are operators, which are Pascal’s punctuation
symbols. Items in square boxes are defined by other syntax diagrams. As you will
see, what is normally thought of as a programming task will involve almost
exclusively a structure called the block.

Identifiers are Pascal’s words for labeling various objects. For example, the
first identifier on the left in Figure 1.1 will be the name of the program. The
identifiers following it in parentheses are called file identifiers. Generally, these
take the form of some combination of the two words “input” and “output”.

An identifier has its own roadmap. The diagram in Figure 1.2, for example,
means that an identifier is any sequence of letters and digits beginning with a letter.
Thus “x”, “x5”, “voltage”, and ‘‘position” are legitimate Pascal identifiers,
whereas “3x” and “x.3” are not. Verify for yourself that this is the case by trying
to trace each of these six identifiers through the syntax diagram in Figure 1.2.

The program section labeled block is essentially all of the Pascal program.
The section preceding the block is often called the program header. A block has
the structure shown in Figure 1.3.

Examples of statements are shown in Figure 1.4. Each line of Figure 1.4 is a
separate statement, as indicated in the abstract syntax diagram in Figure 1.3,
where semicolons separate all statements.

Since the Pascal language provides us with an enormous multiplicity of
possible statements, we will discuss a specific statement and its syntax as it
becomes useful.

(—— letter —]
— letter
L digit v_j

Figure 1.2

Pascal Review - 3

()
U/

— declarations begin] statement end

Figure 1.3

x:= 15;

while (y = 0) do search;

if (not tadpole) and (alive) then frog:= true;
if angle(x) = 1 then z:=5 else writeln('help!');
clearscreen;

z:= trunc(x+0.5) - y mod p + m¥n;

Figure 1.4

program newton(output);
begin

writeln('f = ma')
end,

Figure 1.5

Figure 1.5 is a legitimate Pascal program. Notice that the program name, an
identifier, is “newton”, that the file identifier is “‘output”, that there is no
declaration section, and that the single statement in the program is

writeln(‘f = ma’)

This statement is a procedure call. It activates the standard procedure “writeln”
(for write line), which writes things out. The items inside the parentheses, the
arguments to “writeln”, are what will be printed. In this case, the argument is a
string constant, a group of characters enclosed in single quotation marks. Such
quoted characters are taken literally. Therefore, when compiled and executed, this
program will print

f=ma

and that is all it will do.

Exercises

1. By using the syntax diagram for identifiers, indicate which of the following are
valid identifiers:

loopcount xy _x 2+A
loop count xy x2 A—-2

4 - Pascal Applications for the Sciences

program gaslaw(input, output);
begin
writeln('ideal gas law:');
writeln('PV = NRT')
end.

Figure 1.6

2. Consider the program shown in Figure 1.6. By using syntax diagrams, list
these items:
(a) The first keyword in the program
(b) The first identifier (this will be the program name)
(c) The file identifiers
(d) The whole block
(e) The operator that separates statements
(f) The identifier naming the one procedure used in this program
(g) The string constant representing the first piece of output printed

Answers

1. Valid identifiers: loopcount, xy, x2. None of the others can be properly traced
through the syntax diagram.
2. (a) program

(b) gaslaw
(c) input, output
(d) begin

writeln(‘ideal gas law:’);
writeln(‘PV = NRT")

end
(e)
(f) writeln

(g) ‘ideal gas law:’

WRITING OUTPUT

Consider the program shown in Figure 1.7. When run, this program will print the
following:

newton's second law:
f=ma.

This example contains two items of interest. First, note that two apostrophes are
used in a string constant when you want a single one to appear on output; second,
after ““writeln” has printed all its arguments, it prints a carriage return/line feed
that forces the next item printed to appear on a new line. Pascal also has the

Pascal Review - 5

program newtonl (output);

begin
writeln('newton''s second law:');
writeln(' £ = ma.')

end.

Figure 1.7

program manylines (output);

(* Quote-printing program *)

begin
write('every body continues', ' in its state ');
writeln('of rest');
write('or in uniform motion in a right line unless');
writeln;
writeln('it is compelled to change', ' that state by forces');
writeln('impressed upon it. ');
writeln;
writeln(' -- newton')

end. { manylines }

Figure 1.8

procedure “write”’, which allows the data printed by several different statements to
appear on the same line.

Both “write” and ““writeln” can take several arguments, and both will print all
the arguments given them on the same line. Further, “writeln” can be used without
any arguments. The program in Figure 1.8 will print the following six lines of
text:

every body continues in its state of rest
or in uniform motion in a right line unless
it is compelled to change that state by forces
impressed upon it.

— —newton

The program includes a comment that explains the program § purpose. Comxilents
are ignored by your machine when a program is compiled, but they help to explain
a program’s structure and function to the reader. Another réason-to include
comments is that when you return later to edit a section of your program, you may
have forgotten your original rationale. This predicament is easily averted by way of
good commenting habits. Comments are usually enclosed in symbols (* *) or in
“braces” { }.

Exercises

1. Consider the program in Figure 1.9. How many lines of output will this
program produce? What is the program name? For what phrase do you think
the program name is an abbreviation?

R 1

6 - Pascal Applications for the Sciences

program glop(input, output);

begin
write('e=ir');
write(' ');
writeln('e=mc squared');
writeln('div b = 0 epsi = hpsi')
end.

Figure 1.9

2. Write your own program to print the following text:

the test of
all
knowledge is
experiment!

—feynman

One blank line should be printed before the author’s name. Enter your
program on the computer, compile it, and run it.

Answers

1. There are two lines of output. The program name is “glop’’, which stands for
great laws of physics. The great laws are Ohm’s law, Einstein’s equation, a
Maxwell equation, and the Schroédinger equation.

2. The last three lines of such a program should be

writeln;
writeln(‘—feynman’);
end.

IDENTIFIERS AND DECLARATIONS

There are two kinds of identifiers. Standard identifiers are automatically provided
by Pascal. For example, “writeln” is a standard identifier that refers to a
procedure that writes things. The other kinds of identifiers are invented by the user.
You must declare them before they are used so that Pascal will know what each
identifier names. This is done in the declarations section of a program, which has
the form shown in Figure 1.10.

The simplest thing to identify is a constant. Constants are numbers, such as 5
or 3.1415926535, or strings, such as ‘this string’, which do not change. We can
attach identifiers to constants with a constant definition. For example, we could
define the identifier ““e’’ to have the value 2.718281828. The constant declaration
section of a program has the structure shown in Figure 1.11. The program
“newton2” in Figure 1.12 has an effect identical to that of the program ‘“newton”
given previously.

Pascal Review - 7

One of the most useful things that can be identified is a variable. Variables,
like constants, represent numbers, characters, and so on. Unlike constants,
however, the value of a variable can be changed.

Imagine a variable as a box in which you place items to look at later. This box
could be said to have a very specific shape, which is its type. The #ype determines
what variables you can and cannot put into the box. For example, you can put the
numbers 1, —3, 7/8 in variables declared to hold the type called real numbers.

All variables must be declared as such and assigned a specific type. This is
done in the variable declaration section of a program illustrated in Figure 1.13.
We will mainly be concerned with the two numerical types integer and real.

You can also declare your own customized types, procedures, and functions.
These options come up later in the book.

constant
R declarations

P

\ type

declarations

)

A variable

declarations

I

A procedure/function
declarations
\ L
Figure 1.10

const identifier —@—— constant

Figure 1.11

program newton2(output);
const

law2 = 'f = ma ';
begin

writeln(law2);
end.

Figure 1.12

8 - Pascal Applications for the Sciences

identifier type

Figure 1.13

Exercises

99 ¢ EEINT3

1. Indicate which of the Pascal types—*‘integer”, “‘real”, “boolean”, “char”, or
“illegal’’—each of these values are:

1.0 —99.7 6x true false maybe ‘h’ ‘65’
1-0.2 99.012 —678

For this and other problems you may wish to consult a Pascal reference (see
Chapter 1 references).
2. For the program in Figure 1.14, list the following:
(a) All standard identifiers
(b) All keywords
(c) All user-defined identifiers

Answers

1. 1.0 real
—99.7 real
6x illegal

program exl(input, output);

(* print the area and circumference of a circle, ¥*)
const
pi = 3.14159265358979;
var
radius, area: real;
begin
radius := 2.35; (* set the variable 'radius' to a number. ¥*)
area := radius * radius * pi; (* calculate the area. *)
writeln('radius =', radius);
writeln('area =', area);
writeln('cirtcumference =', 2 * pi * radius)
end. { exl }

Figure 1.14

Pascal Review - 9

true boolean
false boolean
maybe illegal
‘h’ char
‘65’ illegal
1=02 real
99.012 real
—878 integer

2. (a) Input, output, real, and writeln
(b) Program, const, var, begin, and end
(¢) Exl], pi, radius, and area

CALCULATIONS IN PASCAL

In order to use variables, you must give them values. This is often done with an
assignment statement, as shown in Figure 1.15. The section labeled ““expression”
is where you actually do calculations. The value calculated is then stored in the
variable identified to the left of the ““:=” operator. Thus,

xX:=2
sets the variable “x” to the value 2.

Expressions can be extremely complicated. Consider the examples in Figure
1.16. Two things are immediately apparent. First, expressions use operators in

— identifier —‘—@—> expression —1

Figure 1.15
Expression Value Explanation

15 + 2 17 ———

15 * 2 30 s

15 / 2 15 real number division
15 div 2 7 integer division

15 mod 2 1 remainder after division
15 * 2 + 1 31 e
15 * (2 + 1) 45 ———
15 / L+ 1 16 same as (15 / 1) + 1
15 / (1 + 1) 7.5 ——

Figure 1.16

