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Preface

On behalf of the Program Committee, it is our pleasure to present the proceedings of
the 8th Symposium on Recent Advances in Intrusion Detection (RAID 2005), which
took place in Seattle, Washington, USA, September 7-9, 2005.

The symposium brought together leading researchers and practitioners from
academia, government and industry to discuss intrusion detection from research as
well as commercial prospectives. We also encouraged discussions that addressed
issues that arise when studying intrusion detection, including monitoring,
performance and validation, from a wider perspective. We had sessions on the
detection and containment of Internet worm attacks, anomaly detection, automated
response to intrusions, host-based intrusion detection using system calls, network
intrusion detection, and intrusion detection, in mobile wireless networks.

The RAID 2005 Program Committee received 83 paper submissions from all over
the world. All submissions were carefully reviewed by several members of Program
Committee and selection was made on the basis of scientific novelty, importance to
the field, and technical quality. Final selection took place at a Program Committee
meeting held on May 11 and 12 in Oakland, California. Fifteen papers and two
practical experience reports were selected for presentation and publication in the
conference proceedings. The keynote address was given by Phil Attfield of the
Northwest Security Institute.

A successful symposium is the result of the joint effort of many people. In
particular, we would like to thank all authors who submitted papers, whether accepted
or not. Out thanks also go to the Program Committee members and additional
reviewers for their hard work with the large number of submissions. In addition, we
want to thank the General Chair, Ming-Yuh Huang, for handling conference
arrangements and finding support from our sponsors. Finally, we extend our thanks to
the sponsors: Pacific Northwest National Laboratory, The Boeing Company, the
University of Idaho, and Conjungi Security Technologies.

September 2005 Al Valdes
Diego Zamboni
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Virtual Playgrounds for Worm Behavior Investigation

Xuxian Jiang!, Dongyan Xu!, Helen J. Wang?, and Eugene H. Spafford!

! CERIAS and Department of Computer Science,
Purdue University, West Lafayette, IN 47907
{jiangx, dxu, spaf}@cs.purdue.edu
? Microsoft Research Redmond, WA 98052
helenw@microsoft.com

Abstract. To detect and defend against Internet worms, researchers have long
hoped to have a safe convenient environment to unleash and run real-world worms
for close observation of their infection, damage, and propagation. However,
major challenges exist in realizing such “worm playgrounds”, including the
playgrounds’ fidelity, confinement, scalability, as well as convenience in worm
experiments. In this paper, we present a virtualization-based platform to create
virtual worm playgrounds, called vGrounds, on top of a physical infrastructure.
A vGround is an all-software virtual environment dynamically created for a
worm attack. It has realistic end-hosts and network entities, all realized as virtual
machines (VMs) and confined in a virtual network (VN). The salient features
of vGround include: (1) high fidelity supporting real worm codes exploiting
real vulnerable services, (2) strict confinement making the real Internet totally
invisible and unreachable from inside a vGround, (3) high resource efficiency
achieving sufficiently large scale of worm experiments, and (4) flexible and
efficient worm experiment control enabling fast (tens of seconds) and automatic
generation, re-installation, and final tear-down of vGrounds. Our experiments
with real-world worms (including multi-vector worms and polymorphic worms)
have successfully exhibited their probing and propagation patterns, exploitation
steps, and malicious payloads, demonstrating the value of vGrounds for worm
detection and defense research.

Keywords: Internet Worms, Intrusion Observation and Analysis, Destructive
Experiments.

1 Introduction

In recent worm detection and defense research, we have witnessed increasingly novel
features of emerging worms [41] in their infection and propagation strategies. Examples
are polymorphic appearance [34], multi-vector infection [15], self-destruction [23],
and intelligent payloads such as self-organized attack networks [18] or mass-mailing
capability [21]. In order to understand key aspects of worm behavior such as probing,
exploitation, propagation, and malicious payloads, researchers have long hoped to
have a safe and convenient environment to run and observe real-world worms. Such
a “worm playground” environment is useful not only in accessing the impact of worm

intrusion and propagation, but also in testing worm detection and defense mechanisms
[46,42,35,37].

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 1-21, 2006.
(© Springer-Verlag Berlin Heidelberg 2006



2 X. Jiang et al.

Despite its usefulness, there are difficulties in realizing a worm playground.
Major challenges include the playground’s fidelity, confinement, scalability, resource
efficiency, as well as the convenience in worm experiment setup and control. Currently,
a common practice is to deploy a dedicated testbed with a large number of physical
machines, and to use these machines as nodes in the worm playground. However, this
approach may not effectively address the above challenges, for the following reasons:
(1) Due to the coarse granularity (one physical host) of playground entities, the scale
of a worm playground is constrained by the number of physical hosts, affecting the
full exhibition of worm propagation behavior; (2) By nature, worm experiments are
destructive. With physical hosts as playground nodes, it is a time-consuming and
error-prone manual task for worm researchers to re-install, re-configure, and reboot
worm-infected hosts between experiment runs; and (3) Using physical hosts for worm
tests may lead to security risk and impact leakage, because the hosts may connect
to machines outside the playground. However, if we make the testbed a physically-
disconnected “island”, the testbed will no longer be share-able to remote researchers.

The contribution of our work is the design, implementation, and evaluation of a
virtualization-based platform to quickly create safe virtual worm playgrounds called
vGrounds, on top of general-purpose infrastructures. Our vGround platform can be
readily used to analyze Linux worms, which represent a non-negligible source of
insecurity especially with the rise of popularity of Linux in servers’ market. Though
the current prototype does not support Windows-based worms, our design principles
and concepts can also be applied to build Windows-based vGrounds.

The vGround platform can conveniently turn a physical infrastructure into a base
to host vGrounds. An infrastructure can be a single physical machine, a local cluster,
or a multi-domain overlay infrastructure such as PlanetLLab [7]. A vGround is an all-
software virtual environment with realistic end-hosts and network entities, all realized
as virtual machines (VMs). Furthermore, a virtual network (VN) connects these VMs
and confines worm traffic within the vGround. The salient features of vGround include:

— High fidelity. By running real-world OS, application, and networking software, a
vGround allows real worm code to propagate as in the real Internet. Our full-system
virtualization approach achieves the fidelity that leads to more opportunities to
capture nuances, tricks, and variations of worms, compared with simulation-based
approaches [39]. For example, one of our vGround-based experiments identified a
misstatement in a well-known worm bulletin'.

— Strict confinement. Under our VM and VN (virtual network) technologies, the real
Internet 1s totally invisible (unaddressable) from inside a vGround, preventing the
leakage of negative impact caused by worm infection, propagation, and malicious
payloads [16,23] into the underlying infrastructure and cascadingly, the rest of
the Internet. Furthermore, the damages caused by a worm only affect the virtual
entities and components in one vGround and therefore do not affect other vGrounds
running on the same infrastructure.

— Flexible and efficient worm experiment control. Due to the all-software nature
of vGrounds, the instantiation, re-installation, and final tear-down of a vGround are

! The misstatement is now fixed and the authors have agreed not to disclose the details.
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both fast and automatic, saving worm researchers both time and labor. For example,
in our Lion worm experiment, it only takes 60, 90, and 10 seconds, respectively,
to generate, bootstrap, and tear-down the vGround with 2000 virtual nodes. Such
efficiency is essential when performing multiple runs of a destructive experiment.
These operations can take hours or even days if the same experiment is performed
directly on physical hosts. More importantly, the operations can be started by the
researchers without the administrator privilege of the underlying infrastructure.

— High resource efficiency. ~Because of the scalability of our virtualization tech-
niques, the scale of a vGround can be magnitudes larger than the number of physical
machines in the infrastructure. In our current implementation, one physical host can
support several hundred VMs. For example, we have tested the propagation of Lion
worms [16] in a vGround with 2000 virtual end hosts, based on 10 physical nodes
in a Linux cluster.

However, we would like to point out that although such scalability is effective
in exposing worm propagation strategies based on our limited physical resources
(Section 4), it is not comparable to the scale achieved by worm simulations. Having
different focuses and experiment purposes, vGround is more suitable for analyzing
detailed worm actions and damages, while the simulation-based approach is
better for modeling worm propagation under Internet scale and topology. Also,
lacking realistic background computation and traffic load, current vGrounds are
not appropriate for accurate quantitative modeling of worms.

We are not aware of similar worm playground platforms with all the above features
that are widely deployable on general-purpose infrastructures. We have successfully
run real worms, including multi-vector worms and polymorphic worms, in vGrounds
on our desktops, local clusters, and PlanetLab. QOur experiments are able to fully
exhibit the worms’ probing and propagation patterns, exploitation attempts, and ma-
licious payloads, demonstrating the value of vGrounds in worm detection and defense
research,

The rest of this paper is organized as follows: Section 2 provides an overview
of the vGround approach. The detailed design is presented in Section 3. Section 4
demonstrates the effectiveness of vGround using our experiments with several real-
world worms. A discussion on its limitations and extensions is presented in Section 5.
Related works are discussed in Section 6. Finally, Section 7 concludes this paper.

2 The vGround Approach

A vGround is a virtualization-based self-confined worm playground where not only
each entity, including an end host, a firewall, a router, and even a network cable, is fully
virtualized, but also every communication traffic is strictly confined within. Due to its
virtualization-based nature and associated self-confinement property, a vGround can
be safely created on a wide range of general-purpose infrastructures, including regular
desktops, local clusters, and even wide-area shared infrastructures such as Planetlab.
For example, Figure 1 shows a simple vGround (the vGrounds in our worm experiments
are much larger in scale) which is created on top of three PlanetLab hosts A, B, and C.
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Fig. 1. A PlanetLab-based vGround for worm experiment

The vGround includes three virtual enterprise networks connected by three virtual
routers (R1, R2, and R3). Within the vGround, the “seed” worm node (AS1_H1 in
network A 128.10.0.0/16) is starting to infect other nodes running vulnerable services.
Note that a vGround essentially appears as a virtual Internet whose network address
assignment can be totally orthogonal to that of the real Internet. Furthermore, multiple
simultaneously running vGrounds can safely overlap their address space without
affecting each other as one vGround is completely invisible to another vGround.

Using a vGround specification language, a worm researcher will be able to specify
the worm experiment setup in a vGround, including software systems and services, IP
addresses, and routing information of virtual nodes (i.e. virtual end hosts and routers).
Given the specification, the vGround platform will perform automatic vGround instan-
tiation, bootstrapping, and clean-up. In a typical worm experiment, multiple runs are
often needed as each different run is configured with a different parameter setting (e.g.,
different worm signatures [8, 1] and different traffic throttling thresholds[46]). However,
because of the worm’s destructive behavior, the vGround will be completely unusable
after each run and need to be re-installed. The vGround platform is especially efficient
in supporting such an iterative worm experiment workflow.

2.1 Key vGround Techniques

Existing full-system virtualization is adopted to achieve high fidelity of vGrounds.
Worms infect machines by remotely exploiting certain vulnerabilities in OS or applica-
tion services (e.g., BIND, Sendmail, DNS). Therefore, the vulnerabilities provided by
vGrounds should be the same as those in real software systems. As such, vGround can
not only be leveraged for experimenting worms propagating via known vulnerabilities,
but also be useful for discovering worms exploiting unknown vulnerabilities, of which
worm simulations are not capable.

There exist various VM technologies that enable full-system virtualization. Exam-
ples include Virtual PC [12], VMware [13], Denali [49], Xen [26], and User-Mode
Linux (UML) [30]. The differences in their implementations lead to different levels
of cost, deployability and configurability: VMware and similarly Virtual PC require
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several loadable kernel modules for virtualizing underlying physical resources; Xen and
Denali “paravirtualize” physical resources by running in place of host OS; and UML
is mainly a user-level implementation through system call virtualization. We choose
UML in the current vGround implementation so that the deployment of vGround does
not require the root privilege of the shared infrastructure. As a result, current vGround
prototype can be widely deployed in most Linux-based systems (including PlanetLab).
However, we would like to point out that the original UML itself is nor able to satisfy
the vGround needs. As described next, we have developed new extensions to UML.

New network virtualization techniques are developed to achieve vGround confine-
ment. Simply running a worm experiment in a number of VMs will not confine the worm
traffic just within these VMs and thus prevent potential worm “leakage”. Although
existing UML implementation does have some support for virtual networking, it is
still not capable of organizing different VMs into an isolated virtual topology. In
particular, when the underlying shared infrastructure spans multiple physical domains,
additional VPN softwares are needed to create the illusion of the virtual Internet.
However, there are two notable weaknesses: (1) a VPN does not hide the existence
of the underlying physical hosts and their network connections, which fails to meet
the strict confinement requirement; (2) a VPN usually needs to be statically/manually
configured as it requires the root privilege to manipulate the routing table, which fails to
meet the flexible experiment control requirement. As our solution, we have developed a
link-layer network virtualization technique to create a VN for VMs in a vGround. The
VN reliably intercepts the traffic at the link-layer and is thus able to constrain both the
topology and volume of traffic generated by the VMs. Such a VN essentially enables
the illusion as a “virtual Internet” (though with a smaller scale) with its own IP address
space and router infrastructure. More importantly, the VN and the real Internet are, by
nature of our VN implementation, mutually un-addressable.

New optimization techniques are developed to improve vGround scalability, effi-
ciency, and flexibility. To increase the number of VMs that can be supported in one phys-
ical host, the resource consumption of each individual VM should be conserved. For
example, a full-system image of Red-Hat 9.0/7.2 requires approximately 1G/700M
disk space. For a vGround of 100 VMs, a naive approach would require at least
100G /70G disk space. Our optimization techniques exploit the fact that a large portion
of the VM images is the same and can be shared among the VMs. Furthermore, some
services, libraries, and software packages in the VM image are not relevant to the worm
being tested, and could therefore be safely removed. We also develop a new method to
safely and efficiently generate VM images in each physical host (Section 3.4). Finally, a
new technique is being developed to enable worm-driven vGround growth: new virtual
nodes/subnets can be added to the vGround at runtime in reaction to a worm’s infection
intent.

2.2 Advanced vGround User Configurability

The vGround platform provides a vGround specification language to worm researchers.
There are two major types of entities - nerwork and virtual node, in the vGround
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specification language. A network is the medium of communication among virtual
nodes. A virtual node can be an end-host, a router, a firewall, or an IDS system and it
has one or more network interface cards (NICs) - each with an IP addresses. In addition,
the virtual nodes are properly connected using proper routing mechanisms. Currently,
the vGround platform supports RIP, OSPF, and BGP protocols.

In order to conveniently specify and efficiently generate various system images,
the language defines the following notions: (1) A system template contains the basic
VM system image which is common among multiple virtual nodes. If a virtual node is
derived from a system template, the node will inherit all the capabilities specified in the
system template. The definition of system template is motivated by the observation that
most end-hosts to be victimized by a certain worm look quite similar from the worm’s
perspective. (2) A cluster of nodes is the group of nodes located in the same subnet.
The user may specify that they inherit from the same system template, with their 1P
addresses sharing the same subnet prefix.
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Jetc/re. dfinit &tpd start udp_voek 1500 udp_sack 1500 st e | 128.12.1.25
) host planetlab. millennium berkeley.edu host_ planetlabl.cs.purdue.edu I .
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Fig. 2. A sample vGround specification

As an example, Figure 2 shows the specification for the vGround in Figure 1. The
keyword remplate indicates the system template used to generate other images files.
For example, the image slapperext2 is used to generate the images of the following
end-hosts: AS1_H1, AS1_H2, AS2_H1, AS2_H?2, AS3_H1, and AS3_H?2; while
the image router.ext2 is used to generate the images of routers R1, R2, and R3.
The keyword switch indicates the creation of a nerwork connecting various virtual
nodes. The internal keywords uniz_sock and udp_sock indicate different network
virtualization techniques based on UNIX and INET-4 sockets, respectively. Note that
the keyword cluster is not used in this example. However, for a large-scale vGround,
it is more convenient to use cluster to specify a subnet, which has a large number of
end-hosts of similar configuration.

After a vGround is created, the vGround platform also provides a collection of
toolkits to unleash the worm, collect worm infection traces, monitor worm propagation
status, and re-install or tear-down the vGround. More details will be described in
Sections 3 and 4.



