Alfonso Valdes
Diego Zamboni (Eds.)

"Recent Advances in
Intrusion Detection

8th International Symposium, RAID 2005
Seattle, WA, USA, September 2005
Revised Papers

LNCS 3858

@_ Springer

3 f) 2 ~EF

)49 Alfonso Valdes Diego Zamboni (Eds.)

Recent Advances 1n
Intrusion Detection

8th International Symposium, RAID 2005
Seattle, WA, USA, September 7-9, 2005
Revised Papers

| MAAR

& Springer ~ E200603472

Volume Editors

Alfonso Valdes

SRI International

333 Ravenswood Ave., Menlo Park, CA 94025, USA
E-mail: alfonso.valdes @sri.com

Diego Zamboni

IBM Research GmbH

Zurich Research Laboratory

Saumerstr. 4, Postfach, 8803 Riischlikon, Switzerland
E-mail: dza@zurich.ibm.com

Library of Congress Control Number: 2005939042

CR Subject Classification (1998): K.6.5, K.4, E3,C.2,D.4.6
LNCS Sublibrary: SL 4 — Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-31778-3 Springer Berlin Heidelberg New York
ISBN-13 078-3-540-31778-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11663812 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3858

Lecture Notes in Computer Science

For information about Vols. 1-3770

please contact your bookseller or Springer

Vol. 3870: S. Spaccapietra, P. Atzeni, W.W. Chu, T.
Catarci, K.P. Sycara (Eds.), Journal on Data Semantics
V. XIII, 237 pages. 2006.

Vol. 3863: M. Kohlhase (Ed.), Mathematical Knowledge
Management. XI, 405 pages. 2006. (Sublibrary LNAT).

Vol. 3861: J. Dix, S.J. Hegner (Eds.), Foundations of In-
formation and Knowledge Systems. X, 331 pages. 2006.

Vol. 3860: D. Pointcheval (Ed.), Topics in Cryptology —
CT-RSA 2006. XI, 365 pages. 2006.

Vol. 3858: A. Valdes, D. Zamboni (Eds.), Recent Advances
in Intrusion Detection. X, 351 pages. 2006.

Vol. 3857: M. Fossorier, H. Imai, S. Lin, A. Poli (Eds.), Ap-
plied Algebra, Algebraic Algorithms and Error-Correcting
Codes. XI, 350 pages. 2006.

Vol. 3855: E. A. Emerson, K.S. Namjoshi (Eds.), Verifi-
cation, Model Checking, and Abstract Interpretation. XI,
443 pages. 2005.

Vol.3853: A.J. Ijspeert, T. Masuzawa, S. Kusumoto (Eds.),
Biologically Inspired Approaches to Advanced Informa-
tion Technology. XIV, 388 pages. 2006.

Vol. 3852: P.J. Narayanan, S.K. Nayar, H.-Y. Shum (Eds.),
Computer Vision - ACCV 2006, Part II. XXX, 977 pages.
2005.

Vol. 3851: P.J. Narayanan, S.K. Nayar, H.-Y. Shum (Eds.),
Computer Vision - ACCV 2006, Part I. XXX, 973 pages.
2006.

Vol. 3850: R. Freund, G. P4un, G. Rozenberg, A. Salomaa
(Eds.), Membrane Computing. IX, 371 pages. 2006.

Vol. 3848:] .-F. Boulicaut, L. De Raedt, H. Mannila (Eds.),
Constraint-Based Mining and Inductive Databases. X, 401
pages. 2006. (Sublibrary LNAI).

Vol. 3847: K.P. Jantke, A. Lunzer, N. Spyratos, Y. Tanaka
(Eds.), Federation over the Web. X, 215 pages. 2006. (Sub-
library LNAI).

Vol. 3844: J.-M. Bruel (Ed.), Satellite Events at the MoD-
ELS 2005 Conference. XIII, 360 pages. 2006.

Vol. 3843: P. Healy, N.S. Nikolov (Eds.), Graph Drawing.
XVII, 536 pages. 2006.

Vol. 3842: H.T. Shen, J. Li, M. Li, J. Ni, W. Wang (Eds.),
Advanced Web and Network Technologies, and Applica-
tions. XXVII, 1057 pages. 2006.

Vol. 3841: X. Zhou, J. Li, H.T. Shen, M. Kitsuregawa, Y.
Zhang (Eds.), Frontiers of WWW Research and Develop-
ment - APWeb 2006. XXIV, 1223 pages. 2006.

Vol. 3840: M. Li, B. Boehm, L.J. Osterweil (Eds.), Uni-
fying the Software Process Spectrum. XVI, 522 pages.
2006.

Vol. 3839: J.-C. Filliatre, C. Paulin-Mohring, B. Werner
(Eds.), Types for Proofs and Programs. VIII, 275 pages.
2006.

Vol. 3838: A. Middeldorp, V. van Oostrom, E. van Raams-
donk, R. de Vrijer (Eds.), Processes, Terms and Cycles:
Steps on the Road to Infinity. X VIII, 639 pages. 2005.

Vol. 3837: K. Cho, P. Jacquet (Eds.), Technologies for
Advanced Heterogeneous Networks. IX, 307 pages. 2005.

Vol. 3836:J.-M. Pierson (Ed.), Data Management in Grids.
X, 143 pages. 2006.

Vol. 3835: G. Sutcliffe, A. Voronkov (Eds.), Logic for Pro-
gramming, Artificial Intelligence, and Reasoning. XIV,
744 pages. 2005. (Sublibrary LNAI).

Vol. 3834: D.G. Feitelson, E. Frachtenberg, L. Rudolph,
U. Schwiegelshohn (Eds.), Job Scheduling Strategies for
Parallel Processing. VIII, 283 pages. 2005.

Vol. 3833: K.-J. Li, C. Vangenot (Eds.), Web and Wireless
Geographical Information Systems. XI, 309 pages. 2005.

Vol. 3832: D. Zhang, A.K. Jain (Eds.), Advances in Bio-
metrics. XX, 796 pages. 2005.

Vol. 3831: J. Wiedermann, G. Tel, J. Pokorny, M.

Bielikov4, J. Stuller (Eds.), SOFSEM 2006: Theory and
Practice of Computer Science. XV, 576 pages. 2006.

Vol. 3829: P. Pettersson, W. Yi (Eds.), Formal Modeling
and Analysis of Timed Systems. IX, 305 pages. 2005.

Vol. 3828: X. Deng, Y. Ye (Eds.), Internet and Network
Economics. XVII, 1106 pages. 2005.

Vol. 3827: X. Deng, D.-Z. Du (Eds.), Algorithms and
Computation. XX, 1190 pages. 2005.

Vol. 3826: B. Benatallah, F. Casati, P. Traverso (Eds.),
Service-Oriented Computing - ICSOC 2005. XVIII, 597
pages. 2005.

Vol. 3824: L.T. Yang, M. Amamiya, Z. Liu, M. Guo, EJ.
Rammig (Eds.), Embedded and Ubiquitous Computing —
EUC 2005. XXIII, 1204 pages. 2005.

Vol. 3823: T. Enokido, L. Yan, B. Xiao, D. Kim, Y. Dai,
L.T. Yang (Eds.), Embedded and Ubiquitous Computing
— EUC 2005 Workshops. XXXII, 1317 pages. 2005.

Vol. 3822: D. Feng, D. Lin, M. Yung (Eds.), Information
Security and Cryptology. XII, 420 pages. 2005.
Vol. 3821: R. Ramanujam, S. Sen (Eds.), FSTTCS 2005:

Foundations of Software Technology and Theoretical
Computer Science. XIV, 566 pages. 2005.

Vol. 3820: L.T. Yang, X. Zhou, W. Zhao, Z. Wu, Y. Zhu,
M. Lin (Eds.), Embedded Software and Systems. XX VIII,
779 pages. 2005.

Vol. 3819: P. Van Hentenryck (Ed.), Practical Aspects of
Declarative Languages. X, 231 pages. 2005.

Vol. 3818: S. Grumbach, L. Sui, V. Vianu (Eds.), Advances

in Computer Science — ASIAN 2005. XIII, 294 pages.
2005.

Vol. 3817: M. Faundez-Zanuy, L. Janer, A. Esposito, A.
Satue-Villar, J. Roure, V. Espinosa-Duro (Eds.), Nonlinear
Analyses and Algorithms for Speech Processing. XII, 380
pages. 2006. (Sublibrary LNAI).

Vol. 3816: G. Chakraborty (Ed.), Distributed Computing
and Internet Technology. XXI, 606 pages. 2005.

Vol. 3815: E.A. Fox, E.J. Neuhold, P. Premsmit, V. Wu-
wongse (Eds.), Digital Libraries: Implementing Strategies
and Sharing Experiences. XVII, 529 pages. 2005.

Vol. 3814: M. Maybury, O. Stock, W. Wahlster (Eds.), In-
telligent Technologies for Interactive Entertainment. XV,
342 pages. 2005. (Sublibrary LNAI).

Vol. 3813: R. Molva, G. Tsudik, D. Westhoff (Eds.), Se-
curity and Privacy in Ad-hoc and Sensor Networks. VIII,
219 pages. 2005.

Vol. 3810: Y.G. Desmedt, H. Wang, Y. Mu, Y. Li (Eds.),
Cryptology and Network Security. XI, 349 pages. 2005.

Vol. 3809: S. Zhang, R. Jarvis (Eds.), AI 2005: Advances
in Artificial Intelligence. XX VII, 1344 pages. 2005. (Sub-
library LNAI).

Vol. 3808: C. Bento, A. Cardoso, G. Dias (Eds.), Progress
in Artificial Intelligence. XVIII, 704 pages. 2005. (Subli-
brary LNAI).

Vol. 3807: M. Dean, Y. Guo, W. Jun, R. Kaschek, S. Kr-
ishnaswamy, Z. Pan, Q.Z. Sheng (Eds.), Web Information
Systems Engineering — WISE 2005 Workshops. XV, 275
pages. 2005.

Vol. 3806: A.H. H. Ngu, M. Kitsuregawa, E.J. Neuhold,
J.-Y. Chung, Q.Z. Sheng (Eds.), Web Information Systems
Engineering — WISE 2005. XXI, 771 pages. 2005.

Vol. 3805: G. Subsol (Ed.), Virtual Storytelling. XII, 289
pages. 2005.

Vol. 3804: G. Bebis, R. Boyle, D. Koracin, B. Parvin
(Eds.), Advances in Visual Computing. XX, 755 pages.
2005.

Vol. 3803: S. Jajodia, C. Mazumdar (Eds.), Information
Systems Security. X1, 342 pages. 2005.

Vol. 3802: Y. Hao, J. Liu, Y.-P. Wang, Y.-m. Cheung, H.
Yin, L. Jiao, J. Ma, Y.-C. Jiao (Eds.), Computational In-
telligence and Security, Part II. XLII, 1166 pages. 2005.
(Sublibrary LNAI).

Vol. 3801: Y. Hao, J. Liu, Y.-P. Wang, Y.-m. Cheung, H.
Yin, L. Jiao, J. Ma, Y.-C. Jiao (Eds.), Computational In-
telligence and Security, Part I. XLI, 1122 pages. 2005.
(Sublibrary LNAI).

Vol. 3799: M. A. Rodriguez, I.F. Cruz, S. Levashkin, M.J.
Egenhofer (Eds.), GeoSpatial Semantics. X, 259 pages.
2005.

Vol. 3798: A. Dearle, S. Eisenbach (Eds.), Component
Deployment. X, 197 pages. 2005.

Vol. 3797: S. Maitra, C. E. V. Madhavan, R. Venkatesan
(Eds.), Progress in Cryptology - INDOCRYPT 2005. X1V,
417 pages. 2005.

Vol. 3796: N.P. Smart (Ed.), Cryptography and Coding.
X1, 461 pages. 2005.

Vol. 3795: H. Zhuge, G.C. Fox (Eds.), Grid and Coopera-
tive Computing - GCC 2005. XXI, 1203 pages. 2005.

Vol. 3794: X. Jia, J. Wu, Y. He (Eds.), Mobile Ad-hoc and
Sensor Networks. XX, 1136 pages. 2005.

Vol. 3793: T. Conte, N. Navarro, W.-m.W. Hwu, M. Valero,
T. Ungerer (Eds.), High Performance Embedded Architec-
tures and Compilers. XIII, 317 pages. 2005.

Vol. 3792: 1. Richardson, P. Abrahamsson, R. Messnarz
(Eds.), Software Process Improvement. VIII, 215 pages.
2005.

Vol. 3791: A. Adi, S. Stoutenburg, S. Tabet (Eds.), Rules
and Rule Markup Languages for the Semantic Web. X,
225 pages. 2005.

Vol. 3790: G. Alonso (Ed.), Middleware 2005. XIII, 443
pages. 2005.

Vol. 3789: A. Gelbukh, A. de Albornoz, H. Terashima-
Marin (Eds.), MICAI 2005: Advances in Artificial Intel-
ligence. XX VI, 1198 pages. 2005. (Sublibrary LNAI).

Vol. 3788: B. Roy (Ed.), Advances in Cryptology - ASI-
ACRYPT 2005. X1V, 703 pages. 2005.

Vol. 3787: D. Kratsch (Ed.), Graph-Theoretic Concepts in
Computer Science. XIV, 470 pages. 2005.

Vol. 3785: K.-K. Lau, R. Banach (Eds.), Formal Methods
and Software Engineering. XIV, 496 pages. 2005.

Vol. 3784: J. Tao, T. Tan, R.-W. Picard (Eds.), Affective
Computing and Intelligent Interaction. XIX, 1008 pages.
2005.

Vol. 3783: S. Qing, W. Mao, J. Lopez, G. Wang (Eds.), In-

formation and Communications Security. XIV, 492 pages.
2005.

Vol. 3782: K.-D. Althoff, A. Dengel, R. Bergmann, M.
Nick, T.R. Roth-Berghofer (Eds.), Professional Knowl-
edge Management. XXIII, 739 pages. 2005. (Sublibrary
LNAI).

Vol. 3781:S.Z.Li, Z. Sun, T. Tan, S. Pankanti, G. Chollet,
D. Zhang (Eds.), Advances in Biometric Person Authen-
tication. XI, 250 pages. 2005.

Vol. 3780: K. Yi (Ed.), Programming Languages and Sys-
tems. X1, 435 pages. 2005.

Vol. 3779: H. Jin, D. Reed, W. Jiang (Eds.), Network and
Parallel Computing. XV, 513 pages. 2005.

Vol. 3778: C. Atkinson, C. Bunse, H.-G. Gross, C. Peper
(Eds.), Component-Based Software Development for Em-
bedded Systems. VIII, 345 pages. 2005.

Vol. 3777: O.B. Lupanov, O.M. Kasim-Zade, A.V.
Chaskin, K. Steinhofel (Eds.), Stochastic Algorithms:
Foundations and Applications. VIII, 239 pages. 2005.
Vol. 3776: S.K. Pal, S. Bandyopadhyay, S. Biswas (Eds.),
Pattern Recognition and Machine Intelligence. XXIV, 808
pages. 2005.

Vol. 3775: J. Schonwilder, J. Serrat (Eds.), Ambient Net-
works. XIII, 281 pages. 2005.

Vol. 3774: G. Bierman, C. Koch (Eds.), Database Pro-
gramming Languages. X, 295 pages. 2005.

Vol. 3773: A. Sanfeliu, M.L. Cortés (Eds.), Progress in Pat-
tern Recognition, Image Analysis and Applications. XX,
1094 pages. 2005.

Vol. 3772: M.P. Consens, G. Navarro (Eds.), String Pro-
cessing and Information Retrieval. XIV, 406 pages. 2005.

Vol.3771: .M.T. Romijn, G.P. Smith, J. van de Pol (Eds.),
Integrated Formal Methods. X1, 407 pages. 2005.

Fuytwg

Preface

On behalf of the Program Committee, it is our pleasure to present the proceedings of
the 8th Symposium on Recent Advances in Intrusion Detection (RAID 2005), which
took place in Seattle, Washington, USA, September 7-9, 2005.

The symposium brought together leading researchers and practitioners from
academia, government and industry to discuss intrusion detection from research as
well as commercial prospectives. We also encouraged discussions that addressed
issues that arise when studying intrusion detection, including monitoring,
performance and validation, from a wider perspective. We had sessions on the
detection and containment of Internet worm attacks, anomaly detection, automated
response to intrusions, host-based intrusion detection using system calls, network
intrusion detection, and intrusion detection, in mobile wireless networks.

The RAID 2005 Program Committee received 83 paper submissions from all over
the world. All submissions were carefully reviewed by several members of Program
Committee and selection was made on the basis of scientific novelty, importance to
the field, and technical quality. Final selection took place at a Program Committee
meeting held on May 11 and 12 in Oakland, California. Fifteen papers and two
practical experience reports were selected for presentation and publication in the
conference proceedings. The keynote address was given by Phil Attfield of the
Northwest Security Institute.

A successful symposium is the result of the joint effort of many people. In
particular, we would like to thank all authors who submitted papers, whether accepted
or not. Out thanks also go to the Program Committee members and additional
reviewers for their hard work with the large number of submissions. In addition, we
want to thank the General Chair, Ming-Yuh Huang, for handling conference
arrangements and finding support from our sponsors. Finally, we extend our thanks to
the sponsors: Pacific Northwest National Laboratory, The Boeing Company, the
University of Idaho, and Conjungi Security Technologies.

September 2005 Al Valdes
Diego Zamboni

Organization

RAID 2005 was organized by the Boeing Company, Seattle, WA, USA.

Conference Chairs

General Chair Ming-Yuh Huang (The Boeing Company)
Program Chair Alfonso Valdes (SRI International)

Program Co-chair Diego Zamboni (IBM Zurich Research Laboratory)
Publication Chair Jeff Rowe (UC Davis)

Publicity Chair Deborah Frincke (Pacific Northwest National Lab)
Sponsorship Chair Jim Alves-Foss (University of Idaho)

Program Committee

Magnus Almgren Chalmers, Sweden
Tatsuya Baba NTT Data, Japan
Sungdeok (Steve) Cha Korea Advanced Institute of Science

and Technology, Korea

Steven Cheung

Robert Cunningham

Fengmin Gong
Farman Jahanian
Somesh Jha
Klaus Julisch
Chris Kruegel
Roy Maxion
Ludovic Mé
George Mohay

Peng Ning

Vern Paxson
Jeff Rowe
Bill Sanders

Dawn Song

Sal Stolfo
Kymie Tan
Giovanni Vigna
Alec Yasinsac
Diego Zamboni

SRI International, USA

MIT Lincoln Laboratory, USA

McAfee Inc., USA

University of Michigan, USA

University of Wisconsin, USA

IBM Research, Switzerland

UCSB, USA

Carnegie Mellon University, USA

Supélec, France

Queensland University of Technology,
Australia

North Carolina State University,
Raleigh, USA

ICSI and LBNL, USA

University of California, Davis, USA

University of Illinois,

Urbana-Champaign, USA

Carnegie Mellon University, USA

Columbia University, USA

Carnegie Mellon University, USA

UCSB, USA

Florida State University, USA

IBM Research, Switzerland

VIl Organization

Steering Committee

Marc Dacier (Chair) Institut Eurecom, France

Hervé Debar France Telecom R&D, France
Deborah Frincke Pacific Northwest National Lab, USA
Ming-Yuh Huang The Boeing Company, USA

Erland Jonsson Chalmers, Sweden

Wenke Lee Georgia Institute of Technology, USA
Ludovic Mé Supélec, France

S. Felix Wu UC Davis, USA

Andreas Wespi IBM Research, Switzerland

Alfonso Valdes SRI International, USA

Giovanni Vigna UCSB, USA

Pacific Northwest Local Organizing Committee

Philip Attfield Northwest Security Institute
Kirk Bailey City of Seattle

Barbara Endicott-Popovsky Seattle University

Deborah Frincke Pacific Northwest National Lab
Ming-Yuh Huang The Boeing Company

Rita Rutten Conference Coordinator

Michael A. Simon Conjungi Networks

Table of Contents

Worm Detection and Containment (I)

Virtual Playgrounds for Worm Behavior Investigation
Xuzian Jiang, Dongyan Xu, Helen J. Wang, Eugene H. Spafford 1

Empirical Analysis of Rate Limiting Mechanisms
Cynthia Wong, Stan Bielski, Ahren Studer, Chengi Wang 22

Anomaly Detection

COTS Diversity Based Intrusion Detection and Application to
Web Servers
Eric Totel, Frédéric Majorczyk, Ludovic Mé 43

Behavioral Distance for Intrusion Detection
Debin Gao, Michael K. Reiter, Dawn Song...... 63

Intrusion Prevention and Response

FLIPS: Hybrid Adaptive Intrusion Prevention
Michael E. Locasto, Ke Wanyg, Angelos D. Keromytis,
Salvatore J. Stolfo 82

Towards Software-Based Signature Detection for Intrusion Prevention
on the Network Card
H. Bos, Kaiming Huang 102

Defending Against Injection Attacks Through Context-Sensitive
String Evaluation
Tuadeusz Pietraszek, Chris Vanden Berghe 124

System Call-Based Intrusion Detection

Improving Host-Based IDS with Argument Abstraction to Prevent
Mimicry Attacks
Sufatrio, Roland H.C. Yap 146

On Random-Inspection-Based Intrusion Detection
Simon P. Chung, Aloysius K. Mok 165

X Table of Contents

Environment-Sensitive Intrusion Detection
Jonathon T. Giffin, David Dagon, Somesh Jha,
Wenke Lee, Barton P. Miller i

Worm Detection and Containment (II)

Polymorphic Worm Detection Using Structural Information
of Executables
Christopher Kruegel, Engin Kirda, Darren Mutz,
William Robertson, Giovanni Vignac.cueiiiiieaan..

Anomalous Payload-Based Worm Detection and Signature Generation
Ke Wang, Gabriela Cretu, Salvatore J. Stolfo.....................

Network-Based Intrusion Detection

On Interactive Internet Traffic Replay
Seung-Sun Hong, S. Felixt Wu i,

Interactive Visualization for Network and Port Scan Detection
Chris Muelder, Kwan-Liu Ma, Tony Bartolette

A Fast Static Analysis Approach to Detect Exploit Code Inside

Network Flows
Ramkumar Chinchani, Eric van den Berg

Mobile and Wireless Networks

Sequence Number-Based MAC Address Spoof Detection
Fanglu Guo, Tzi-cker Chiveh ity

A Specification-Based Intrusion Detection Model for OLSR

Chinyang Henry Tseng, Tao Song, Poornima Balasubramanyam,
Calvirg Ko, Korl Tevith o ms cosmscnsmns nian s ssins §nempsss 950

Author IndeXo

Virtual Playgrounds for Worm Behavior Investigation

Xuxian Jiang!, Dongyan Xu!, Helen J. Wang?, and Eugene H. Spafford!

! CERIAS and Department of Computer Science,
Purdue University, West Lafayette, IN 47907
{jiangx, dxu, spaf}@cs.purdue.edu
? Microsoft Research Redmond, WA 98052
helenw@microsoft.com

Abstract. To detect and defend against Internet worms, researchers have long
hoped to have a safe convenient environment to unleash and run real-world worms
for close observation of their infection, damage, and propagation. However,
major challenges exist in realizing such “worm playgrounds”, including the
playgrounds’ fidelity, confinement, scalability, as well as convenience in worm
experiments. In this paper, we present a virtualization-based platform to create
virtual worm playgrounds, called vGrounds, on top of a physical infrastructure.
A vGround is an all-software virtual environment dynamically created for a
worm attack. It has realistic end-hosts and network entities, all realized as virtual
machines (VMs) and confined in a virtual network (VN). The salient features
of vGround include: (1) high fidelity supporting real worm codes exploiting
real vulnerable services, (2) strict confinement making the real Internet totally
invisible and unreachable from inside a vGround, (3) high resource efficiency
achieving sufficiently large scale of worm experiments, and (4) flexible and
efficient worm experiment control enabling fast (tens of seconds) and automatic
generation, re-installation, and final tear-down of vGrounds. Our experiments
with real-world worms (including multi-vector worms and polymorphic worms)
have successfully exhibited their probing and propagation patterns, exploitation
steps, and malicious payloads, demonstrating the value of vGrounds for worm
detection and defense research.

Keywords: Internet Worms, Intrusion Observation and Analysis, Destructive
Experiments.

1 Introduction

In recent worm detection and defense research, we have witnessed increasingly novel
features of emerging worms [41] in their infection and propagation strategies. Examples
are polymorphic appearance [34], multi-vector infection [15], self-destruction [23],
and intelligent payloads such as self-organized attack networks [18] or mass-mailing
capability [21]. In order to understand key aspects of worm behavior such as probing,
exploitation, propagation, and malicious payloads, researchers have long hoped to
have a safe and convenient environment to run and observe real-world worms. Such
a “worm playground” environment is useful not only in accessing the impact of worm

intrusion and propagation, but also in testing worm detection and defense mechanisms
[46,42,35,37].

A. Valdes and D. Zamboni (Eds.): RAID 2005, LNCS 3858, pp. 1-21, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

2 X. Jiang et al.

Despite its usefulness, there are difficulties in realizing a worm playground.
Major challenges include the playground’s fidelity, confinement, scalability, resource
efficiency, as well as the convenience in worm experiment setup and control. Currently,
a common practice is to deploy a dedicated testbed with a large number of physical
machines, and to use these machines as nodes in the worm playground. However, this
approach may not effectively address the above challenges, for the following reasons:
(1) Due to the coarse granularity (one physical host) of playground entities, the scale
of a worm playground is constrained by the number of physical hosts, affecting the
full exhibition of worm propagation behavior; (2) By nature, worm experiments are
destructive. With physical hosts as playground nodes, it is a time-consuming and
error-prone manual task for worm researchers to re-install, re-configure, and reboot
worm-infected hosts between experiment runs; and (3) Using physical hosts for worm
tests may lead to security risk and impact leakage, because the hosts may connect
to machines outside the playground. However, if we make the testbed a physically-
disconnected “island”, the testbed will no longer be share-able to remote researchers.

The contribution of our work is the design, implementation, and evaluation of a
virtualization-based platform to quickly create safe virtual worm playgrounds called
vGrounds, on top of general-purpose infrastructures. Our vGround platform can be
readily used to analyze Linux worms, which represent a non-negligible source of
insecurity especially with the rise of popularity of Linux in servers’ market. Though
the current prototype does not support Windows-based worms, our design principles
and concepts can also be applied to build Windows-based vGrounds.

The vGround platform can conveniently turn a physical infrastructure into a base
to host vGrounds. An infrastructure can be a single physical machine, a local cluster,
or a multi-domain overlay infrastructure such as PlanetLLab [7]. A vGround is an all-
software virtual environment with realistic end-hosts and network entities, all realized
as virtual machines (VMs). Furthermore, a virtual network (VN) connects these VMs
and confines worm traffic within the vGround. The salient features of vGround include:

— High fidelity. By running real-world OS, application, and networking software, a
vGround allows real worm code to propagate as in the real Internet. Our full-system
virtualization approach achieves the fidelity that leads to more opportunities to
capture nuances, tricks, and variations of worms, compared with simulation-based
approaches [39]. For example, one of our vGround-based experiments identified a
misstatement in a well-known worm bulletin'.

— Strict confinement. Under our VM and VN (virtual network) technologies, the real
Internet 1s totally invisible (unaddressable) from inside a vGround, preventing the
leakage of negative impact caused by worm infection, propagation, and malicious
payloads [16,23] into the underlying infrastructure and cascadingly, the rest of
the Internet. Furthermore, the damages caused by a worm only affect the virtual
entities and components in one vGround and therefore do not affect other vGrounds
running on the same infrastructure.

— Flexible and efficient worm experiment control. Due to the all-software nature
of vGrounds, the instantiation, re-installation, and final tear-down of a vGround are

! The misstatement is now fixed and the authors have agreed not to disclose the details.

Virtual Playgrounds for Worm Behavior Investigation 3

both fast and automatic, saving worm researchers both time and labor. For example,
in our Lion worm experiment, it only takes 60, 90, and 10 seconds, respectively,
to generate, bootstrap, and tear-down the vGround with 2000 virtual nodes. Such
efficiency is essential when performing multiple runs of a destructive experiment.
These operations can take hours or even days if the same experiment is performed
directly on physical hosts. More importantly, the operations can be started by the
researchers without the administrator privilege of the underlying infrastructure.

— High resource efficiency. ~Because of the scalability of our virtualization tech-
niques, the scale of a vGround can be magnitudes larger than the number of physical
machines in the infrastructure. In our current implementation, one physical host can
support several hundred VMs. For example, we have tested the propagation of Lion
worms [16] in a vGround with 2000 virtual end hosts, based on 10 physical nodes
in a Linux cluster.

However, we would like to point out that although such scalability is effective
in exposing worm propagation strategies based on our limited physical resources
(Section 4), it is not comparable to the scale achieved by worm simulations. Having
different focuses and experiment purposes, vGround is more suitable for analyzing
detailed worm actions and damages, while the simulation-based approach is
better for modeling worm propagation under Internet scale and topology. Also,
lacking realistic background computation and traffic load, current vGrounds are
not appropriate for accurate quantitative modeling of worms.

We are not aware of similar worm playground platforms with all the above features
that are widely deployable on general-purpose infrastructures. We have successfully
run real worms, including multi-vector worms and polymorphic worms, in vGrounds
on our desktops, local clusters, and PlanetLab. QOur experiments are able to fully
exhibit the worms’ probing and propagation patterns, exploitation attempts, and ma-
licious payloads, demonstrating the value of vGrounds in worm detection and defense
research,

The rest of this paper is organized as follows: Section 2 provides an overview
of the vGround approach. The detailed design is presented in Section 3. Section 4
demonstrates the effectiveness of vGround using our experiments with several real-
world worms. A discussion on its limitations and extensions is presented in Section 5.
Related works are discussed in Section 6. Finally, Section 7 concludes this paper.

2 The vGround Approach

A vGround is a virtualization-based self-confined worm playground where not only
each entity, including an end host, a firewall, a router, and even a network cable, is fully
virtualized, but also every communication traffic is strictly confined within. Due to its
virtualization-based nature and associated self-confinement property, a vGround can
be safely created on a wide range of general-purpose infrastructures, including regular
desktops, local clusters, and even wide-area shared infrastructures such as Planetlab.
For example, Figure 1 shows a simple vGround (the vGrounds in our worm experiments
are much larger in scale) which is created on top of three PlanetLab hosts A, B, and C.

4 X. Jiang et al.

 Enterprise Network A a ;g @ Enterprise Network B
L (R100M6) 3 S (12811.0.016)

@ Enterprise Network C |
> (128120016)

ASI_HI 128121 8

ASI_H2: 1280012
DASLHE IR AS2HZI®1114

To: 1281218

: A vGround

ASI_H2 1281216

Joman 124812 u 128912

Physical Host A Physical Host B Physical Host C
(planetlab6.millennium.berkeley.edu) (planetlab).cs.purdue.edu) (planetlab8.lcs.mit.edu)

T
Ppap

Fig. 1. A PlanetLab-based vGround for worm experiment

The vGround includes three virtual enterprise networks connected by three virtual
routers (R1, R2, and R3). Within the vGround, the “seed” worm node (AS1_H1 in
network A 128.10.0.0/16) is starting to infect other nodes running vulnerable services.
Note that a vGround essentially appears as a virtual Internet whose network address
assignment can be totally orthogonal to that of the real Internet. Furthermore, multiple
simultaneously running vGrounds can safely overlap their address space without
affecting each other as one vGround is completely invisible to another vGround.

Using a vGround specification language, a worm researcher will be able to specify
the worm experiment setup in a vGround, including software systems and services, IP
addresses, and routing information of virtual nodes (i.e. virtual end hosts and routers).
Given the specification, the vGround platform will perform automatic vGround instan-
tiation, bootstrapping, and clean-up. In a typical worm experiment, multiple runs are
often needed as each different run is configured with a different parameter setting (e.g.,
different worm signatures [8, 1] and different traffic throttling thresholds[46]). However,
because of the worm’s destructive behavior, the vGround will be completely unusable
after each run and need to be re-installed. The vGround platform is especially efficient
in supporting such an iterative worm experiment workflow.

2.1 Key vGround Techniques

Existing full-system virtualization is adopted to achieve high fidelity of vGrounds.
Worms infect machines by remotely exploiting certain vulnerabilities in OS or applica-
tion services (e.g., BIND, Sendmail, DNS). Therefore, the vulnerabilities provided by
vGrounds should be the same as those in real software systems. As such, vGround can
not only be leveraged for experimenting worms propagating via known vulnerabilities,
but also be useful for discovering worms exploiting unknown vulnerabilities, of which
worm simulations are not capable.

There exist various VM technologies that enable full-system virtualization. Exam-
ples include Virtual PC [12], VMware [13], Denali [49], Xen [26], and User-Mode
Linux (UML) [30]. The differences in their implementations lead to different levels
of cost, deployability and configurability: VMware and similarly Virtual PC require

Virtual Playgrounds for Worm Behavior Investigation 5

several loadable kernel modules for virtualizing underlying physical resources; Xen and
Denali “paravirtualize” physical resources by running in place of host OS; and UML
is mainly a user-level implementation through system call virtualization. We choose
UML in the current vGround implementation so that the deployment of vGround does
not require the root privilege of the shared infrastructure. As a result, current vGround
prototype can be widely deployed in most Linux-based systems (including PlanetLab).
However, we would like to point out that the original UML itself is nor able to satisfy
the vGround needs. As described next, we have developed new extensions to UML.

New network virtualization techniques are developed to achieve vGround confine-
ment. Simply running a worm experiment in a number of VMs will not confine the worm
traffic just within these VMs and thus prevent potential worm “leakage”. Although
existing UML implementation does have some support for virtual networking, it is
still not capable of organizing different VMs into an isolated virtual topology. In
particular, when the underlying shared infrastructure spans multiple physical domains,
additional VPN softwares are needed to create the illusion of the virtual Internet.
However, there are two notable weaknesses: (1) a VPN does not hide the existence
of the underlying physical hosts and their network connections, which fails to meet
the strict confinement requirement; (2) a VPN usually needs to be statically/manually
configured as it requires the root privilege to manipulate the routing table, which fails to
meet the flexible experiment control requirement. As our solution, we have developed a
link-layer network virtualization technique to create a VN for VMs in a vGround. The
VN reliably intercepts the traffic at the link-layer and is thus able to constrain both the
topology and volume of traffic generated by the VMs. Such a VN essentially enables
the illusion as a “virtual Internet” (though with a smaller scale) with its own IP address
space and router infrastructure. More importantly, the VN and the real Internet are, by
nature of our VN implementation, mutually un-addressable.

New optimization techniques are developed to improve vGround scalability, effi-
ciency, and flexibility. To increase the number of VMs that can be supported in one phys-
ical host, the resource consumption of each individual VM should be conserved. For
example, a full-system image of Red-Hat 9.0/7.2 requires approximately 1G/700M
disk space. For a vGround of 100 VMs, a naive approach would require at least
100G /70G disk space. Our optimization techniques exploit the fact that a large portion
of the VM images is the same and can be shared among the VMs. Furthermore, some
services, libraries, and software packages in the VM image are not relevant to the worm
being tested, and could therefore be safely removed. We also develop a new method to
safely and efficiently generate VM images in each physical host (Section 3.4). Finally, a
new technique is being developed to enable worm-driven vGround growth: new virtual
nodes/subnets can be added to the vGround at runtime in reaction to a worm’s infection
intent.

2.2 Advanced vGround User Configurability

The vGround platform provides a vGround specification language to worm researchers.
There are two major types of entities - nerwork and virtual node, in the vGround

6 X. Jiang et al.

specification language. A network is the medium of communication among virtual
nodes. A virtual node can be an end-host, a router, a firewall, or an IDS system and it
has one or more network interface cards (NICs) - each with an IP addresses. In addition,
the virtual nodes are properly connected using proper routing mechanisms. Currently,
the vGround platform supports RIP, OSPF, and BGP protocols.

In order to conveniently specify and efficiently generate various system images,
the language defines the following notions: (1) A system template contains the basic
VM system image which is common among multiple virtual nodes. If a virtual node is
derived from a system template, the node will inherit all the capabilities specified in the
system template. The definition of system template is motivated by the observation that
most end-hosts to be victimized by a certain worm look quite similar from the worm’s
perspective. (2) A cluster of nodes is the group of nodes located in the same subnet.
The user may specify that they inherit from the same system template, with their 1P
addresses sharing the same subnet prefix.

project Plancilab-Worm switch AS1_lanl { switch AS2_fan (switch AS3_lani { node ASI_HI (
tenplate shiper | unix_sock sock/as_lan] unix_sock sock/as2_lan| unix_sock sock/as3 _lun1 superclass slapper
host_planctlab6.millennium berkeley.cdu host_planetlab 1 cs.purduc.cdu host planetlab8 lcs.mit.cdu network eth) (
image slapper.exi2
cow enabled !)) switch AS3 _lan|
Hartup | swilch ASI_AS2 | switch AS2_AS3 (router R2 | address: 108,12} m:’
Jetc/re. dfinit &tpd start udp_voek 1500 udp_sack 1500 st e | 128.12.1.25
) host planetlab. millennium berkeley.edu host_ planetlabl.cs.purdue.edu I .
template router { Lo mev g switch AS2_lan node AS3_H2 (
nade AS1| addres:
image router.ext2 sonorilissisibpper " [ki 12825054
routing ospl dpidiaes s ho |
o moworkob0 | i OO U— Switch ASY_tant
fere/re.dfinit.Wospfd star address 128.10.1.1724 address 128.11.1.3/24 switch AS 1_AS2 address 128.12.1.6/24
bt sateway 128.11.1.250 | 1281734 | ey 211250
))
router R1 { v ¥ etk 2|
Sl e s e
nenwork eth0 superclass slapper |
switch AS1_lan] network ethd | g t
address 128.10.1.250/24 switch AS1_lan] _lan)
) scdeess 128.10.1:224 address 128.11.1.4724 address 128.12.1.250/24
network ethl { gateway 128,101,250 gateway 128.11.1.250 Yoetwork el {
switch ASI_AS2)) switch AS2_AS3
address 128 8.1.1/24)) >

; address 128.9.1.1/24

Fig. 2. A sample vGround specification

As an example, Figure 2 shows the specification for the vGround in Figure 1. The
keyword remplate indicates the system template used to generate other images files.
For example, the image slapperext2 is used to generate the images of the following
end-hosts: AS1_H1, AS1_H2, AS2_H1, AS2_H?2, AS3_H1, and AS3_H?2; while
the image router.ext2 is used to generate the images of routers R1, R2, and R3.
The keyword switch indicates the creation of a nerwork connecting various virtual
nodes. The internal keywords uniz_sock and udp_sock indicate different network
virtualization techniques based on UNIX and INET-4 sockets, respectively. Note that
the keyword cluster is not used in this example. However, for a large-scale vGround,
it is more convenient to use cluster to specify a subnet, which has a large number of
end-hosts of similar configuration.

After a vGround is created, the vGround platform also provides a collection of
toolkits to unleash the worm, collect worm infection traces, monitor worm propagation
status, and re-install or tear-down the vGround. More details will be described in
Sections 3 and 4.

