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Foreword

Enforcing the dependability of software systems has been a very active and produc-
tive area of research for over 30 years, addressing support for fault prevention, fault
tolerance, fault removal and fault forecasting. Such an effort has in particular led to in-
troducing a number of dependability concepts, and related principled methods and tools
guiding the structuring of dependable systems, and further allowing reasoning about the
systems’ dependability. As such, research results in the dependability area impact upon
the overall software development process. However, dependability has for long been
considered as an aside property in the development of software systems, except for spe-
cific classes of systems such as safety-critical systems that cannot tolerate unexpected
behavior following the occurrence of failures.

The increasing reliance on software systems that are now surrounding our every-
day’s life, being embedded in most devices, and providing us with access to a huge
amount of content and services via the Internet, makes dependability a prime require-
ment for today’s systems. In particular, dependability requirements should be accounted
for in the early phase of the development process, since dependability means signifi-
cantly impact design choices. In this context, architectural modelling of software sys-
tems offers much benefit towards assisting the design of dependable systems and assess-
ing their dependability. By abstracting the low-level details of the system, architectural
modelling allows effective exploitation of formal methods for reasoning about the sys-
tems’ behavior, which constitutes a key dependability means. Architectural modelling
further allows developers to comprehensively deal with dependability requirements in
the structuring of their systems.

Bringing together researchers from the dependability and software architecture
communities, via dedicated workshops and books on improvement to the state of the
art on architecting dependable systems, can only be acknowledged as a valuable effort
towards eliciting architecture modelling languages, methods and tools that support the
thorough development of dependable software systems. This book, the second of an
undoubtedly promising series, introduces research results that show how dependabil-
ity and software architecture research conveniently complement and benefit from each
other, addressing specific system architecting for dependability, integration of fault tol-
erance means with software architecture, and architecture modelling for dependability
analysis. Last but not least, reports on industrial experience highlight how such an effort
meets industrial practices in dependable software system development. As a result, the
breadth and depth of the coverage that is provided by this book on recent research in
architecting dependable systems is particularly impressive, and the editors and authors
are to be congratulated.

June 2004 : Valérie Issarny
INRIA
Research Unit of Rocquencourt



Preface

System dependability is defined as reliance that can be justifiably placed on the service
delivered by the system. It has become an essential aspect of computer systems as ev-
eryday life increasingly depends on software. It is therefore a matter for concern that
dependability issues are usually left until too late in the process of system development.
This is why, even though there is a large body of research on dependability, reason-
ing about dependability at the architectural level is only just emerging as an important
theme. It is a theme that needs to be actively pursued since architectural representations
have been shown to be effective in helping to understand broader system characteristics
by abstracting away from details. Apart from this, there are other factors that make it
urgent to consider dependability at the architectural level, such as the complexity of
emerging applications and the need for building trustworthy systems from the existing
untrustworthy components. -

This book comes as a result of an effort to bring together the research commu-
nities of software architectures and dependability. It was inspired by the ICSE 2003
Workshop on Software Architectures for Dependable Systems (WADS 2003), where
many interesting papers were presented and lively discussions took place. The book
addresses issues that are currently relevant to improving the state of the art in architect-
ing dependable systems. It presents a selection of peer-reviewed papers stemming from
some original WADS 2003 contributions and several invited ones. The book consists
of four parts: architectures for dependability, fault tolerance in software architectures,
dependability analysis in software architecture, and industrial experience.

The first part of this book focuses on software architectures for dependability. Its
first paper, by Koutsoukos, Loureno, Avillez, Gouveia, Andrade, Fiadeiro, and Wer-
melinger, is entitled “Enhancing Dependability Through Flexible Adaptation to Chang-
ing Requirements”. This paper describes an architectural approach that relies on co-
ordination contracts to facilitate the dynamic adaptation of systems to changing do-
main rules. The approach is illustrated through a case study in the financial systems
area, where agreed policies and conditions are negotiated on a case-by-case basis.
The paper concludes by reporting on an information system that ATX Software de-
veloped for a company specialized in recovering bad credit. The second paper in this
part is “A Self-optimizing Run-Time Architecture for Configurable Dependability of
Services” by Tichy and Giese. In this paper, Tichy and Giese identify a set of ar-
chitectural principles that can be used to improve the dependability of service-based
architectures. These architectural principles have been instantiated by extending Jini,
and have been evaluated qualitatively and quantitatively for a configuration of multiple
identical services, showing how the different parameters affect the resulting depend-
ability. The paper by Knight and Strunk on “Achieving Critical System Survivability
Through Software Architectures” addresses the idea of making a system survivable
rather than highly reliable or highly available by exploring the motivation for surviv-
ability, how it might be used, what the concept means in a precise and testable sense,
and how it is being implemented in two very different application areas. The subsequent
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paper is authored by Rodrigues, Roberts and Emmerich. It is on “Reliability Support
for the Model Driven Architecture” and elaborates on how the provision of reliability
can be suitably realized through Model Driven Architectures (MDA). It is based on a
platform-independent reference model that can be mapped to specific platforms. The
UML metamodeling language is extended to show how design profile elements reflect
on the deployment of the components when transformation rules are applied to the
model. The last paper in this part, “Supporting Dependable Distributed Applications
Through a Component-Oriented Middleware-Based Group Service” by Saikoski and
Coulson, presents a group-based middleware platform that aims at supporting flexibility
for controlled redundancy, replication, and recovery of components and services. This
flexibility is provided at design time, deployment time and run-time. Their approach is
based on concepts of software component technology and computational reflection.
The second part of this book is related to fault tolerance in software architectures.
In the first paper, “Architecting Distributed Control Applications Based on (Re-) Con-
figurable Middleware”, Deconinck, De Florio and Belmans introduce the DepAuDE
architecture developed for industrial distributed automation applications. This architec-
ture provides a fault tolerance middleware, a library for error detection and recovery
and fault treatments, and a specialized language called ARIEL for specifying fault tol-
erance and configuration actions. The paper concludes with a thorough discussion of a
case study: a demonstrator of a Primary Substation Automation System controlling a
substation for electricity distribution. The second paper of this part is entitled “A De-
pendable Architecture for COTS-Based Software Systems Using Protective Wrappers”.
The authors, Guerra, Rubira, Romanovsky and de Lemos, combine the concepts of an
idealized architectural component and protective wrappers to develop an architectural
solution that provides an effective and systematic way for building dependable soft-
ware systems from COTS software components. The approach is evaluated using a PID
controller case study. The next paper entitled “A Framework for Reconfiguration-Based
Fault-Tolerance in Distributed Systems” is co-authored by Porcarelli, Castaldi, Di Gian-
domenico, Bondavalli and Inverardi. In this framework fault tolerance of components-
based applications is provided by detecting failures using system monitoring, and by
recovery employing system reconfiguration. The framework is based on Lira, an agent
distributed infrastructure employed for component and application level monitoring and
reconfiguration, and a decision maker used for selecting new configurations using the
feedbacks provided by the evaluation of stochastic Petri net models. In the next paper,
“On Designing Dependable Services with Diverse Off-The- Shelf SQL Servers”, Gashi,
Popov, Stankovic and Strigini argue, based on empirical results from their ongoing re-
search with diverse SQL servers, in favor of diverse redundancy as a way of improving
dependability and performance of a SQL server. The paper provides evidence that cur-
rent data replication solutions are insufficient to protect against the range of faults docu-
mented for database servers, outlines possible fault-tolerant architectures using diverse
servers, discusses the design problems involved, and offers evidence of performance
improvement through diverse redundancy. The last paper of part two, “A New Model
and a Design Approach to Building Quality of Service (QoS) Adaptive Systems”, is co-
authored by Ezhilchelvan and Shrivastava. The focus is on developing Internet-based
services provisioning systems. The authors propose a system architecture and identify
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a model appropriate for developing distributed programs that would implement such
systems. The probabilistic asynchronous model proposed abstracts the network perfor-
mance and dependability guarantees typically offered by the Internet service providers.
The system architecture prescribes the role of QoS management algorithms to be: eval-
uating the feasibility of QoS requests from the end users and adapting system protocols
in response to changes in the environment.

Part three of this book deals with dependability analysis in software architectures.
In the first paper, which is entitled “Multi-view Software Component Modeling for De-
pendability”, the authors Roshandel and Medvidovic focus on a more comprehensive
approach for modelling components. Instead of relying just on the description of the
components interfaces, and their respective pre- and post-conditions, the authors pro-
pose an approach to modelling components using four primary functional aspects of
a software component (known as the Quartet): interface, static behavior, dynamic be-
havior, and interaction protocol. In addition to describing individually the four aspects,
the paper also discusses the relationships between them for ensuring their compatibil-
ity. The goal of the work is to obtain support for the architectural-level modelling and
analysis of system dependability, in particular, reliability. The second paper, “Quantifi-
able Software Architecture for Dependable Systems of Systems” by Liang, Puett and
Lugi presents an approach for the development and evolution of dependable systems-
of-systems. Based on the architectural description of these systems, the approach in-
volves establishing consensus between the different dependability attributes associated
with component systems, and translating them into quantifiable constraints. The ap-
proach illustrates that with reusable architectural facilities and associated tools support,
the quantifiable architecture with multiple perspectives can be effective in supporting
the engineering of dependable systems-of-systems. In the last paper of this part, which
is entitled “Dependability Modeling of Self-healing Client-Server Applications”, the
authors Das and Woodside present an analytical model for evaluating the combined
performance and dependability attributes of fault-tolerant distributed applications. The
authors consider a layered software architecture in which the application and manage-
ment components can fail and be repaired. It also considers the management of connec-
tions, and the application’s layered failure dependencies, together with the application
performance. In order to show the capability of the approach in evaluating large-scale
systems, the authors apply their analytical model to an air traffic control system.

The final part of the book contains two papers that report on existing industrial ex-
periences involving dependability in the context of software architectures. In the first
paper, entitled “A Dependable Platform for Industrial Robots”, the authors Mustapic,
Andersson, Norstrom and Wall discuss the design of an open software platform for an
ABB Robotic System. For them a software platform is the basis for a product-line ar-
chitecture that aims to increase the number of variations between the different software
systems, while maintaining the integrity of the whole robotic system. An initial step in
their approach is to model at the architectural level the quality constraints of the plat-
form, which include several dependability attributes. The second paper of this final part,
“Model Driven Architecture an Industry Perspective” by Raistrick and Bloomfield, dis-
cusses some of the research work that is currently being undertaken within the avionics
industry on the usage of Model Driven Architectures (MDA), an initiative of the Object
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Management Group (OMG). It has been recognized that the MDA approach might be-
come fundamental in reducing costs in the development and maintenance of software.
The authors of this paper identify several fronts in which the usage of the MDA might be
effective. These are: the automation of software development with the support of tools,
the management of legacy systems, the mapping of avionic applications into standard
modular computer systems, and the incremental certification of avionics systems.

We believe that the introduction of the topic of architecting dependable systems
is very timely and that work should continue in this area. The first book of the same
title, published in the summer of 2003, included expanded papers based on selected
contributions to the WADS ICSE 2002 workshop and a number of invited papers. The
forthcoming ICSE/DSN 2004 Twin Workshops on Architecting Dependable Systems is
another ambitious project, which aims to promote cross-fertilization between the com-
munities of software architectures and dependability.

As editors of this book, we are certain that its contents will prove valuable for re-
searchers in the area and are genuinely grateful to the many people who made it possi-
ble. Our thanks go to the authors of the contributions for their excellent work, the WADS
2003 participants for their active support and lively discussions, and Alfred Hofmann
from Springer-Verlag for believing in the idea of this book and helping us to get it pub-
lished. Last but not least, we appreciate the time and effort our reviewers devoted to
guaranteeing the high quality of the contributions. They are D. Akehurst, T. Bloom-
field, A. Bondavalli, F.V, Brasileiro, M. Castaldi, G. Deconinck, F. Di Giandomenico,
M. Correia, G. Coulson, I. Crnkovic, S. Crook-Dawkins, W. Emmerich, J.L. Fiadeiro,
G. Fohler, P. Inverardi, V., Issarny, J. Knight, N. Levy, N. Medvidovic, C. Norstrom,
A. Pataricza, P. Popov, S. Riddle, G. Roberts, C.M.F. Rubira, S. Shrivastava, F. van
der Linden, P. Verissimo, M. Wermelinger, C.M. Woodside, and several anonymous
reviewers.

June 2004 Rogério de Lemos
Cristina Gacek
Alexander Romanovsky
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Abstract. This paper describes an architectural approach that facili-
tates the dynamic adaptation of systems to changing domain rules. The
approach relies on “coordination contracts”, a modelling and implemen-
tation primitive we have developed for run-time reconfiguration. Our
framework includes an engine that, whenever a service is called, checks
the domain rules that are applicable and configures the response of the
service before proceeding with the call.

This approach enhances dependability in two essential ways: on the one
hand, it guarantees that system execution is always consistent with the
domain logic because service response is configured automatically (i.e.,
without any need for programmer intervention); on the other hand, it
makes it possible for changes to be incorporated into existing domain
rules, and from new rules to be created, with little effort, because co-
ordination contracts can be superposed dynamically without having to
change neither the client nor the service code.

Our approach is illustrated through a case study in financial systems,
an area in which dependability arises mainly in the guise of business
concerns like adherence to agreed policies and conditions negotiated on
a case-by-case basis. We report on an information system that ATX
Software developed for a company specialised in recovering bad credit.
We show in particular how, by using this framework, we have devised a
way of generating rule-dependent SQL code for batch-oriented services.

1 Introduction

This paper describes an architectural approach to system development that fa-
cilitates adaptation to change so that organisations can effectively depend on
a continued service that satisfies evolving business requirements. This approach
has been used in a real project in which ATX Software developed an information

* This paper is a considerably extended version of [1].
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system for a company specialised in recovering bad credit. The approach is based
on two key mechanisms:

— the externalisation of the domain rules from the code that implements core
system functionalities;

— the encapsulation of the code that enforces those domain rules into so-called
coordination contracts that can be created and deleted at run-time, hence
adapting computational services to the context in which they are called.

In the concrete case study that we present, the domain rules define the depen-
dency of the recovery process on business concerns of the financial institution
and product (e.g., house mortgage) for which the debt is being recovered. At
any given time, this business configuration defines the context in which services
are called.

These two mechanisms are aimed at two different classes of stakeholders.
Domain rules are intended for system users, who have no technical knowledge,
so that they can adapt the system in order to cope with requirements of newly
or already integrated financial institutions or products. Coordination contracts
are intended for system developers to add new behaviour without changing the
original service implementation. This is made possible with the ability of coor-
dination contracts to superpose, at run-time, new computations on the services
that are being execute locally in system components.

Coordination contracts [2] are a modelling and implementation primitive that
allows transparent interception of method calls and as such interfere with the
execution of the service in the client. Transparent means that neither the service
nor its client are aware of the existence of the coordination contract. Hence, if
the system has to be evolved to handle the requirements imposed by new in-
stitutions or products, many of the changes can be achieved by parameterising
the service (data changes) and by superposing new coordination contracts (be-
haviour changes), without changing the service’s nor the client’s code. This was
used, for instance, to replace the default calculation of the debt’s interest by a
different one. The user may then pick one of the available calculation formulae
(ie., coordination contracts) when defining a domain rule.

To be more precise, a coordination contract is applicable to one or more
objects (called the contract’s participants) and has one or more coordination
rules, each one indicating which method of which participant will be intercepted,
under which conditions, and what actions to take in that case. In the particular
case of the system that we are reporting in this paper, all coordination contracts
are unary, the participant being the service affected by the domain rule to which
the coordination contract is associated. Moreover, each contract has a single rule.
We could have joined all coordination rules that may be applicable to the same
service into a single contract, but that would be less efficient in run-time and
more complex in design time due to more intricate rule definitions. The reason
is that once a contract is in place, it will intercept all methods given in all the
contract’s rules, and thus the rule conditions would have to check at run-time
if the rule is really applicable, or if the contract was put in place because of
another coordination rule.



