Rogério de Lemos

Cristina Gacek
Alexander Romanovsky (Eds.)

State-of-the-Art

Survey

Architecting
Dependable

Systems I

LNCS 3069

.@ Springer

y Rogério de Lemos
Cristina Gacek
Alexander Romanovsky (Eds.)

Architecting
Dependable
Systems 11

LT

E200404717

@ Springer

Volume Editors

Rogério de Lemos

University of Kent, Computing Laboratory
Canterbury, Kent CT2 7NF, UK

E-mail: r.delemos @kent.ac.uk

Cristina Gacek

Alexander Romanovsky

University of Newcastle upon Tyne, School of Computing Science
Newcastle upon Tyne, NE1 7RU, UK

E-mail: {Cristina.Gacek, Alexander.Romanovsky } @ncl.ac.uk

Library of Congress Control Number: 2004113649

CR Subject Classification (1998): D.2, D.4

ISSN 0302-9743
ISBN 3-540-23168-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11314646 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern .

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3069

Foreword

Enforcing the dependability of software systems has been a very active and produc-
tive area of research for over 30 years, addressing support for fault prevention, fault
tolerance, fault removal and fault forecasting. Such an effort has in particular led to in-
troducing a number of dependability concepts, and related principled methods and tools
guiding the structuring of dependable systems, and further allowing reasoning about the
systems’ dependability. As such, research results in the dependability area impact upon
the overall software development process. However, dependability has for long been
considered as an aside property in the development of software systems, except for spe-
cific classes of systems such as safety-critical systems that cannot tolerate unexpected
behavior following the occurrence of failures.

The increasing reliance on software systems that are now surrounding our every-
day’s life, being embedded in most devices, and providing us with access to a huge
amount of content and services via the Internet, makes dependability a prime require-
ment for today’s systems. In particular, dependability requirements should be accounted
for in the early phase of the development process, since dependability means signifi-
cantly impact design choices. In this context, architectural modelling of software sys-
tems offers much benefit towards assisting the design of dependable systems and assess-
ing their dependability. By abstracting the low-level details of the system, architectural
modelling allows effective exploitation of formal methods for reasoning about the sys-
tems’ behavior, which constitutes a key dependability means. Architectural modelling
further allows developers to comprehensively deal with dependability requirements in
the structuring of their systems.

Bringing together researchers from the dependability and software architecture
communities, via dedicated workshops and books on improvement to the state of the
art on architecting dependable systems, can only be acknowledged as a valuable effort
towards eliciting architecture modelling languages, methods and tools that support the
thorough development of dependable software systems. This book, the second of an
undoubtedly promising series, introduces research results that show how dependabil-
ity and software architecture research conveniently complement and benefit from each
other, addressing specific system architecting for dependability, integration of fault tol-
erance means with software architecture, and architecture modelling for dependability
analysis. Last but not least, reports on industrial experience highlight how such an effort
meets industrial practices in dependable software system development. As a result, the
breadth and depth of the coverage that is provided by this book on recent research in
architecting dependable systems is particularly impressive, and the editors and authors
are to be congratulated.

June 2004 : Valérie Issarny
INRIA
Research Unit of Rocquencourt

Preface

System dependability is defined as reliance that can be justifiably placed on the service
delivered by the system. It has become an essential aspect of computer systems as ev-
eryday life increasingly depends on software. It is therefore a matter for concern that
dependability issues are usually left until too late in the process of system development.
This is why, even though there is a large body of research on dependability, reason-
ing about dependability at the architectural level is only just emerging as an important
theme. It is a theme that needs to be actively pursued since architectural representations
have been shown to be effective in helping to understand broader system characteristics
by abstracting away from details. Apart from this, there are other factors that make it
urgent to consider dependability at the architectural level, such as the complexity of
emerging applications and the need for building trustworthy systems from the existing
untrustworthy components. -

This book comes as a result of an effort to bring together the research commu-
nities of software architectures and dependability. It was inspired by the ICSE 2003
Workshop on Software Architectures for Dependable Systems (WADS 2003), where
many interesting papers were presented and lively discussions took place. The book
addresses issues that are currently relevant to improving the state of the art in architect-
ing dependable systems. It presents a selection of peer-reviewed papers stemming from
some original WADS 2003 contributions and several invited ones. The book consists
of four parts: architectures for dependability, fault tolerance in software architectures,
dependability analysis in software architecture, and industrial experience.

The first part of this book focuses on software architectures for dependability. Its
first paper, by Koutsoukos, Loureno, Avillez, Gouveia, Andrade, Fiadeiro, and Wer-
melinger, is entitled “Enhancing Dependability Through Flexible Adaptation to Chang-
ing Requirements”. This paper describes an architectural approach that relies on co-
ordination contracts to facilitate the dynamic adaptation of systems to changing do-
main rules. The approach is illustrated through a case study in the financial systems
area, where agreed policies and conditions are negotiated on a case-by-case basis.
The paper concludes by reporting on an information system that ATX Software de-
veloped for a company specialized in recovering bad credit. The second paper in this
part is “A Self-optimizing Run-Time Architecture for Configurable Dependability of
Services” by Tichy and Giese. In this paper, Tichy and Giese identify a set of ar-
chitectural principles that can be used to improve the dependability of service-based
architectures. These architectural principles have been instantiated by extending Jini,
and have been evaluated qualitatively and quantitatively for a configuration of multiple
identical services, showing how the different parameters affect the resulting depend-
ability. The paper by Knight and Strunk on “Achieving Critical System Survivability
Through Software Architectures” addresses the idea of making a system survivable
rather than highly reliable or highly available by exploring the motivation for surviv-
ability, how it might be used, what the concept means in a precise and testable sense,
and how it is being implemented in two very different application areas. The subsequent

Vil Preface

paper is authored by Rodrigues, Roberts and Emmerich. It is on “Reliability Support
for the Model Driven Architecture” and elaborates on how the provision of reliability
can be suitably realized through Model Driven Architectures (MDA). It is based on a
platform-independent reference model that can be mapped to specific platforms. The
UML metamodeling language is extended to show how design profile elements reflect
on the deployment of the components when transformation rules are applied to the
model. The last paper in this part, “Supporting Dependable Distributed Applications
Through a Component-Oriented Middleware-Based Group Service” by Saikoski and
Coulson, presents a group-based middleware platform that aims at supporting flexibility
for controlled redundancy, replication, and recovery of components and services. This
flexibility is provided at design time, deployment time and run-time. Their approach is
based on concepts of software component technology and computational reflection.
The second part of this book is related to fault tolerance in software architectures.
In the first paper, “Architecting Distributed Control Applications Based on (Re-) Con-
figurable Middleware”, Deconinck, De Florio and Belmans introduce the DepAuDE
architecture developed for industrial distributed automation applications. This architec-
ture provides a fault tolerance middleware, a library for error detection and recovery
and fault treatments, and a specialized language called ARIEL for specifying fault tol-
erance and configuration actions. The paper concludes with a thorough discussion of a
case study: a demonstrator of a Primary Substation Automation System controlling a
substation for electricity distribution. The second paper of this part is entitled “A De-
pendable Architecture for COTS-Based Software Systems Using Protective Wrappers”.
The authors, Guerra, Rubira, Romanovsky and de Lemos, combine the concepts of an
idealized architectural component and protective wrappers to develop an architectural
solution that provides an effective and systematic way for building dependable soft-
ware systems from COTS software components. The approach is evaluated using a PID
controller case study. The next paper entitled “A Framework for Reconfiguration-Based
Fault-Tolerance in Distributed Systems” is co-authored by Porcarelli, Castaldi, Di Gian-
domenico, Bondavalli and Inverardi. In this framework fault tolerance of components-
based applications is provided by detecting failures using system monitoring, and by
recovery employing system reconfiguration. The framework is based on Lira, an agent
distributed infrastructure employed for component and application level monitoring and
reconfiguration, and a decision maker used for selecting new configurations using the
feedbacks provided by the evaluation of stochastic Petri net models. In the next paper,
“On Designing Dependable Services with Diverse Off-The- Shelf SQL Servers”, Gashi,
Popov, Stankovic and Strigini argue, based on empirical results from their ongoing re-
search with diverse SQL servers, in favor of diverse redundancy as a way of improving
dependability and performance of a SQL server. The paper provides evidence that cur-
rent data replication solutions are insufficient to protect against the range of faults docu-
mented for database servers, outlines possible fault-tolerant architectures using diverse
servers, discusses the design problems involved, and offers evidence of performance
improvement through diverse redundancy. The last paper of part two, “A New Model
and a Design Approach to Building Quality of Service (QoS) Adaptive Systems”, is co-
authored by Ezhilchelvan and Shrivastava. The focus is on developing Internet-based
services provisioning systems. The authors propose a system architecture and identify

Preface X

a model appropriate for developing distributed programs that would implement such
systems. The probabilistic asynchronous model proposed abstracts the network perfor-
mance and dependability guarantees typically offered by the Internet service providers.
The system architecture prescribes the role of QoS management algorithms to be: eval-
uating the feasibility of QoS requests from the end users and adapting system protocols
in response to changes in the environment.

Part three of this book deals with dependability analysis in software architectures.
In the first paper, which is entitled “Multi-view Software Component Modeling for De-
pendability”, the authors Roshandel and Medvidovic focus on a more comprehensive
approach for modelling components. Instead of relying just on the description of the
components interfaces, and their respective pre- and post-conditions, the authors pro-
pose an approach to modelling components using four primary functional aspects of
a software component (known as the Quartet): interface, static behavior, dynamic be-
havior, and interaction protocol. In addition to describing individually the four aspects,
the paper also discusses the relationships between them for ensuring their compatibil-
ity. The goal of the work is to obtain support for the architectural-level modelling and
analysis of system dependability, in particular, reliability. The second paper, “Quantifi-
able Software Architecture for Dependable Systems of Systems” by Liang, Puett and
Lugi presents an approach for the development and evolution of dependable systems-
of-systems. Based on the architectural description of these systems, the approach in-
volves establishing consensus between the different dependability attributes associated
with component systems, and translating them into quantifiable constraints. The ap-
proach illustrates that with reusable architectural facilities and associated tools support,
the quantifiable architecture with multiple perspectives can be effective in supporting
the engineering of dependable systems-of-systems. In the last paper of this part, which
is entitled “Dependability Modeling of Self-healing Client-Server Applications”, the
authors Das and Woodside present an analytical model for evaluating the combined
performance and dependability attributes of fault-tolerant distributed applications. The
authors consider a layered software architecture in which the application and manage-
ment components can fail and be repaired. It also considers the management of connec-
tions, and the application’s layered failure dependencies, together with the application
performance. In order to show the capability of the approach in evaluating large-scale
systems, the authors apply their analytical model to an air traffic control system.

The final part of the book contains two papers that report on existing industrial ex-
periences involving dependability in the context of software architectures. In the first
paper, entitled “A Dependable Platform for Industrial Robots”, the authors Mustapic,
Andersson, Norstrom and Wall discuss the design of an open software platform for an
ABB Robotic System. For them a software platform is the basis for a product-line ar-
chitecture that aims to increase the number of variations between the different software
systems, while maintaining the integrity of the whole robotic system. An initial step in
their approach is to model at the architectural level the quality constraints of the plat-
form, which include several dependability attributes. The second paper of this final part,
“Model Driven Architecture an Industry Perspective” by Raistrick and Bloomfield, dis-
cusses some of the research work that is currently being undertaken within the avionics
industry on the usage of Model Driven Architectures (MDA), an initiative of the Object

X Preface

Management Group (OMG). It has been recognized that the MDA approach might be-
come fundamental in reducing costs in the development and maintenance of software.
The authors of this paper identify several fronts in which the usage of the MDA might be
effective. These are: the automation of software development with the support of tools,
the management of legacy systems, the mapping of avionic applications into standard
modular computer systems, and the incremental certification of avionics systems.

We believe that the introduction of the topic of architecting dependable systems
is very timely and that work should continue in this area. The first book of the same
title, published in the summer of 2003, included expanded papers based on selected
contributions to the WADS ICSE 2002 workshop and a number of invited papers. The
forthcoming ICSE/DSN 2004 Twin Workshops on Architecting Dependable Systems is
another ambitious project, which aims to promote cross-fertilization between the com-
munities of software architectures and dependability.

As editors of this book, we are certain that its contents will prove valuable for re-
searchers in the area and are genuinely grateful to the many people who made it possi-
ble. Our thanks go to the authors of the contributions for their excellent work, the WADS
2003 participants for their active support and lively discussions, and Alfred Hofmann
from Springer-Verlag for believing in the idea of this book and helping us to get it pub-
lished. Last but not least, we appreciate the time and effort our reviewers devoted to
guaranteeing the high quality of the contributions. They are D. Akehurst, T. Bloom-
field, A. Bondavalli, F.V, Brasileiro, M. Castaldi, G. Deconinck, F. Di Giandomenico,
M. Correia, G. Coulson, I. Crnkovic, S. Crook-Dawkins, W. Emmerich, J.L. Fiadeiro,
G. Fohler, P. Inverardi, V., Issarny, J. Knight, N. Levy, N. Medvidovic, C. Norstrom,
A. Pataricza, P. Popov, S. Riddle, G. Roberts, C.M.F. Rubira, S. Shrivastava, F. van
der Linden, P. Verissimo, M. Wermelinger, C.M. Woodside, and several anonymous
reviewers.

June 2004 Rogério de Lemos
Cristina Gacek
Alexander Romanovsky

Lecture Notes in Computer Science

For information about Vols. 1-3180

please contact your bookseller or Springer

Vol. 3293: C.-H. Chi, M. van Steen, C. Wills (Eds.), Web
Content Caching and Distribution. IX, 283 pages. 2004.

Vol. 3274: R. Guerraoui (Ed.), Distributed Computing.
XIII, 465 pages. 2004.

Vol. 3273: T. Baar, A. Strohmeier, A. Moreira, S.J. Mel-
lor (Eds.), <<UML>> 2004 - The Unified Modelling
Language. XIII, 454 pages. 2004.

Vol. 3271: J. Vicente, D. Hutchison (Eds.), Management
of Multimedia Networks and Services. XIII, 335 pages.
2004.

Vol. 3270: M. Jeckle, R. Kowalczyk, P. Braun (Eds.), Grid
Services Engineering and Management. X, 165 pages.
2004.

Vol. 3269: J. Lépez, S. Qing, E. Okamoto (Eds.), Informa-
tion and Communications Security. XI, 564 pages. 2004.

Vol. 3266: J. Solé-Pareta, M. Smirnov, P.V. Mieghem, J.
Domingo-Pascual, E. Monteiro, P. Reichl, B. Stiller, R.J.
Gibbens (Eds.), Quality of Service in the Emerging Net-
working Panorama. XVI, 390 pages. 2004.

Vol. 3265: R.E. Frederking, K.B. Taylor (Eds.), Machine
Translation: From Real Users to Research. X1, 392 pages.
2004. (Subseries LNAI).

Vol. 3264: G. Paliouras, Y. Sakakibara (Eds.), Gram-
matical Inference: Algorithms and Applications. XI, 291
pages. 2004. (Subseries LNAI).

Vol. 3263: M. Weske, P. Liggesmeyer (Eds.), Object-
Oriented and Internet-Based Technologies. XII, 239
pages. 2004.

Vol. 3262: M.M. Freire, P. Chemouil, P. Lorenz, A. Gravey
(Eds.), Universal Multiservice Networks. XIII, 556 pages.
2004.

Vol. 3261: T. Yakhno (Ed.), Advances in Information Sys-
tems. XIV, 617 pages. 2004.

Vol. 3260: 1.G.M.M. Niemegeers, S.H. de Groot (Eds.),
Personal Wireless Communications. XIV, 478 pages.
2004.

Vol. 3258: M. Wallace (Ed.), Principles and Practice of
Constraint Programming — CP 2004. XVII, 822 pages.
2004.

Vol. 3257: E. Motta, N.R. Shadbolt, A. Stutt, N. Gibbins
(Eds.), Engineering Knowledge in the Age of the Semantic
‘Web. XVII, 517 pages. 2004. (Subseries LNAI).

Vol. 3256: H. Ehrig, G. Engels, E Parisi-Presicce,
G. Rozenberg (Eds.), Graph Transformations. XII, 451
pages. 2004.

Vol. 3255: A. Bencziir, J. Demetrovics, G. Gottlob (Eds.),
Advances in Databases and Information Systems. X1, 423
pages. 2004.

Vol. 3254: E. Macii, V. Paliouras, O. Koufopavlou (Eds.),
Integrated Circuit and System Design. XVI, 910 pages.
2004.

Vol. 3253: Y. Lakhnech, S. Yovine (Eds.), Formal Tech-
niques, Modelling and Analysis of Timed and Fault-
Tolerant Systems. X, 397 pages. 2004.

Vol. 3250: L.-J. (LJ) Zhang, M. Jeckle (Eds.), Web Ser-
vices. X, 301 pages. 2004.

Vol. 3249: B. Buchberger, J.A. Campbell (Eds.), Artificial
Intelligence and Symbolic Computation. X, 285 pages.
2004. (Subseries LNAI).

Vol. 3246: A. Apostolico, M. Melucci (Eds.), String Pro-
cessing and Information Retrieval. XIV, 332 pages. 2004.

Vol. 3245: E. Suzuki, S. Arikawa (Eds.), Discovery Sci-
ence. XIV, 430 pages. 2004. (Subseries LNAI).

Vol. 3244: S. Ben-David, J. Case, A. Maruoka (Eds.), Al-
gorithmic Learning Theory. XIV, 505 pages. 2004. (Sub-
series LNAI).

Vol. 3243: S. Leonardi (Ed.), Algorithms and Models for
the Web-Graph. VIII, 189 pages. 2004.

Vol. 3242: X. Yao, E. Burke, J.A. Lozano, J. Smith, J.J.
Merelo-Guervés, J.A. Bullinaria, J. Rowe, P. Tifio, A.
Kabdn, H.-P. Schwefel (Eds.), Parallel Problem Solving
from Nature - PPSN VIII. XX, 1185 pages. 2004.

Vol. 3241: D. Kranzlmiiller, P. Kacsuk, J.J. Dongarra
(Eds.), Recent Advances in Parallel Virtual Machine and
Message Passing Interface. XIII, 452 pages. 2004.

Vol. 3240: 1. Jonassen, J. Kim (Eds.), Algorithms in Bioin-
formatics. IX, 476 pages. 2004. (Subseries LNBI).

Vol. 3239: G. Nicosia, V. Cutello, PJ. Bentley, J. Timmis
(Eds.), Artificial Immune Systems. XII, 444 pages. 2004.

Vol. 3238: S. Biundo, T. Friihwirth, G. Palm (Eds.), KI
2004: Advances in Artificial Intelligence. X1, 467 pages.
2004. (Subseries LNAI).

Vol. 3236: M. Niifiez, Z. Maamar, FL. Pelayo, K.
Pousttchi, F. Rubio (Eds.), Applying Formal Methods:
Testing, Performance, and M/E-Commerce. XI, 381
pages. 2004,

Vol. 3235: D. de Frutos-Escrig, M. Nunez (Eds.), For-

mal Techniques for Networked and Distributed Systems
—FORTE 2004. X, 377 pages. 2004.

Vol. 3232: R. Heery, L. Lyon (Eds.), Research and Ad-
vanced Technology for Digital Libraries. XV, 528 pages.
2004.

Vol. 3231: H.-A. Jacobsen (Ed.), Middleware 2004. XV,
514 pages. 2004.

Vol. 3230: J.L. Vicedo, P. Martinez-Barco, R. Mufioz, M.S.
Noeda (Eds.), Advances in Natural Language Processing.
XII, 488 pages. 2004. (Subseries LNAI).

Vol. 3229: 1.J. Alferes, J. Leite (Eds.), Logics in Artificial
Intelligence. XIV, 744 pages. 2004. (Subseries LNAI).

Vol. 3226: M. Bouzeghoub, C. Goble, V. Kashyap, S.
Spaccapietra (Eds.), Semantics for Grid Databases. XIII,
326 pages. 2004.

Vol. 3225: K. Zhang, Y. Zheng (Eds.), Information Secu-
rity. XII, 442 pages. 2004.

Vol. 3224: E. Jonsson, A. Valdes, M. Almgren (Eds.), Re-
cent Advances in Intrusion Detection. XII, 315 pages.
2004.

Vol. 3223: K. Slind, A. Bunker, G. Gopalakrishnan (Eds.),
Theorem Proving in Higher Order Logics. VIII, 337 pages.
2004.

Vol. 3222: H. Jin, G.R. Gao, Z. Xu, H. Chen (Eds.), Net-
work and Parallel Computing. XX, 694 pages. 2004.

Vol. 3221: S. Albers, T. Radzik (Eds.), Algorithms — ESA
2004. XVIII, 836 pages. 2004.

Vol. 3220: J.C. Lester, R.M. Vicari, F. Paraguacu (Eds.),
Intelligent Tutoring Systems. XXI, 920 pages. 2004.

Vol. 3219: M. Heisel, P. Liggesmeyer, S. Wittmann (Eds.),
Computer Safety, Reliability, and Security. XI, 339 pages.
2004.

Vol. 3217: C. Barillot, D.R. Haynor, P. Hellier (Eds.), Med-
ical Image Computing and Computer-Assisted Interven-
tion - MICCAI 2004. XXXVIII, 1114 pages. 2004.

Vol. 3216: C. Barillot, D.R. Haynor, P. Hellier (Eds.), Med-
ical Image Computing and Computer-Assisted Interven-
tion — MICCAI 2004. XXXVIII, 930 pages. 2004.

Vol. 3215: M.G.. Negoita, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVII, 906 pages. 2004. (Subseries LNAI).

Vol. 3214: M.G.. Negoita, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVIII, 1302 pages. 2004. (Subseries LNAI).

Vol. 3213: M.G.. Negoita, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVIII, 1280 pages. 2004. (Subseries LNAI).

Vol. 3212: A. Campilho, M. Kamel (Eds.), Image Analysis
and Recognition. XXIX, 862 pages. 2004.

Vol. 3211: A. Campilho, M. Kamel (Eds.), Image Analysis
and Recognition. XXIX, 880 pages. 2004.

Vol. 3210: J. Marcinkowski, A. Tarlecki (Eds.), Computer
Science Logic. XI, 520 pages. 2004.

Vol. 3209: B. Berendt, A. Hotho, D. Mladenic, M. van
Someren, M. Spiliopoulou, G. Stumme (Eds.), Web Min-
ing: From Web to Semantic Web. IX, 201 pages. 2004.
(Subseries LNAI).

Vol. 3208: H.J. Ohlbach, S. Schaffert (Eds.), Principles
and Practice of Semantic Web Reasoning. VII, 165 pages.
2004

Vol. 3207: L.T. Yang, M. Guo, G.R. Gao, N.K. Jha (Eds.),
Embedded and Ubiquitous Computing. XX, 1116 pages.
2004.

Vol. 3206: P. Sojka, I. Kopecek, K. Pala (Eds.), Text,
Speech and Dialogue. XIII, 667 pages. 2004. (Subseries
LNAI).

Vol. 3205: N. Davies, E. Mynatt, I. Siio (Eds.), UbiComp
2004: Ubiquitous Computing. XVI, 452 pages. 2004.

Vol. 3204: C.A. Pefia Reyes, Coevolutionary Fuzzy Mod-
eling. XIII, 129 pages. 2004.

Vol. 3203: J. Becker, M. Platzner, S. Vernalde (Eds.), Field
Programmable Logic and Application. XXX, 1198 pages.
2004.

Vol. 3202: J.-F. Boulicaut, F. Esposito, F. Giannotti, D.
Pedreschi (Eds.), Knowledge Discovery in Databases:
PKDD 2004. XIX, 560 pages. 2004. (Subseries LNAI).

Vol. 3201: J.-F. Boulicaut, F. Esposito, F. Giannotti, D.
Pedreschi (Eds.), Machine Learning: ECML 2004. X VIII,
580 pages. 2004. (Subseries LNAI).

Vol. 3199: H. Schepers (Ed.), Software and Compilers for
Embedded Systems. X, 259 pages. 2004.

Vol. 3198: G.-J. de Vreede, L.A. Guerrero, G. Marin
Raventés (Eds.), Groupware: Design, Implementation and
Use. XI, 378 pages. 2004.

Vol. 3196: C. Stary, C. Stephanidis (Eds.), User-Centered
Interaction Paradigms for Universal Access in the Infor-
mation Society. XII, 488 pages. 2004.

Vol. 3195: C.G. Puntonet, A. Prieto (Eds.), Independent
Component Analysis and Blind Signal Separation. XXIII,
1266 pages. 2004.

Vol. 3194: R. Camacho, R. King, A. Srinivasan (Eds.), In-
ductive Logic Programming. XI, 361 pages. 2004. (Sub-
series LNAI).

Vol. 3193: P. Samarati, P. Ryan, D. Gollmann, R. Molva
(Eds.), Computer Security — ESORICS 2004. X, 457
pages. 2004.

Vol. 3192: C. Bussler, D. Fensel (Eds.), Artificial Intel-
ligence: Methodology, Systems, and Applications. XIII,
522 pages. 2004. (Subseries LNAI).

Vol. 3191: M. Klusch, S. Ossowski, V. Kashyap, R. Un-
land (Eds.), Cooperative Information Agents VIII. XI, 303
pages. 2004. (Subseries LNAI).

Vol. 3190: Y. Luo (Ed.), Cooperative Design, Visualiza-
tion, and Engineering. IX, 248 pages. 2004.

Vol. 3189: P.-C. Yew, J. Xue (Eds.), Advances in Computer
Systems Architecture. XVII, 598 pages. 2004.

Vol. 3188: ES. de Boer, M.M. Bonsangue, S. Graf, W.-P.

de Roever (Eds.), Formal Methods for Components and
Objects. VIII, 373 pages. 2004.

Vol. 3187: G. Lindemann, J. Denzinger, I.J. Timm, R. Un-
land (Eds.), Multiagent System Technologies. XIII, 341
pages. 2004. (Subseries LNAI).

Vol. 3186: Z. Bellahsene, T. Milo, M. Rys, D. Suciu, R.
Unland (Eds.), Database and XML Technologies. X, 235
pages. 2004.

Vol. 3185: M. Bernardo, F. Corradini (Eds.), Formal Meth-
ods for the Design of Real-Time Systems. VII, 295 pages.
2004.

Vol. 3184: S. Katsikas, J. Lopez, G. Pernul (Eds.), Trust
and Privacy in Digital Business. XI, 299 pages. 2004.
Vol. 3183: R. Traunmiiller (Ed.), Electronic Government.
XIX, 583 pages. 2004.

Vol. 3182: K. Bauknecht, M. Bichler, B. Préll (Eds.), E-
Commerce and Web Technologies. XI, 370 pages. 2004.
Vol. 3181: Y. Kambayashi, M. Mohania, W. W68 (Eds.),

Data Warehousing and Knowledge Discovery. XIV, 412
pages. 2004.

Table of Contents

Part 1. Architectures for Dependability

Enhancing Dependability Through Flexible Adaptation

to Changing ReqUirementsuuuuinniiiiinnenn.

Michel Wermelinger, Georgios Koutsoukos, Hugo Lourengo, Richard Avillez,
Jodo Gouveia, Luls Andrade, and José Luiz Fiadeiro

A Self-optimizing Run-Time Architecture for Configurable Dependability

OF SEIVICES . v e v v eoe v vims oo mmo o s i3 FE M EHEME EHEHS SWarme 8w anmmars o

Matthias Tichy and Holger Giese

Achieving Critical System Survivability Through Software Architectures

John C. Knight and Elisabeth A. Strunk

Reliability Support for the Model Driven Architecture

Genaina Nunes Rodrigues, Graham Roberts, and Wolfgang Emmerich

Supporting Dependable Distributed Applications

Through a Component-Oriented Middleware-Based Group Service

Katia Saikoski and Geoff Coulson

Part 2. Fault Tolerance in Software Architectures

Architecting Distributed Control Applications

Based on (Re-)Configurable Middlewareo

Geert Deconinck, Vincenzo De Florio, and Ronnie Belmans

A Dependable Architecture for COTS-Based Software Systems

Using Protective WIappPersooititnn e

Paulo Asterio de C. Guerra, Cecilia Mary F. Rubira, Alexander Romanovsky,
and Rogério de Lemos

A Framework for Reconfiguration-Based Fault-Tolerance

in Distributed SyStems

Stefano Porcarelli, Marco Castaldi, Felicita Di Giandomenico,
Andrea Bondavalli, and Paola Inverardi

On Designing Dependable Services with Diverse Off-the-Shelf SQL Servers

Ilir Gashi, Peter Popov, Vladimir Stankovic, and Lorenzo Strigini

A Model and a Design Approach to Building QoS Adaptive Systems

Paul D. Ezhilchelvan and Santosh Kumar Shrivastava

X1 Table of Contents

Part 3. Dependability Analysis in Software Architectures

Quantifiable Software Architecture for Dependable Systems of Systems

Sheldon X. Liang, Joseph F. Puett III, and Lugi

Dependability Modeling of Self-healing Client-Server Applications

Olivia Das and C. Murray Woodside

Multi-view Software Component Modeling for Dependability

Roshanak Roshandel and Nenad Medvidovic

Part 4. Industrial Experiences

A Dependable Open Platform for Industrial Robotics — A Case Study

Goran Mustapic, Johan Andersson, Christer Norstrom, and Anders Wall

Model Driven Architecture — An Industry Perspective.....................

Chris Raistrick and Tony Bloomfield

AuthorIndex.......................

Architectures for Dependability

Enhancing Dependability Through Flexible
Adaptation to Changing Requirements*

Michel Wermelinger!, Georgios Koutsoukos?, Hugo Lourenco?,
Richard Avillez?, Jodo Gouveia?, Lufs Andrade?, and José Luiz Fiadeiro®

! Dep. de Informética, Univ. Nova de Lisboa, 2829-516 Caparica, Portugal
mw@di.fct.unl.pt
2 ATX Software SA, Alameda Anténio Sérgio, 7, 1C
2795-023 Linda-a-Velha, Portugal
{firstname.lastname}Qatxsoftware.com
3 Dep. of Computer Science, Univ. of Leicester, Leicester LE1 7RH, UK
jose@fiadeiro.org

Abstract. This paper describes an architectural approach that facili-
tates the dynamic adaptation of systems to changing domain rules. The
approach relies on “coordination contracts”, a modelling and implemen-
tation primitive we have developed for run-time reconfiguration. Our
framework includes an engine that, whenever a service is called, checks
the domain rules that are applicable and configures the response of the
service before proceeding with the call.

This approach enhances dependability in two essential ways: on the one
hand, it guarantees that system execution is always consistent with the
domain logic because service response is configured automatically (i.e.,
without any need for programmer intervention); on the other hand, it
makes it possible for changes to be incorporated into existing domain
rules, and from new rules to be created, with little effort, because co-
ordination contracts can be superposed dynamically without having to
change neither the client nor the service code.

Our approach is illustrated through a case study in financial systems,
an area in which dependability arises mainly in the guise of business
concerns like adherence to agreed policies and conditions negotiated on
a case-by-case basis. We report on an information system that ATX
Software developed for a company specialised in recovering bad credit.
We show in particular how, by using this framework, we have devised a
way of generating rule-dependent SQL code for batch-oriented services.

1 Introduction

This paper describes an architectural approach to system development that fa-
cilitates adaptation to change so that organisations can effectively depend on
a continued service that satisfies evolving business requirements. This approach
has been used in a real project in which ATX Software developed an information

* This paper is a considerably extended version of [1].

R. de Lemos et al. (Eds.): Architecting Dependable Systems II, LNCS 3069, pp. 3-24, 2004.
© Springer-Verlag Berlin Heidelberg 2004

4 Michel Wermelinger et al.

system for a company specialised in recovering bad credit. The approach is based
on two key mechanisms:

— the externalisation of the domain rules from the code that implements core
system functionalities;

— the encapsulation of the code that enforces those domain rules into so-called
coordination contracts that can be created and deleted at run-time, hence
adapting computational services to the context in which they are called.

In the concrete case study that we present, the domain rules define the depen-
dency of the recovery process on business concerns of the financial institution
and product (e.g., house mortgage) for which the debt is being recovered. At
any given time, this business configuration defines the context in which services
are called.

These two mechanisms are aimed at two different classes of stakeholders.
Domain rules are intended for system users, who have no technical knowledge,
so that they can adapt the system in order to cope with requirements of newly
or already integrated financial institutions or products. Coordination contracts
are intended for system developers to add new behaviour without changing the
original service implementation. This is made possible with the ability of coor-
dination contracts to superpose, at run-time, new computations on the services
that are being execute locally in system components.

Coordination contracts [2] are a modelling and implementation primitive that
allows transparent interception of method calls and as such interfere with the
execution of the service in the client. Transparent means that neither the service
nor its client are aware of the existence of the coordination contract. Hence, if
the system has to be evolved to handle the requirements imposed by new in-
stitutions or products, many of the changes can be achieved by parameterising
the service (data changes) and by superposing new coordination contracts (be-
haviour changes), without changing the service’s nor the client’s code. This was
used, for instance, to replace the default calculation of the debt’s interest by a
different one. The user may then pick one of the available calculation formulae
(ie., coordination contracts) when defining a domain rule.

To be more precise, a coordination contract is applicable to one or more
objects (called the contract’s participants) and has one or more coordination
rules, each one indicating which method of which participant will be intercepted,
under which conditions, and what actions to take in that case. In the particular
case of the system that we are reporting in this paper, all coordination contracts
are unary, the participant being the service affected by the domain rule to which
the coordination contract is associated. Moreover, each contract has a single rule.
We could have joined all coordination rules that may be applicable to the same
service into a single contract, but that would be less efficient in run-time and
more complex in design time due to more intricate rule definitions. The reason
is that once a contract is in place, it will intercept all methods given in all the
contract’s rules, and thus the rule conditions would have to check at run-time
if the rule is really applicable, or if the contract was put in place because of
another coordination rule.

