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FOREWORD

‘The papers in this volume were contributed for presentation
at the 7th Annual ACM Symposium on the Theory of Computing sponsored
by the ACM Special Interest Group on Automata and Computability Theory
and by the University of New Mexico. These articles were selected
on January 6 at a meeting of the full committee from 87 extended
abstracts submitted in response to the call for papers from August to
December 1974.

The articles in these Proceedings were selected on the basis of
originality and relevance to the theory of computing as described in
the call for papers. The Committee wishes to thank those who submitted
papers and those colleagues who helped in the evaluation of the many
abstracts.

The papers in these Proceedings have not been formally refereed
and several papers represent preliminary reports of continuing research.
It is_anticipated that most Qf these papers will appear in more polished

and complete form in scientific journals.
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COMPLEXITY MEASURES AND HIERARCHIES
FOR THE EVALUATION OF
INTEGERS, POLYNOMIALS, AND N-LINEAR FORMS

Richard J. Liptoa* and David Dobkint
Department of Computer Science .
Yale University
New Haven, Connecticut 06520

1. Introduction

The difficulty of evaluating integers and poly-
nomials has been studied in various frameworks
ranging from the addition-chain approach [5] to
integer evaluation to recent efforts aimed at
generating polynomials that are hard to evaluate
[2,8,10]. Here we consider the classes of integers
and polynomials that can be evaluated within given
complexity bounds and prove the existence of proper
hierarchies of complexity classes. The framework
in which our problems are cast is general enough to
allow any finite set of binary operations rather
than just addition, subtraction, multiplicatiom,
and division. The motivation for studying com-
plexity classes rather thamn specific integers or
polynomials is analogous to why complexity classes
are studied in automata-based complexity: (i):the
immense difficulty associated with computing the
complexity of a specific integer or polynomial;
(ii) the important insight obtained from discov-
ering the structure of the complexity classes.
Thus, we are able to prove that under mild re-
strietions if

f(n) > g(n) a.e.

where f and g are monotone functions, then there
are an infinite number of integers (respectively
polynomials) that can be evaluated in f(n) steps
but not g(n) steps.

The model used here for polynomial evaluatiom
differs from the model used in Strassen [10] and
Paterson and Stockmeyer [8). The difference lies
in their allowing scalar multiplications by con-
stant a at a cost of zero or one, while we charge
an amount that is a function of a. This amount
essentially reflects the complexity of integer a.
The motivation for our model is similar to that
of Cook [3]: In a "real" machine model it is
realistic to say that the cost of ac p, where a is
an integer and p is some term, is dependent
at least on the cost associsdted with 'naming" a.
That is, the cost must be at least the amount of
information needed to state. that the scalar is a
and to apply the operation a° to p.

The difference between our model and that of
Strassen and Paterson and Stockmeyer is most
dramatic when one compares the following results:

t+ The work of this author was supported in part by
US Army grant DAHC04-75-6-0037.

% The work of this author was supported in part by
National Science Foundation grant GJ-43157.

1) [Strassen] There are polynomials that take
~n/log n steps to evaluate.} They have

3
n

coefficient ~22 in size.

2) [Paterson and Stockmeyer] There are 0,1

_coefficient polynomials that take ~/n steps to
evaluate.

3) [Theorem 7, section 4] There are 0,1 coefficient
polynomials that take ~n/log n steps to evalu-

ate.

Thus our result would be an improvement of both (1)
and (2) if we had assumed that scalars are of cost
1. An open question is: How much does our as-
sumption affect the complexity of polynomial
evaluation?

Since our results are proved for any finite
set of binary operations it is not surprising that
they follow by counting type arguments. The basic
counting tools we use are a number of powerful
results from dumber theory on the density of
sequences of integers [7]. These tools allow us
to establish our hierarchy results. Moreover, they
allow us to refine them so that we can show not
only that there are, for example, 0,1 polynomials
that take ~n/log n steps to evaluation but that
"almost all" polynomials take this number of steps.

2. Upper and Lower Bounds

We define an addition chain as a sequence of
integers 8gs8yyeerdy such that ay = 1 and, for

each i, a; = aj + ay for some j,k < i. If a =n,

the chainiis said to realize the integer n. We

define C{+}(n) to be the length of the shortest

addition chain realizing n. Brauer [1] obtained
the upper bound of |

log n
log log

log n )

log n + g log n

+ o(10

on C (n) and Erdos [4] showed that for most large

{+}

n the lower bound of

log n

log n + log log n .

} n = degree of the polynomial.



is valid.

chains to B-chains as follows:

In the current paper we extend addition

Definition: Let B be a finite set of binary opera-
tions over N. A B-chain is5 a sequence uO,...,am

such that ay = 1 and for each 1 By = uj oa where
jsk < 1 and o is an operation of B.
B-chain is said to realize mn. The length of the
shortest B-chain for n is denoted by CB(n). By

convention, CB(O) and CB(l) are defined as gero.

If o = n, the
m

We shall denote the operations addition, subtrac-
tion, multiplication, division, and exponentiation
by +, -, x, #, + in the current paper, where

ai b= 1%1.
lower bounds are obtained.

For this notation, the following

Theorem 1: For all n,

a) C{+}(n) 2 C{+’_}(n) 2 log n *

b) C(+,_’n’%}(n) > log log n

c) C{+’_’x’%’f}(n) > log (G(n))

where G(n) is the number of times the logarithm of n
must be taken to yield a value less than or equal

to 1.

Proof: 1In each case, it suffices to consider the

largest number achievable in n steps. [

Extensions of Theorem 1 to other basis sets is
possible and fairly standard. For example, if for
all operations o € B there exists k such that, for
all x and y, x 0o y is of order xkyk, then CB(n)
grows asymptotically at least as fast as log log n.

We can also obtain the upber bounds.

Theorem 2: For all n,
o, 43 @) S Cp Ly () S €y ()

log n

< _21ogn
g log n

~ log log n

+ o(10 )

m
Proof: Let n = I Aiai be the expansion of n in
i=0

base a for some a; then n can be found by computing
2,...,a-1,0 and using Horner's rule to evaluate for
n. Thus,

C{+,x}(n) fsa-1+2m=qa -1+ 2[logan].
log n
The choice of a = 3 yields the desired
(log log n)

result. 0O

Next, we study cumulative lower bounds. Rather

* Throughout this paper, all logarithms are base 2.

than consider the complexity of reaching n by a
B-chain, we define as HB(n) the maximum value of
Cn(k) for any k € n. This measure is actually more
natural than CB(n) since CB(n) may fluctuate
greatly. Then we can achieve the surprising result
that HB(n) is asymptotically independent of B if

+,x € B,

Theorem 3: For any choice of B,
2 log n

HB(n) 0(log log n)' %

Proof:
number of B-chains of length < m is

< 1BI™(@-1)1)2. By the definition of Hy(a), we
see that a growth rate asymptotic to

A simple counting argument shows that the

Let hin) = Igiggss—g-and observe that, for all

B, HB(n) = h{n).

3. Complexity Classes on N

The results of the previous section pave the way
for some interesting questions. We observe that
there are constants Kl and Kz such that for each n
CB(n) < th(n) and, for some p < n, CB(p) 2 th(n),
This leads to interesting questions on the com-
plexity classes into which the integers can be
partitioned by B-chains for varied bases B. Before
studying such questions, we make contact with some

results from elementary number theory.

Definition: For A a subset of N such that 0,1¢ A,

the Schnirelmann density d(A) is
da) = inf AR

n21

where A(n) is the number of elements of A less than
A

or equal to n.
i

We observe that d(A) = 1 if and only if A = K
and present the following result on d(A).

Theorem 4: (r-8 Theorem [7])
A
IfC=A+B={a+b| aeA,bec B}, then
d(c) 2 min{1,d(A) + d(B)].
As a corollary to this theorem, we have the result

that if A is any set of positive density them, if

t f(n) = g(n) if there exist constants m,M such that
0<m<M<»with mf(n) < g(n) < Mf(n) for all n.



b 4
r h ] -
¢ is the sum of 3(A) copies of A, C = K. Now we

define complexity classes and prove our hierarchy

results.

Definition: 1f f: ¥ > ¥ is a monotone function,

then CfB, the complexity class of f with respect

to B, is defined as {n ¢ ¥ | Cﬁ(n) < f(n)l}.

We,will not define CfB if £ is not monotone.

log n

log log n’ The

Recall that h(n) is defined as

following lemma yields the hierarchy theorem.

Lemma: 1f + ¢ B, f is monotone, and lim f(n) =0,
. oo h(n)

then d(CfB) = 0.

Proof: Suppose that d(CfB) > 0 and lim ﬁ%:g -0.
- nree

Then, since every integer can be expressed as the
sum of at most r1/d(CfB)1 integers,
Hy(n) 211/4(c®) ¥ (n) for all n, contradicting

theorem 3. [
Thus,

Theorem §: (Hierarchy Theorem)
Suppose that + ¢ B and f and g are monotone
integer-valued functions such that

1) £f(n) > g(n) a.e.

2) lim %%E% = » (i.e. CgB g M and

3) g grows sufficiently fast such that CgB is

n+>e

infinite. Then C,° - ch is infinite.
Proof: It is clear that CgB has zero demnsity since
14
g grows asymptotically more slowly than h. Also,
there is an integer No such that for al@ X 2 NO
1+ g(x) s £(x).

B B
Nl > No such that Nl € Cg and Nl +1¢ C8 . Now,

Furthermore, there is a choice of

CB(Nl +1) <1+ CB(Nl) <1+ g(Nl) s‘f(Nl)

sfm1+1)

and henceeN1 +1ce€ CfB. We may extend this method
to form a sequence {Ni} such that N, > N, and each

N.+1ecB-cB D

i f g

Typical of the applications of this hierarchy

result are

Corollary 1: 1f B, = {+,-,%,%}, then

B e By .

1 (=
c103 log n * c(log log n)G(n) e ¥
B ' B
. = s

C(Tog log mcK@ * ** * C(log 1og m2 ¥ *

By c By
@ /em * S
- "

Corollary 2: 1f B, = {+,-,x,%,%}, then

Bz c c B2 (=4

+ .. ¥ + e
C1og(6(n)) C1082(G(n))
g 2 o S0 S

C
+

¢ = Clog log n

log...log n
B B
2 € 2
Chm) /6 * Chn)
=¥.
These results make contact with some inter-

esting results in number theory.

Faet 1: (Landau [6]})
Every integer can be expressed as the sum of 67 or

fewer primes.

Fact 2: (Waring's problem [7])
For each integer k, there is a number g(k) such
that every integer can be expressed as the sum of

g(k) or fewgr kth powers.
Using these results, we obtain

Corollary 3: ‘for any B, there is an infinite
subsequence {Pi} of the sequence of primes such

that CB(Pi) grows as 0(log Pillog log Pi)'

Corollary 4: TFor any B and each integer k, there
is an infinite sequence {xik} such that CB(xik)
grows as

0(log xik/log log xik) = O(klog xillog(klog xi)).

4. Polynomial Evaluation

The difficulty of polynomial evaluation has been
studied.in a variety of settings. Lately, a number
of authors have focused on finding polynomials that
are difficult to evaluate regardlesé of how much
preconditioning of coefficients is allowed [2,8,10].
The results of these studies are hard to evaluate
polynomials that have extremely large coefficients.
For example, Strassen [10] shows that the evaluation
of 2

P (x) =



requires either d/2 - 2 non-scalar multiplication/
divisions or at least dzllogzd total arithmetics
and that the evaluation of

d [
Pz(x) = L 22 x6
§=0

requires at least vd/(3log d) arithmetics.

terminology of .this paper, however, the computationm,

In the

from a basis of +,-,x,:, of single coefficients of
Pl(x) (respectively Pz(x)) requires d3 (respec-
tively d) operations, and thus the evaluation cost
In this

manner, we shall diverge from the methodology of

is unimportant relative to this cost.

previous studies of polynomial evaluation. We
shall try to find the chain requiring the least
number of operations from a basis B that, starting
from inputs 1 and Xg» generates the value of a
polynomial p(x) at the point Xg- We have chosen
this model because we feel that it addresses some
of the issues- not considered in previous studies of
this problem. A positive result of lower bounds
using this model is that such bounds give lower
bounds on the sizes of séalars that must be used in

previous models. That is, we define

Definition: If p(x) € W(x), then GB(p) is the

length of the shortest sequence G _qseees® (1.e.
the least k) such that @, = 1, @y = X, and, for

1s1isk, @y =a 00 where o € B and j,k < 1i.

h| k

The following theorem is then immediate.

Theorem 6: 8,(p) 2 Cy(p(n)) - Cy(n) for any integer
n.
Proof: 1t is obvious that GB(p) + CB(n) is an upper

bound for CB(p(n)); g

Within our measure, we have the cost for Strassen's

polynomials as
For B = {+,-,x,%},

4 i

1) 65( 2 22 &by 2 dY2
1=0

R
2) 6,( T 22°xhy 2 42/2
1=0

Corollary:

We now wish to ask how hard the hardest poly-
nomials are to evaluate in our complexity measure.
By defining complexity classes of polynomials, we

obtain an extension of a result due to Savage [8]

on the complexity of polynomial evaluation.

Theorem 7: Let DFB = {p e ¥[x] | 6g(pP) < F(deg(p))}
be a complexity class for polynomials and suppose

B
that D.

F
coefficients and + is in B; then F(n) 2 n/log n.

contains all polynomials with 0,1

Proof: Since DFB contains all 0,1 polynomials, we
observe that the set {p(2) | 85(p) S F(deg(p))}
contains all of W. s
g(k) = F(llog kJ) + 1 for integer k and claim that
C = N.
:4
integers k can be written as pk(2) where pk(x) is a

Now, we define
The proof of this follows since any

polynomial with 0,1 coefficients of degree |log kj
and the result of Theorem 6 implies that

Cp(k) = Cp(p (2)) S Cp(2) + 6,(p) S 1+ 8,(p)
< 1+ F(llog k]) = g(k)

for all integers k. Thus, C8 = §. By Theorem 3,
however, g(n) 2 h(n) and hence F(n) 2 n/log n. 0O

The result of this theorem is somewhat
surprising, since we have shown the existence of
polynomials with 0,1 coefficients whose evaluation
by an algorithm using any finite set of basis
operations requires at least O(n/log n) of these
operations. For example, as a corollary to this

theorem, we have

Corollary: Let bl = + and b2,...,br be any set of
binary operations. Then there is a family {qn(x)}

of polynomials with 0,1 coefficients such that the
complexity of evaluating qn(x) by any algorithm using
using the operations b
with 0(n/log n).

1,...,br grows asymptotically

While we have éhown the existence of such a
family, we leave its construction as an open problem.
We can extend this result to a hierarchy result

analogous to Theorem 5.

Theorem 8: (Hierarchy Theorem for Polynomials)
Suppose that {+,x} ¢ B and F and K are functions
such that

1) F(n) > K(n) + 1 a.e.

2) 1im K@,

(1.e. DKB is infinite).

S log n
c
3) lim ;7%é91;-- 0 (.e. D" + ¥x])
e g
then D_5 - D P 1s infinit
e F K e.
" Proof: Define p(x)x and p(x)x+l to be the successors



of p(x). ﬂelaig*yhat for any NO there is a

B
pNo (x) € Dy

N (x) is not in D

-
such that ‘one of the successors of
e

B
G

degree at least No.

and such that #N (x) is of
0

Assume not and consider the

tree T(r(x)) for some r(x) € DKB

r(x)

””,,/—

xzr(x)+1

r(x)x

xzr(x) xzr(x)+x

R
Etthay ouf o¥ite }'mifue‘or_every node of the
4nfinite tree T(r(x)) belongs“-to D §'.‘..If every
node of the tree T(r(x)) is in DKB, then ev&Py node
of the tree T'(r(2)) is in C B

k —
k = K(ilog ny) + 1 and T'(xr(2)) is given by

r(2l\\\\\i
zrgZ)/ 27(2)+1

/
4x(2) \4}(2)+1

where

But the nodes of T'(r(2)) are seen to have positive
density and this contradicts the hypothesis of the
theorem, since if this were true then for some
integer n Cgk = §, contradicting previous results.
Thus, either r(x)x or r(x)x+l is not in DKB, if we
be q(x), then
6B(q(x)) <2+ GB(r(x)) <2+ K(deg(r(x)))

< F(deg(r(x)))
Thus, q(x) € DFB.
argument similar to that used in the proof of

let the successor of r(x) not in D

for large enough No. By an
Theorem 5, we can show that an infinite sequence
of polynomials in DFB - DKB exists. [

The results of Theorem 7 can be extended to
multivariate polynomials and n-linear forms by
applying reducibilities to make these problems
equivalent to single variable polynomial

evaluation.
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A GENERALIZATION AND PROOF OF THE: AANDERAA-ROSENBERG CONJECTURE'

Ronald L. Rivest
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Jean Vuillemin
Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, California 94720

Abstract: We investigate the maximum number
C(P) “of arguments of P that must be tested in
order to compute P, a Boolean function of d
Boolean arguments. We present evidence for the
general conjecture that C(P)=d whenever
P(0d) # P(19) and P is left invariant by a tran-
sitive permutation group acting on the arguments.
A non-constructive argument (not based on the con-
struction of an "oracle") proves the generalized
conjecture for d a prime power. We use this
result to prove the Aanderaa-Rosenberg conjecture
by showing that at least. v?/9 entries of the
adjacency matrix of a V-vertex undirected graph G
must be examined in the worst case to determine if
G has any given non-trivial monotone graph
property.

1. INTRODUCTION

A fundamental problem of computer science is
to determine the relative efficiencies of different
data structures for representing a given problem.
For example, Hopcroft and Tarjan [43 mention that
determining if a v-vertex gragh is planar from its
adjacency matrix requires Q(v?) oper-ations;'r
this should be contrasted with Tarjan's [11] linear
0(v)-time algorithm for planarity based on an adja-
cency-list representation of graphs. Similarly,
Holt and Reingold [3] have shown that
(v+#1)(v-1)/4 inspections of the adjacency matrix
of a directed graph G are required in the worst
case to determine if G contains a directed cycle.

Motivated by these results, Arnold Rosenberg
conjectured [10] that, for ggﬁ_nontrivial graph
property, representing a graph by an adjacency
matrix forces an algorithm which recognizes the
property to make Q?vz) inspections of the matrix
in the worst case. Aanderaa disproved this conjec-
ture by showing that less than 3v inspections
are needed to determine if a directed v-vertex
graph contains a vertex with in-degree v-1 and
out-degree 0 (a "sink"). To revive the conjec-
ture, Aanderaa suggests that the graph properties
should be constrained to be "monotone": If the

+This work was supported by IRIA-Laboria,
78150 Rocquencourt, France, and by National
Science Foundation Grant DCR74-07644-A01.

e use the "omega" notation for lower bounds as
the inverse of the "big-0" notation for upper
bounds: f(v)=0a(v?) means vZ=0(f(v)) or equi-
valently (3¢ >0)(¥v)f(v)>cv2.

property holds for a graph G= (V,E) it must also
hold for all graphs G'=(V,E') such that ECE"'.
This eliminates the "sink" counterexample, and
this paper provides a proof to the:

Aanderaa-Rosenberg Conjecture [10]: In the
worst case, QV’) operations are required to
determine from the adjacency matrixz of a graph G
whether it has a property P which ig (i) nontri-
vial, (ii) monotone, (iii) independent of the
labellings of the vertices, and (iv) independent of
the existence of self-loops (see [6]).

There is in fact no evidence to contradict the
stronger conjecture that each of the v(v-1)/2
entries of the adjacency matrix of an undirected
graph (v(v-1) entries for a directed graph) must
be examined in the worst case. In [1], [55, and
[7], many properties satisfying (i)-(iv) above are
shown to require Q(v2?) operations, and
Kirkpatrick [5] shows that Q(v log,{(v)) opera-
tions are always required, giving support to the
original conjecture. These results are all
obtained by oracle construction techniques, with
the exception of Best, Van Emde Boas, and Lenstra
[1], who independently discovered the approach we

. will use here.

In this paper we present a generalization of
the Aanderaa-Rosenberg Conjecture, prove this
generalized conjecture for Boolean properties hav-
ing a prime-power number of arguments. We use this
result to prove the original Aanderaa-Rosenberg
conjecture.

2. DEFINITIONS

Functions and Vectors

Let P(Xp,...,X % be a Boolean function (pro-
perty) mgpping {0,1? onto {0,1}, denoted

P: {0,139 » {0,1}. We say "P(x) holds" or "x has
property P" iff P(x)=1. Let” 55{ denote”™
xj<yj for 1<i<d, with x, ye 0,114, Let O
(respectively 1)  represent the d-bit vector of™
zeros (respectively ones). We say that P is
monotone if x<y implies P(x)<P(y) for all

X, y in {0,174, The weight "w(x) 'of a vector «x
is the number of ones in x. - -

Permutation Groups

We denote permutations and permutation groups
by lower and upper case Greek letters, respectively.



The symmetric group of all permutations of degree
d is Eenotéa gy Lg. Let |r| denote the order
of agroup I, and T,<T, means that T, is a

subgroup of T,. A permutation group T acting
on the set {1,...,d} 1is transitive if, for each

pair i, j of integers in {T1,...,d}, there is a
permutation oeTl such that o(i)=3j.

If P: {0,1}d » {0,1}, then I'(P) denotes
the stabilizer of P: )

T(P) = {oezy| (Vxe {0,139)P(xy,...,xq)
= P(xo(]),...,xo(d))}

For xe{0,1}d and r<zy Tlet X' represent
the orbit of x wunder the action of T on {0,1}¢:

X = {ye (0,11 (Boer)(Vie (o udhxg = yg 4y

For example, note that yexT'(P) implies that
P(x)=P(y), but not conversely in general.

Graphs .

An undirected graph G= (V,E) consists QY a
vertex set of size v, and a set E C vl

of edges {(V 2) denotes the set of 2-subsets of
V). Thus "multiple edges" and "self-loops" are
specifically excluded. The adJacencg matrix for

G 1is a Boolean vector of le?gs , with one
pgsition for each edge in V\¢J, which is 1 iff
that e is in E. The complete graph K, is
VT e empty graph E, is (V.p).'

Let Z§2) denote the permutation group act-
ing on V(2) induced by the symmetric group Iy
acting on V so that of{i,j})=1{o(i),0(j)} for
eachh i, J %V gsing tranSp?rent)notation. Two
graphs G=(V,E) 'and G'=(V,E') are isomorphic,
writ 551 G=G', if there exists a permutation
oel such that ({i,j}eE) » (o({i,j})eE").

A Boolean function P: {0,1}d » {0,1}, where
d = (¥) 1is a graph property if 232) <r(P). In-
tuitively, this means that P does not depend upon
the labelling of the vertices, or, equivalently
that (G = G') = (P(G) =P(G')). (We use P(G)

tg mgg? P(x), where "x 1is the adjacency matrix
0 ’

Algorithms

We consider "decision-tree" algorithms for
computing P(x). For a given function
P: {0,1}¢ » {0,1}, and an input vector

Xe {0,114, a decision-tree computes P(x) by
successively examining the various components
(coordinates) x; of x. As an example, the
fo1lowing tree determines whether a vector

has exactly two ones:

xe {0,1}

The algorithm is a binary tree T whose internal’
nodes are labelled with the indices i of the X
to be tested. Testing begins with the xj speci-
fied at the root, if it is zero, the algorithm con-
tinues with the xj specified at the root of the
left subtree, otherwise it proceeds to the right.
The leaf which is eventually reached specifies the
value of P for the input vector. Let c(T,x)
denote the number of tests made using T to com-
pute P(x). In our example c(T,000)=2 and
c(T,101)=3. The depth of a leaf is the number of
tests made in order to arrive at that leaf (the
path length from the root).

Let c(T) denote the maximum value of c(T,x)
for any xe{0,1}, and let C(P), the argument
complexity of P, be the minimum value of c(T)
of all trees T which compute P. Thus C(P) is
the minimum number of arguments which must be exa-
mined in the worst-case, independent of the algor-
ithm used. If C(P)=d we say that P is
exhaustive. Note that C(P) is a lower bound on
the time any algorithm recognizing P must take
in the worst case, on any model of machine where
no two operations can take place at the same time.

3. THE ARGUMENT COMPLEXITY OF ARBITRARY FUNCTIONS

Before attacking the Aanderaa-Rosenberg con-
jecture directly, let us step back and try to see
what are the important parts of the problem. The
fact that we are considering graph properties is
not essential to the conjecture: matroid or hyper-
graph properties work as well, Requiring P to be
a graph property only means that TI(P) must
have a "nice" structure.

Considering P, an arbitrary {0,1}d » {0,1}
function, and ignoring for the moment restrictions
on TI'(P), what can we say about . C(P)?

Note that a leaf L at depth k in a tree
T for P 1is reached by exactly those 2d-k
vectors which vary in all possible ways in the d-k
untested positions and which have specified values
in the k tested positions. The value of P for
each of these vectors is the same. If every leaf
LeT has depth less than d, say
ky = Ta¥(depth(L)) <d then 297K
€
[{x € {0,1}d] P(x)=1}|. From this simple observa-
tion, it follows that:

0 must divide

Lemma 1. If |{x| P(x)=1}| <8 odd, then P
must be exhaustive.

Proof. An odd number is not the sum of even
numbers. O

In order to strengt?en this result let
the weight polynomial P'(z) of P be defined
as: .

P](z)‘= wi(P)-z1

05§59
with wi(P) = [{x| (P(x)=1)A(w(x) =)},

o that the coefficient of z! is the number of
vectors x of weight i such that P(x)=1. The

contribution of a leaf L. at depth k specifying
avalue 1 for P is zJI(1+z)d-k, if j



of the k tests on the path to L gave one as an
answer.

Theorem 1. If C(P)<k, then (1+z2)47K
divides PY(z). -

Proof. In the optimal tree T for P, each
leaf L specifﬁiug 1 f?r P contributes a myl-
tiple of (1+z)%"K to P'(z). O

Taking k=d-1 "and, z=1 in Theoreg]
yields Lemma 1, since PI(1) = |{xe {0,1}4]
P(x)=1}|. Theorem 1 also implies that, if

c(P) <d-1, then PI(-1)=0, which means that the
numbers of even- and odd-weight vectors for which
P 1is true, are equal. Using this observation, it
is easy to derive:

Corollary 1. 4ds d-+w, almost all functions
P: {0,1 fg » 10,1} are exhaustive.

Proof. The number of functions P: {0,1}d -
{0,1} having

[{x] P(x) » (w(x) odd)}|
= |{x] P(x) (w(x) even)}| = k

d-1
is (2 K )2, so that we have

Prob(P non-exhaustive)
d
-2 2 2 -2
<2 Z (k)=2
0<k<2
d-1)-1/2 0

d-1

2 (me2
which goes very rapidly to 0 as d-=. O

Since most functions are exhaustive, it seems
reasonable to expect that there are large classes
of functions, such as those for which r(P) has a
nice structure, which are uniformly exhaustive.

4. THE GENERALIZED AANDERAA-ROSENBERG CONJECTURE

The next question to ask ;3: If we restrict
P to be a graph property st <T(P)), what are
the characteristics of 252 that might enable us
to show that P 1is exhaustive?

The most noticeable feature of 232), aside
from the fact that it is a represe?ﬁ?t1on of Iy,
is th?t it acts transitively on V\¢/. Each edge
in v(2) s equivalent to 5can be mapped into)
any other edge, so the testing algorithm has no

way of selecting an initial edge which is prefer-
able for testing to any other edge.

Is it possible that the transitivity of 252)

js sufficient? What can be said about functions P
such that T(P) 1is transitive?
Lemma 2. If T(P) is transitive, then
w(x)« |xT(P)| = db(x) (1)
where b(x) = I{yesz‘(P)l y]=]}|.

Proof. Let M denote the |[xT(P)| by d
matrix whose rows are the vectors in xI'(P). The

left side of (1) counts the number of ones in M
by rows, the right side by columns. By transiti-
vity each column contains b(x) ones, since a per-
mutation of the columns of M by an element
oeT(P) éf equivalent to a permutation of the rows
of M.

Corollary 2. If d= pa for_gome prime P
and integer «, T(P) is transitive,™ .
xe {0,138, x#0, x#1, then p divides |xr(P)].

Proof. Immediate. Note that |OT(P)| =

[Ir(PYT =1 always.
This yields the following resuldi.

Theorem 2. For P: {0,134 > {01} <f T(P)
is transitive, d 1is a prime power and=P{Q)
P(1), then P is exhaustive. e

Proof. Consider evaluating Pl(qj) mod p,
where we calculate the number of vectors x of
even and odd weight for which P(x)=1 on an.orbit
by orbit basis. From Corollary 2 the only orbits
of interest are Or(P) and 1rI(P). Thus P (-1)
=1 mod p, ugless P(1)=1 and p is odd, in
which case P'(-1) = -T mod p. In eithég\Ease{N\
PI(-1)#0 and the result follows by Theorem 1. 0O

Note that P(Q)#P(i) is true whenever P is
a nontrivial monotone function. Examination of
many small cases has led us to the following.

The Generalized Aanderaa-Rosenberg Conjecture.
If P: {0,139 > {0,1} is such that T(P) is transi-
tive and P(Q) #P(1), then P is exhaustive.

By the above remarks the generalized conjecs.
ture implies the original Aanderaa-Rosenberg con-
jecture and Theorem 2 lends support to the general-
jzed conjecture by proving that it holds whenever
d 1is a prime power.

A proof of the generalized conjecture cannot
be obtained by a simple extension of the proof of
Theorem 2, for the reason that if d is composite,‘“h
the sizes of the orbits may be any one of many
sizes. The result is that there exist functions P
satisfying the co?ditions of the generalized con-
jecture having P!'(-1)=0, so that the proof tech-
nique fails. For the record, we note the smallest
such P discovered: Take d=12, and P(x) =
(3ye S)(x>y) where S contains all vectors 3n 3
theé orbits uEdeE the cyc]ii group C12 of (1°0)°,
1702120, (120)4, and (1%0¢)¢. For graphs a
similar situation occurs if P(G) 1is the function:
G is not a subgraph of any of the graphs nm
AMA, or DO::, for 9-vertex graphs. Both of
these funciions are monotonic. Using ad-hoc argu-
ments based upon Theorem 3 below, they can however
be shown to be exhaustive; we know of no counter-
examples to the generalized conjecture.

While there are functions which are exhaustive
and yet have (1%z)|P!(z) (that is, with pl(-1)

= 0),_ the authors do not know of any satisfying
(1+z)2|P (z). This is made relevant by the
following:

Theorem 3. If P: (0,139 (0,1} is a non-
exhaugtipe function with T(P) transitive, then

(1+42)¢|P1(z).



Proof. Let Q(x) be the M8bius inverse of
P(x), so that P(x) = ] Q(x), implying that
0<y<x

ax) = } P(x)(-])w(leﬁﬁ by Mdbius inversion,
Oey<x -
where x®y is component-wise "exclusive-or".
Since P 1s not exhaustive, by Theorem 1 Q(1) =
P1(-1) = 0. By the transitivity of T(P), each of
the restricted functions P;(x) = P(g]xi=0) for
1<i<d must be non-exhauslive, since 1t makes no
difference which argument is tested first. This

implies similarly that Q(17~1019-7) = pl(-1) = 0
for each i. Thus

I Pl
0<x<l .
- 11 e
0<x<l O<y<x
= 1 Wyt
O<y<1
implying the theorem. More generally, if TI(P) is
k-transitive and P 1is not exhaustive then

(1+2)**1 divides P'(z). O

pl(z) =

A proof of the general conjecture might be
obtainable by showing that if P satisfiss the
conditions of_ the conjecture, then (1+z)¢ does
not divide PY(z). Theorem 2 is a very strong con-
dition a function must meet to be non-exhaustive.
Unfortunately we have to date been unable to apply
this result successfully to the general conjecture.

Although Theorem 1 is as we have noted insuf-
ficient to prove the general conjecture, it can be
used to prove interesting subcases, where we
require T(P) to have more structure than merely
be transitive:

Theorem 4. If P: {0,1}d » {0,1} such that
P(0) # P(1) and T(P) is transitive and Abelian,
and deE” (defined below) thenm P, is exhaustive.
The set E is the smallest set of natural numbers
such that 1eE and (neE)(q prime) A (q>2""")

= nqk eE for all natural numbers k.

: Proof. Let d=nqgK.  The group T(P) has a
normal SyTow subgroup qe of order |0]= qk. By
considering the quotient group TI(P)/0, we esta-
blish a 1-1 correspondence between the orbits whose
size is not a multiple of q, and those of a smal-
ler function Q: {0,1}" » {0,1}, satisfying the
hypothesis, thus ol (-1) #0. since PI(-1) =

qQ 5-1) mod q and {QV(-1)|< 2M-1, the conc]*sion
PI(-1)#0 follows from deE, i.e., q> 201, O

The set E contains all prime powers and many
composite numbers (having an arbitrary number of
prime factors) but not all natural numbers; it's
density in the natural numbers is not significantly
greater than that of the primes.

5. THE AANDERAA-ROSENBERG CONJECTURE

We return to the Aanderaa-Rosenberg conjecture
and apply the results of the preceding section to
show that C(P) = @(v2) if P 1is a monotone non-
trivial graph property. While we believe that
c(P) = (g) is always the case, the results of the

preceding sections do not directly apply since (E)
is never a prime power unless v=2 or v=3. We
have to reduce the problem to one we can handle, at
some loss in the strength of results.

It is not difficult to verify that C(P) = (%)
for 2<v<6 by hand; we have also shown this to
be true for v=7, 11, and 13. For the latter
cases it suffices to note that |xI'(P)| = O mod v
unless x represents a graph with cyclic symmetry
(that is, invariant under a cyclic permutation of
the vertices). This Yeduces the calculation of the
possible values of P'(+1) (mod v) to a manageable
task.

When v 1is prime, the remark that |5F(P)|
= 0mod v unless x represents a graph with
cyclic symmetry allows one to state the following

Lemma 3. If v <g prime and P <is a mono-
tone nontrivial graph property on V-vertex graphs
such that P(H,)=1 (where H, is a v-vertex
Hamiltonian circuit), then P 1is exhaustive.

Proof. Calculate P](-]) (méd v). If a non-
empty graph has cyclic symmetry it contains
Hy as a subgraph. Thus P=!(-1) = -1 mod v,
since E, 1is the only orbit with size $ 0 (mod v)
not counted in P!(-1). O

The preceding gives some cases for which
c(pP) = é? To prove the weaker result
that ¢C = Q(vé) we proceed in tw

steps: (1) we show that C(P) = Q(vg) for v a
power of 2, and (2) show that C(P) is more or
less monotone increasing with v.

We say that a graph G is point (resp. line
-symmetric if for any pair of points (resp. lines)
there is an automorphism of G mapping the first
into the second. Let nG denote n disjoint
copies of a graph G, Gy+Gp, the graph consis-
ting of a copy of Gy and a (disjoint) copy of
Gp, and let GyxGp denote the graph Gy +Gp
with every point in Gy Jjoined to every point in
Gp.

Suppose v=2", and let Hi denote 2"k i
(that is, 2N-1 copies of the complete graph on
21 points), so that Hy=E,, H,=K,, and H; is
a subgraph of Hjy; for O0<i<n (denoted
Hj <Hj+1). Since P 1is nontrivial, there is a J
such that P(Hj)= 0 and P(Hj+])= 1. Let J; be

the graph n-1-1y i, SO that H; =J.+J., and
furthermore Hj4p 2 JjxJdj. Thus we hdve
P(Jj+Jj) =0 ané P(Jj x}j) = 1 by monotonicity
of . ’

To show that C(P) 3_v2/4 we will count only
the edges that must be examined in (J;xJ;) -
(J-+Jj , assuming that the algorithm Can determine
"fﬂee of charge" that the input graph contains a
subgraph isomorphic to Jj4-J-. More precisely,
let G=(V,E) denote the unk%m graph (input to
the algorithm), where |V[=2N, V = VyuVy, with
[Vi|=|va] =2 -1, since restricting the possibili-
ties for G can at most decrease C(P) (it can
only "help" the alg 51thm), we consider the 5359
that Gy =(VhEnV¥ ) and Gy = (Vp,ENV3</)
are both iso 5 hic(E? J;. Now P as a function

i ’

of E'=E- -V2 still nontrivial by our



choice of j. Furthermore [E'| = 22M2 45 a
prime power, so we are almost ready to apply Theo-
rem2 to P as a function of E' (call this func-
tion P').

To show that P' must be left invariant by a
transitive permutation group acting on E', we
note that J; is point-symmetric. Thus for any
pair of edgeg e={vy,vp} and e'={vj,v3} in

v(2) —V%z) -Véz) (where vy, vieVy; Vo, vpeVp)
there is an automorphism of Gy carrying vj into

v] and an automorphism of Gp carrying vy into
vz, thus an automorphism of “ 6y xGy carrying e
into e'. is invariant under permuta-

o e'. Sjgce P is ihvar

tloniz}n z\¢l it is invariant under any subgroup
of L}/, and in particular the automorphism group
of E xGy. Thus P asa function of the edges in
(J; X3j) S(J; +35) is left invariant by the tran-
sitive permu ati&n group zv/Z x2¢/2. (Here Zv/Z
(resp. Iy/p) 1is the symmetric group on V
Vo), and’ (o,t){vy,vp} = {o(vy),tlva)} for
vieVy, vaeVp, (0,T) € L oXE 9, 0 €L 0,

TE 20/2') We can then apply Theorem 2 to obtain

(resp.

Theorem 5. If v= 2" and P is a monotone
nontrivigl graph property on V-verter graphs, then
c(P) > ve/4.

It remains to treat the cases where v is not
a power of two. Let C(v) denote the minimum
value of C(P) as P ranges over all nontrivial
monotone properties of v-vertex graphs.

Lemma 4. C(v) 3.min(c(v-1),22k'2), where
2k <v<2 +]. )
Proof. Consider a monotone property P of

v-vertex graphs. Then either
(1) P(K'|+Kv_'|) =1,

(i) P(KyxEy_q) = 0,
(iii) neither of the above.

or

Cases (i) and (ii) directly imply that

C(v) > C(v-1) since the algorithm can obtain
"free™ the information that some vertex is either
jsolated or connected to all other vertices, and
P restricted to the remaining edges is still a
monotone nontrivial graph p{Operty. Case (iii)
implies, using u for 2k=1." that

P(Ev_u+ Ku) =} 0

since (i) fails, P is, monotone, and Ev_ui-Ku <
K]+-Kv_]. Also P(Ev-u xKu) =1, since (ii) fails,
P is monotone, and K, xE, ; <K x E Now we

may apply Theorem 2 directly as in the proof of
Theorem 5, after "giving away" to the algorithm
that the input graph contains a subgraph isomor-
phic to E,_,*K,» and force it to ask for

all the 22k-2 edges 1linking the two copies of

(it is easy to see the transitivity require-
ment is also met for the restricted function).
Thus we have proved by Lemma 4 and
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Thegrem 6. If P ig a montrivial monotone

graph prgperty of v-vertex graphs, then
C(Ps > vé/16

Dan_Kleitman has improved this bound to
c(P) > v¢/9 by pEoving an equivalent of Theorem 5
showing C(P) > v¢/3 for v of the form 3.20
and then modifying Lemma 4 slightly as well.

6. CONCLUSIONS

The technique introduced in this paper is a
new means for establishing the worst-case complex-
ity of Boolean functions, measured in terms of the
number of arguments examined. It is not based on
the construction of oracles, or on information-
theoretic considerations, but rather on a strong
necessary condition for Cc(P) <d to occur. OQur
generalized conjecture states the minimal condi-
tions that we believe necessary to ensure that
¢(P) = d: namely that P(Q) # P(1) and r(P) be
transitive. A proof of our generalized conjecture
in the case that d is a prime power allows-us to
settle the Aanderaa-Rosenberg conjecture in the
affirmative.
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