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Preface

At many colleges and universities it is customary to have two calculus courses.
One course, planned for the majority of the students, treats topics in calculus and
analytic geometry in the usual way, while the other, designed for honor students,
is devoted to a rigorous and sophisticated development of the subject. While it is
true that at the end of the third or fourth semester the honor students have covered
all the material in the regular course (and indeed much more), it is usually the case
that by the end of the first of these semesters the two courses have covered quite
different selections of topics in calculus and analytic geometry. By the end of the
first semester it invariably turns out that some students who are in the honor
group more properly belong in the regular course; moreover, the best of the
students who have been taking the standard material not only have the ability
to master the more penetrating aspects of calculus but are often anxious to do so.

The task of shifting students from one course to the other after only one se-
mester or less becomes rather difficult, and frequently the student who makes the
transfer is penalized. Often even the talented beginner is reluctant to embark on
the honors program: if he does not do well he discovers not only that his grade
has suffered but also that his background is not adequate for him to transfer to
the regular course. A shift in the opposite direction is a problem also. The student
who has done well enough in the regular course to transfer to the honor section
hesitates to do so because he has not studied the same material as those who have
already been doing honors work for a full semester.

This text, together with University Calculus, by Charles B. Morrey, Jr.,* is
designed to solve the problem described above. The topics taken up in this volume
meet the needs of the majority of students taking the customary course (twelve
semester hours) of calculus and analytic geometry at a college or university. This
book leans heavily on the intuitive approach, gives many illustrative examples,
emphasizes physical applications wherever suitable, and has a large selection of
graded exercises. Definitions and theorems are stated with care and proofs of
simple theorems are given in full. It is a companion to Morrey's University
Calculus, which presents the same material (except for the last chapter) in the
same order, but at a level suitable for the honor student. Morrey’s text goes into
the theory in much more detail, has complete proofs of many of the more diflicult
theorems, and in general gives a rigorous, soundly based treatment of calculus
and analytic geometry. If both texts are used, one for the regular group and the
other for the honors group, there should be little difficulty in shifting students back
and forth depending on their ability to absorb rigorous mathematics.

* Reading, Mass.: Addison-Wesley Publishing Co., 1962.
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vi PREFACE

At colleges where there are not enough students to form an honors group or
where it is not the custom to do so, this text could be used, with Morrey’s Uni-
versity Calculus recommended to those students who wish to do outside reading.
Since both books use the same terminology and notation, the good student will be
able to concentrate on mastering the theory. (When an unrelated book is used for
outside reading the student may waste a great deal of time transposing the presenta-
tion into something he understands.)

Chapter 1 discusses inequalities, with emphasis on the solution of inequalities
which contain the absolute-value symbol. Chapters 2 and 3 take up functions,
functional notation, the elements of analytic geometry and, in particular, systems
of linear inequalities in the plane.

Chapter 4, entitled ““Preview of the Calculus,” treats the fundamental notions
of limit, differentiation, and integration in an informal way. This helps meet the
need of many students of physics and engineering who are required to know as
early as possible some of the elementary processes of calculus.

A rather thorough treatment of limits is given in Chapter 5. The definition of
limit is illustrated geometrically, and the theorems on limits and continuity are
stated and discussed.

Chapters 6 and 7 give a traditional development of the differentiation of algebraic
functions and applications to problems of maxima and minima, related rates, and
so forth.

The notion of area (Jordan content) is defined carefully in Chapter 8. This leads
to the definition of integral and the Fundamental Theorem of Calculus. Applica-
tions are made to problems of liquid pressure, work, and so forth.

Chapters 9 and 10 resume the work on analytic geometry which was begun in
Chapter 3. The methods of calculus are here used to great advantage. The amount
of material on conics and related subjects is at least as great as that found in many
texts devoted to analytic geometry alone.

The natural logarithm is defined by the integral and the exponential function is
defined as its inverse. This approach is being used experimentally (and with ap-
parent success) for students in eleventh-grade algebra and trigonometry classes
under the SMSG program.

Vectors in the plane are the subject of Chapter 14 and vectors in space are
treated in Chapter 18. Certain logical difficulties are avoided by defining a vector
as an equivalence class of directed line segments. Furthermore, the discussion of
equivalence classes puts this abstract concept in a natural setting. The material
of these chapters is relatively independent of the rest of the book and could easily
be omitted. On the other hand, for those who wish to introduce vectors early in
calculus. much of Chapter 14 could be inserted after Chapter 6.

Chapter 17 is devoted to solid analytic geometry with coordinates used through-
out. Once the student has mastered this material, the applications using vector
terminology, which appear in Chapter 18, may be attacked with confidence.

The study of infinite series, taken up in Chapter 19. completes the customary
elementary course in the calculus of functions of one variable. Chapters 20 and 21
are devoted to the initial topics in the calculus of functions of several variables.
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Partial differentiation, line integrals and applications are taken up in Chapter 20.
A definition of volume analogous to that given for area is discussed in Chapter 21.
The elements of multiple integration with applications to area, volume, and mass
are treated. In addition there are a number of physical applications to problems
in center of gravity, moment of inertia, and so forth.

The last chapter is devoted to an elementary study of linear algebra. This chap-
ter replaces the unit on differential equations in University Calculus. In recent
years it has become evident that students in all the sciences have an urgent need
for the elements of linear algebra. The presentation here is intended as a beginning
study. Students who require or wish additional material would logically proceed
to a course devoted entirely to linear algebra.

Although the subject of numerical analysis is not discussed, it is not entirely
ignored. There are brief descriptions of the numerical implications of such topics
as evaluation of integrals, computation of maxima and minima, solution of linear
inequalities, etc. The purpose here is to make the student aware of the impact of
digital computers on various branches of analysis. These remarks may be used
as a springboard for a more detailed investigation of numerical analysis.

Berkeley. California M.H.P.
November 1963 C.B.M., Ir.
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CHAPTER 1

Inequalities

1. INEQUALITIES

In elementary algebra and geometry we study equalities almost exclusively.
The solution of linear and quadratic algebraic equations, the congruence of geo-
metric figures, and relationships among various trigonometric functions are topics
concerned with equality. As we progress in the development of mathematical
ideas — especially in that branch of mathematics of which calculus is a part — we
shall see that the study of inequalities is both interesting and useful. An inequality
is involved when we are more concerned with the approximate size of a quantity
than we are with its true value. Since the proofs of some of the most important
theorems in calculus depend on certain approximations, it is essential that we de-
velop a facility for working with inequalities.

We shall be concerned with inequalities among real numbers, and we begin by
recalling some familiar relationships. Given that @ and b are any two real numbers,
the symbol

a<b

means that a is less than b. We may also write the same inequality in the opposite
direction,
b > a,

which is read b is greater than a.

The rules for handling inequalities come from our knowledge of arithmetic and
are only slightly more complicated than the ones we learned in algebra for equal-
ities. However, the differences are so important that we state them as four Rules
of Inequalities, and they must be learned carefully.

I. If a < band b < ¢, then a < ¢. In words: if a is less than b and b is less
than ¢, then a is less than c.

2. If ¢ is any number and a < b, then it is also true that ¢ + ¢ < b + ¢ and
a — ¢ < b — c. Inwords: if the same number is added to or subtracted from
each side of an inequality, the result is an inequality in the same direction.

3.Ifa < band ¢ < dthen a + ¢ < b + d. That is, inequalities in the same
direction may be added. 1t is important to note that in general inequalities
may not be subtracted. For example, 2 < Sand | < 7. We can say, by addi-
tion, that 3 < 12, but note that subtraction would state the absurdity that 1 is
less than —2.
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4. If a < b and c is any positive number,

then ac < bc,

while if ¢ is a negative number,

then ac > bc.

In words: multiplication of both sides of an inequality by the same positive
number preserves the direction, while multiplication by a negative number reverses
the direction of the inequality.

Since dividing an inequality by a number 4 is the same as multiplying it by 1/d,
we see that Rule 4 applies for division as well as for multiplication.

| | | ! 1 | /] L Y C b |

T T T T T T T oY 7 | = -

-3-2-1 0 1 2 3 a b a b
FiGure 1-1 FIGURE 1-2 FIGURE 1-3

From the geometric point of view we associate a horizontal axis with the totality
of real numbers. The origin may be selected at any convenient point, with positive
numbers to the right and negative numbers to the left (Fig. 1-1). For every real
number there will be a corresponding point on the line and, conversely, every
point will represent a real number. Then the inequality a < b could be read:
a is to the left of b. This geometric way of looking at inequalities is frequently of
help in solving problems. It is also helpful to introduce the notion of an interval
of numbers or points. 1f a and b are numbers (as shown in Fig. 1-2), then the
open interval from a to b is the collection of all numbers which are both larger than a
and smaller than . That is, an open interval consists of all numbers between a
and b. A number x is between a and b if both inequalities ¢ < x and x < b are
true. A compact way of writing this is

a < x < b.

The closed interval from a to b consists of all the points between a and b, including
a and b (Fig. 1-3). Suppose a number x is either equal to @ or larger than a, but
we don’t know which. We write this conveniently as x > a, which is read: x is
greater than or equal to a. Similarly, x < b is read: x is less than or equal to b,
and means that x may be either smaller than b or may be b itself. A compact way
of designating a closed interval from a to b is to state that it consists of all points x
such that
a < x <b.

An interval which contains the endpoint » but not a is said to be half-open on the
left. That is, it consists of all points x such that

a < x < b.
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Similarly, an interval containing a but not 4 is called half-open on the right, and
we write
a < x < b.

Parentheses and brackets are used as symbols for intervals in the following way:

(a, b) for the open interval: a < x < b,

[a, b] for the closed interval: a < x < b,

(a, b] for the interval half-open on the left: ¢ < x < b,
[a, b) for the interval half-open on the right: a < x < b.

| ¢
t

0 €

FIGURE 1-4

We can extend the idea of an interval of points to cover some unusual cases.
Suppose we wish to consider a// numbers larger than 7. This may be thought of
as an interval extending to infinity to the right. (See Fig. 1-4.) Of course, infinity
is not a number, but we use the symbol (7, «) to represent all numbers larger
than 7. We could also write: all numbers x such that

T<x< m.

In a similar way, the symbol (— «, 12) will stand for all numbers less than 12.
The double inequality
—z < x <12

is an equivalent way of representing all numbers x less than 12.
The first-degree equation 3x 4+ 7 = 19 has a unique solution, x = 4. The

quadratic equation x?> — x — 2 = 0 has two solutions, x = —1 and x = 2.
The trigonometric equation sin x = % has an infinite number of solutions:
x = 30° 150°, 390° 510° .... The solution of an inequality involving a single

unknown, say x, is the collection of all numbers which make the inequality a true
statement. Sometimes this is called the solution set. For example, the inequality

3x —7< 8

has as its solution a// numbers less than 5. To demonstrate this we argue in the
following way. If x is a number which satisfies the above inequality we can, by
Rule 2, add 7 to both sides of the inequality and obtain a true statement. That is, *

we have
Ix—-—T74+7<8+4+17, or 3x < 15.

Now, dividing both sides by 3 (Rule 4), we obtain
x <5,

and we observe that if' x is a solution, then it is less than 5. Strictly speaking,
however, we have not proved that every number which is less than 5 is a solution.



