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Preface

The volume contains papers based on lectures delivered during the school “Per-
spectives in Control Theory™ held in Sielpia, Poland on September 19-24, 1988.

The aim of the school was to give the state-of-the-art presentation of recent
achievements as well as perspectives in such fields of control theory as optimal
control and optimization, linear systems. and nonlinear systems. AccordinEiy, the
volume includes survey papers together with presentations of some recent results.
The special emphasis is put on: .

— nonlinear systems (algebraic and geometric methods),

— optimal control and optimization (general problems, distributed parameter
systems),

— linear systems (linear-quadratic problem, robust stabilization).

Ay important feature of the school (and consequently of the volume) was its
really “international” character since it brought together leading control theoriests
from West and East. All together the school was attended by 108 participants
from 18 countries. During the school 21 one-hour invited lectures were delivered.

- Moreover, five half-an-hour talks were given and 30 contributions were presented
in frames of poster sessions.

The school was organized and supported by:

— Institute of Mathematics of the Polish Academy of Sciences,

— Committee of Automatic Control and Robotics of the Polish Academy
of Sciences, ‘

— Institute of Automatic Control, Warsaw University of Technology {as Co-
ordinator of the Basic Research Program R.P.I.02 “Theory of Control of
Continuous Dynamic Systems and Discrete Processes”).

The organizing committe consisted of: B. Frelek, B. Jakubczyk, T. Kaczorek,

M. Kociecki, K. Malanowski (vice-chairmnan), M. Niezgddka, A. Olbrot, C. Olech
(chairman), W. Respondek (secretary), A. Sosnowski, A. Wierzbicki.

We would like to thank Ms. M. Wolisiska for her excelent typing of some of the

manuscripts.

B. JAKUBCZYK

K. MALANOWSKI

W. RESPONDEK
Warsaw, August 1989.
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REMARKS ON THE STABILIZABILITY OF
NONLINEAR SYSTEMS BY
SMOOTH FEEDBACK

Dirk Aeyels
Abstract

In this paper we discuss the known result that if a system
is smoothly stabilizable then adding an integrator does not
change this property. For this extended system stabilizing
feedbacks depending on data explicitly available from the
original system are proposed.

1.Introduction

Consider the following system

x = £(x,u)
with £: R"XR --> R® smooth, £(0,0) = 0.
Suppose that this system is smoothly stabilizable, i.e.

there exists a smooth function k:R" --> R such that k(0)=0

and the origin is asymptotically stable for

x = £(x,k(x)) (1)

It is well known that the "extended" systen

% .
"

fix,y)

is also smoothly stabilizable.



The proof of this result is given in [4], where additional
references also containing the proof are given. It will be
repeated in the next section.It will be seen that the
feedback which stabilizes the extended system depends on a
Lyapunov fuction for the stabilized system (1). This
Lyapunov function exists by the inverse Lyapunov theorem
[2], but an explicit expression is in general not available

for implementation.

In this paper we discuss the stabilization of (2) by means
of a procedure independent of the Lyapunov function
corresponding to (1). Thé proposed feedback --although
ensuring local stabiliéyﬁ-does not guarantee global
stability. This will be shown by means of a_counterexample.
However for some classes of nonlinear systems an indication
will be given showing that the proposed feedback is globally
stabilizing. The results concerning the global stabilization
issue are incomplete. They will be the subject of a
forthcoming paper.

2.Stabilization of the extended system

In this section we recall the proof (taken from [1].) that if
the original system (1) 1is smoothly stabilizable, then the
extended system is also smoothly stabilizable .

Assunme that x = f(x,u) is smoothly stabilizable. Let
fo (x) = £(x,k(x))

be the closed-loop system.
By the inverse Lyapunov theorem [2], there exists a
positive definite function V such that Ltoe V(x) < 0 for all

x #0



Since f and k are smooth, there exists a smooth function g
defined on R**! such that €for alli %,z

fix,k(x)+z) = fo (xn)+2g(x,2)

Introduce thegpositive definite function on Rr*1:
Wix,y) := V(x)+ %ly-k(x))?

Take the feedback for (2)

u(x,y) = -y+k(x)+ ki(x).f(x,y)- V(x).g(x,y-k(x))

Take the derivative of W along trajectories of (2) with the
feedback just defined

Then W = VV(x).£(x,y)+(y=k(x)) (y-Vk (x) .%)
= gVI(x).£(x,y)+(y-k(x) (-y+k (x)-VV(x) .g(x,y-k(x))
=PV(x).£(x,y)-(y-k(x))2-(y-k(x)).9Vix)g(x,y-k(x))

Since f(x,y) = f(x,k(x))+(y-k(x))g(x,y-k(x))

W = Leo VIX)-(y-k(x))Z < O

for all nonzero (xX,y). This assures stability.

It 1s remarked that the proposed feedback assures local
stability of the extended system if the original system is
locally stabilizable. It also assures global stability of
the extended system if the original closed loop system is
globally stable.

Notice that the expression for the feedback contains a term
VV(x).g(x,y-k(x)) which depends on a Lyapunov functidn v
for the asymptotically stable system x = f(x,k(x)). This
renders the feedback u(x,y) hard to inplement .



Therefore we consider (3) with the VV term left out ,i.e.
u(x,y) = -y+k(x)+ 7k(x).£f(x,y)

and investigate its stabilizing potential for the extended
system. ®

In fact, under some extra conditions on f(x,u) (e.g. f(x,u)
contains no linear terms in u) it follows rather immediately
by means of the center manifold approach [1l] that the new
feedback stabilizes the extended system. The case f(x,u)
containing no linear terms at all was communicated to me by

Sontag & Sussmann.

We will show in what follows that -< without extra
assumption on £ -- the feedback 1locally stabilizes the
extended system if the original closed 1loop system is

asymptotically stable.
The proof which will be given in section 3 is an application

of the center manifold approach and is rather

straightforward.

3.Local stabilizability

Consider again the system

i = f(x,u)

with £: RUxXR --> Ro.

Let u=k(x) be a smooth stabilizing feedback, 1.e.
x =f(x,k(x))

is asymptotically stable.
Consider the extended system

fix,y)

® .
n

Yy =u (2)



We will show by means of the center manifold approach [1]
that (2) is locally stabilized by

-y+k (x)+ VU k(x).f(x,y)

c
[}

i.e.the system

L}

i f(x,y)

"

Y = -y+k(x)+ Yk (%) .£ (x,y) (3)

is asymptotiéally stable.
We perform a coordinate change:

X unchanged
z = y-k(x)

then (3) becomes

f(x,k(x)+z)

»
[

zZ = -z (4)

We want to show that (4) 1is asymptotically stable in
(x,2z)=(0,0) knowing that

; = f(x,k(x))

-

is asymptotically stable.

Rewrite (4) as

Ax+bz+h(x, z)

%o
]

—z (5)

N
[

with A and b the appropriate Jacobians and h the higher

order terms.



The system

x = Ax+h(x,0) (6)
is stable by assumption.

First, we blockdiagonalize (5) by means of a linear

transformation
X1 = Tx+r.z
z =z

In these coordinates, the system is

X1 = TAT-!xX1+Th(T-'x; -T-!'rz,z)

It is remarked that

X1 = TAT !x3+Th(T-!x;-T-!'rz,z)

with z = 0 is asymptotically stable in X3 = 0 since (6) is
asymptotically stable. il

The matrix T can be taken such that TAT-! consists of two
diagonal blocks A; (with eigenvalues on the imaginary axis)
"and Az (with eigenvalues in the left half plane).

The system (4) is then represented by

X1 = A1 Xi+hi (x1,%2,2)

).(z = Az2Xz +hz (X1 ,X%X2,2)

; = -z (7)
with

}‘(1 = A1 X1 +h: (x1,%x2,0)

Xz = AzXz+hz (X1 ,%z,0) (8)

asymptotically stable.



