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PREFACE

This volume contains a collection of special invited lectures on computational
methods in nonlinear mechanics prepared by specialists from a wide collection of
disciplines. With the exception of Chapter 2, all of these lectures were also
delivered at the International Conference on Computational Methods in Nonlinear
Mechanics held in Austin, Texas, in September 1974, which was held under the
sponsorship of the U. S. National Science Foundation. The original intention of
the meeting, and for collecting this set of lectures, was to bring together in one
place the Tatest results on computational methods for nonlinear problems from a
number of diverse areas in the hope that techniques that had been found successful
in one area mayvhave some impact on problems in other areas. In addition, it was
hoped that the state-of-the-art in certain areas of computational mechanics could
be summarized. I believe that a reader who examines the contents will agree that
both of these objectives have been accomplished.

J. T. Oden
Austin, 1975
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BILATERAL ALGORITHMS AND THEIR APPLICATIONS
W. F. Ames and M. Ginsberg

1.1 Introduction. In this paper, algorithms providing iterative improvable
upper and lower bounds are constructed for certain classes of nonlinear ordinary and
partial differential equations arising in transport phenomena. Developments are based
upon the construction of antitone functional operators which are oscillatory contrac-
tion mappings. Following the mathematical details, which include sketches of con-
vergence and uniqueness proofs, several examples will be presented. Application of
the general results will be made to nonlinear diffusion, non-Newtonian (power law)
boundary layer flow and to diffusion with a generalized radiation condition.

1.2 Preliminary Definition. Let R and R* be partially ordered metr}cspaces
and T be an operator whose domain D < R and range W < R*. Then T is said to be syn-
tone if v < w implies Tv < Tw for every v, w ¢ D and strictly syntone if v < w implies
Tv < Tw. T is.said to be antitone if v < w implies Tv > Tw for every v, w e D. T is
monotone if it is either syntone or antitone.

A bilateral or error bounding algorithm for the solution of an operator
equation produces a sequence of approximate solutions such that the true solution is
bounded between every pair of successive approximations.

1.2.1 Introductory Example. As a motivation for what follows consider the elementary
nonlinear equation ‘

W=yly-2) o y0)=1 (1.1)

the exact solution of which is
y(t) = 2/[1 + exp (-2t)] : (1.2)
Problem (1.1) is convertible to the operator form y = Ty, from which successive ap-

proximations Yn = Ty,.q can be developed, in a variety of ways. If the classical
Picard procedure is employed (1.1) becomes

dy" :
30 = Ve + 2k ¥,(0) =1 (1.3a)

and the integral form is

t
0



As a first alternative a Newton-Picard approximation to (1.1) gives

dy" 5 . g .2 L =
g rely =1y, = 5 Ylhr= (1.4a)

with the associated integral form

t t e
¥, B e_xp[ —Zf (yn_1 - l)ds] f y,zm explizf (y"f-] - ])dr] dsyk 1|
0 i AR 0

(1.4b)

Lastly an approximation which leads to a Bilateral algorithm, as will be subsequently
demonstrated, carries (1.1) into

dyn . > |
CgRE g - 2) . y(0) =1 (1.5a)
with the_integra] form
- t
Y, = exp|- f (y,21' = 2)ds : ~ 120, LT.6b)
0 :

Clearly, (1.3b), (1.4b) and (1.5b) all have the form ¥y = Ty,_q but the properties
and complexities of the operators are vastly different. Since direct comparison is
not the present purpose only the properties of (1.5b) will be briefly examined.

If it is assumed that y,_; <y, then it follows from (1.5b) that '

t t
Y, = exp -f (¥poq = 2)ds | > exp -f (Y = 2)ds | = y,0q
0 0

*

that is Yo 2 Yoni and (1.5b) is antitone. By an analogous argument if it 1s assumed
that y. , >y, then y <y ... From (1.5b) it follows that each iterate is positive.
Thus, beginning with = 0 it follows that ¥y € Y- By application of (1.5b) the .

following inequalities result:

1 YV9<¥ o V3<Y¥p s Y3<Y¥g 5 Y5 SY¥y s et (1.6)



Since i Y3 the following inequalities result:

Yoyl ey ey ST < Vgt VY Yy 2R (1.7)

As a consequence of the foregoing analysis the even subsequence (y2n} is seen to form
a monotonic decreasing sequence of upper bounds to the exact solution. Since it is
bounded below the subsequence has a limit Yg- The odd subsequence {y2n+1} forms a
monotonic increasing sequence of lower bounds to the exact solution. It is bounded
above since every odd term is less than all the even terms. Hence the odd subse-
quence has a limit y,. Upon proof (deleted here) of uniqueness and convergence

to the solution of the original problem a bilateral algorithm has been established.

. Moreover an estimate of the absolute error, at any step of the exact iteration, can
be made from lyn - yn_]l. Further discussion of error analysis wiTl be given sub-
sequently.

The bilateral algorithm (1.5b), for problem (1.1), has been carried out nu-
merically by Ginsberg [1]. Implementation for the computer was accomplished by using
truncated Chebyshev polynomial approximations for the integral of (1.5b). Such ap-
proximations are found in practice to be "close" to minimax approximations. Some of
the results and comparisons with the exact solution (1.2) are shown in Table 1.1.

The convergence is very rapid, requiring two iterates (after ¥p = 0) at x = 0.25 and
four at x = 1.00.

1.3 Literature and Applications. In this section, some literature and ap-
plications are reviewed.

1.3.1 Some Applications. Even though bilateral algorithms have not been readily
available a number of applications appear in the literature. An early application is
due to Weyl [2] (see also Ames [3]) who studied the Blasuius problem

£ 4 fE" =00 5 £(0) = £1(0) =0, F(w) =2 (1.8)

by means of what is now called a bilateral algorithm. Barnov [4] reports that non-
linear differential equations representing flexural and torsional vibration of beams
or buckling of rods often cannot be easily solved either analytically or by existing
numerical methods in such a way that the positional relationship between the approxi-
mate and exact solutions is accurately revealed. A bilateral approach is helpful
here; Baranov has developed such a method for his specific equations. In naval war-
fare problems involving the use of the Lanchester equations, Fabry [5] has defined

a two-sided bounding scheme which offers a means of studying variations of certain
parameters before the equations are solved by some conventidna] (nonbounding) method.



BILATERAL SOLUTION FOR y' = - y(y - 2)

TABLE 1.1

y(0) =1

analytic solution

Tower bound

upper bound

x = 0.25
y = 1.244918662403709
x = 0.50
y = 1.462117157260010
x = 0.75
y = 1.635148952387287
x = 1.00
y = 1.761594155955765

1.193885941790505
1.244302764859383

1.149627182408467
1.452979881956689

0.786591951891501
1.566515566491166
1.632492411677624

0.3028473400060250
1.427162894608360
1.737914377152946
1.760705861515525

" 1.648710209585520

1.249093098984541

2.718291858828761
1.526855263664362

4.481684580133818
1.964470533182715
1.650773795468340

7.389056098930645
2.831261923857015
1.862242176203166
1.766475649019048

NOTE: ~These results are obtained from the program of Ginsberg [1].
The halting criteria consisted of a check every two iterations
which used (n + 1) x 0.5 x 10']5 as a bound on roundoff error

and |
max (la, .15 la |, la
error.

n+1

For each iteration 9 terms (n

Chebyshev ‘expansion.

|) as a bound on the truncation
8) are used in each



Boley [6] has used a bilateral approach for problems of heat conduction in
melting or solidifying slabs; his work can also provide approximations for certain
types of aerodynamic ablation problems. Appl and Hung [7] have applied a two-sided
technique to continuous equilibrium problems such as a fin temperature problem in
which there is internal heat generation. Ispolov and Appl [8] have employed a bilat-
eral method for a problem of self-sustained vibration of an autonomous system. Kahan
[9,10] has developed an ellipsoidal bounding technique which can be applied to the N
body problem. Two-sided bounding methods have also been employed by Weinstein and
Stenger [11] for problems invelving vibrations of cantilever plates or energy levels
in. quantum mechanics. Mann and Wolf [12], Roberts and Mann [13], Padmavally [14].
Friedman [15], Levinson [16] and Keller and Olmstead [17] treat various aspects of
heat conduction with a nonlinear (radiative) boundary condition and associated prob-
lems. A major factor in all of these works is the conversion to an integral equation
Whose solution by successive approximations generates a bilateral: scheme.

1.3.2 General Literature for Initial Value Problems. In this general literature re-
view attention is confined to bilateral techniques which can be employed on initial
value problems. Special attention is paid to procedures which are iteratively im-
provable.

Chaplygin [18,19] and others (see Azbelev [20], Babkin [21,22], and Gendzhoyan
[23]) have worked with differential inequalities which have led to bilateral methods;
however, most of their results apply to very specialized problems. No attempts seem
to have been made to implement any of these techniques for automatic computation.
This is most Tikely the case because these schemes are generally awkward to work with
and their inherent analytical nature is not very amenable to a computer implementation.
Furthermore, most variations of Chaplygin's results require replacement of the origi-
nal problem with two new problems, one with a solution above that of the original
problem and one with a solution below. Thus, any computerized version of such a meth-
od would most ¥ikely require considerably more computational effort than would the
application of a more conventional (nonerror bounding) method to the original problem.

An interval analysis approach developed by Moore [24,25] and associates
(Braun and Moore [26], Kriickeberg [27], and Reiter [28]) produces upper and lower
bounds to the solution of certain restricted classes of scalar and vector first order
initial value problems (as well as for a variety of other numerical analysis problems).
This technique utilizes interval representations of terms in truncated Taylor series
expansions. Unfortuately, the bounds generated by interval analysis tend to increas-
ingly deviate from the exact solution as the computation progresses; thus, they can
become very large unless sufficient backtracking is performed along with the intro-
duction of additional terms in the Taylor series expansions. The process can be very
time consuming for large vector problems. Moore [24] indicates that the inherent na-
ture of his approach will often produce some unduly conservative (large) bounds, re-

gardless of the variations employed in the computer implementation. He suggests that




one possible remedy to this dilemma would be to utilize multiple precision computation.
Regretably, such action could significantly increase the program's execution time
and/or its memory requirements. Some variations of Moore's original method are under
development (e.g. see Kriickeberg [27]) and it is hoped that some of the above-mentioned
difficulties may be overcome. Also future compiler aids as well as microprogramming
and/or hardware assistance may alleviate a significant portion of the computational
overhead costs which have prevented widespread use of interval analysis for complicated
engineering problems.

Interval analysis has stimulated the creation of a new method developed in-
dependently by Kahn [9,10] and Guderley and Keller [29,30]. Whereas the bounds gener-
ated by interval analysis form rectangular parallelpipeds which enclose the exact
solution, the new technique defines an ellipsoid which contains the exact solution.
Preliminary results indicate that ellipsoidal bounds can be more precise and require
less computational effort - (in large vector problems) than their interval analysis
counterparts. The.approach is still in a relatively early stage of development; its
potential usefulness has probably not yet been fully realized.

There have been a few other attempts to create bilateral methods but most
of them seem to apply only to very specific cases and/or are not readily adaptable for
efficient and reliable computer implementation. Bulirsch and Stoer [31] have created
extrapolation techniques which can produce a sequence of monotone upper and lower
bounds to the exact solution of certain initial value problems; however, these bounds
can only serve as good guesses and are not very precise because they are asymptotically
true. Gorbunov and Shakhov [32] have produced modified Runge-Kutta algorithms with
two-sided bounds; each bound requires the evaluation of a separate formula. The
introduction of a significant number of parameters quickly complicates their procedure
if very accurate bounds are desired. Each of their methods offers no iterative improve-
ment, i.e. only one upper-and lTower bound are produced for each x value;;ohe of their
computational results is given in Ginsberg [1]. Fabry's [5] nested bound approach for
Lanchester equations requires the user to specify good initial upper and lower bounds
in order to assure convergence to the true solution. Also two new systems of differen-
tial equations must be solved for each pair of upper and lower bounds, thus decreasing
the feasibility of performing very many iterations. :

_ _ A functional operator approach involving syntone, anitone, and monotone
decomposable operators has been discussed by Collatz [33,34]. Applications by Tal [35]
and Berman and Plemmons [36] have produced bilateral bounds for systems of algebraic
equations. T is a monotone decomposable operator if T = T] + T2 where T is represented
by thg.gnmlof a syntone operator and an antitone operator, respectively, where T1 and
?mguqﬁmms and have the same domain, D. Collatz [34] indicates that if given
aﬁﬁfhﬂ%ié‘9§~[va*'"bl c D where

: V#l = T]vn ¥ Tzwn



Qo2 SN 0

TS Bl LS LP A
y' = f(x,y)
y'= T(y(x)) = (T, + T,) (y(x)) (1.9)

for T] isotone and T2 antitone, then

Vo SVpSVpS e exact solution . . = W Ses . SWy S W, <W

0 0

Collatz does not attempt to establish this method for any large classes of differential
equations. This approach seems worthy of further investigation to determine the
extent of applicability.

Davis and James [37] (see also Ames [3]) have reported on a bilateral algo-
rithm employing an antitone operator for the scalar initial value problem

= yf(x,y)

yl
(1.10)

"

y(x,) = 8>0
where in a range R: X & XS + h for h > 0:
a) The exact solution, y(x), and f(x,y) are strictly positive for x ¢ R
and are bounded for values in R.
b) f(x,y) is a monotonically increasing function of y, i.e. if Yy 5 Yo
then f(x,y]) < f(x,yz). _ »
c) flx.yq) - flx.y,) < Kly; = y,) for constant K > 0.
Then the iterates defined by

X
¥, (x) = Bexp 'A- f flu.y,_1(u)) du:, Y

X

converge to the exact solution, y(x), monotonically from above and below for every
X R,

Yi(x) < yglx) < o v L <ypng(x) <L cy(x) <L L < ypp(x) <Ll < gy (x)
< ¥p(x).

The preliminary example presented in Section 1.2.1 is of this type as is the work of



Weyl [2] yho developed an operator form for the second derivative. A generalization
of the result of Davies and James will be given subsequently.

Two-sided approaches have alsc served as a device for establishing existence
and uniqueness of solutions. In fact the Davies and James [37] approach is primarily
for that purpose. Indeed the works of Mann and Wolf [12], Roberts and Mann [13],
Padmavally [14], Friedman [15], Levinson [16], and Keller and Olmstead [17] provide
Jjust such proofs on the way to establishing other properties for their problems.
Gendzhoyan [23] employed Chaplygin's concepts for his study of existence and uniqhe-
ness of a boundary value problem.

Substantial additional material concerning the literature and a summary of
the methods can be found in Ginsberg [1].

1.4 Generalization of the Weyl-Davies-James Method. Davies and James [37]
observed that a slight modification of Picard's method produces oscillétory convergent
iterates for some scalar differential equations. Their result is a special case of a
theorem presented in Section 1.4.1. Following a sketch of the proof several examples
will be given. The proof employs concepts from fixed point theory. Before proceed-
ing, a few definitions and known results (Rall [38]) are given.

Definition 1.4.1: If z = F(z) for some z belonging to a Banach space Q on which oper-
ator F is defined as an into mapping, then z is said to be a fixed point of the oper-
ator F.

Definition 1.4.2: An operator F defined as an into mapping on a Banach space Q, with
norm || ||, is called a contraction mapping of the closed region ﬁ(yl,r) z {y:|ly-y]H
< r for some r > 0} if there exists a positive number 6, 0 < 6 < 1 such that ||[F(s) -
F(t)|]l =6 ||s - t|| for every s,t ¢ UIy],r).

Theorem 1.1 (Rall [38]) (Contraction Mapping Theorem). Let F be an operator on &
Banac? Space Q, with norm || ||. Suppose F is a contraction mapping of U1y1r) where
r =y llyy = Flyp)ll = vy, Let the sequence {zn} be defined via y .4 = Fly,),
n=1,2,3,... . Then F has a fixed point y* ¢ U(yl,r]) which is also the unique
fixed point of F in U(y],r) to which the sequence {yn} converges and ||y, - y*|| <

n-1

One natural question which arises from examining Theorem 1.1 is the follow-
ing: Is there an upper bound on the distance (measured in the norm of Banach space Q)
that the initial iteration ¥y can be from the fixed point y* and still insure con-
vergence of the sequence of iterates,{yn},to that fixed point? The answer to this
question depends on the region in which the contraction mapping holds. Theorem1.1 dem-
onstrates that ify, can be defined as the center of a closed contraction mapping region
U with radius zry, then it does not matter how far » is from y*. Furthermore, it can
_be shown (Rall [38]) that if the contraction mapping holds for the entire Banach space Q,
+ on of 1_rFm lﬁ] can establish the existence and uniqueness of the
is situation yy can be any point in Q for which F(y,) isdefined.




Thus in selecting ¥y it 1s necessary to have some a priori knowledge of the region in
~ which the contraction mapping holds. Of course, the distance between " and the fixed
point can affect the number of iterations regquired to satisfy a certain convergence
tolerance (the exact extent of this effect is dependent on other specified character-
istics of the operator F).

Since Theorem 1.1 plays a major role in the proof of Theorem 1.2 it will
follow that these observations about the selection of ¥ will also apply to this gen-
eral theorem and to the variations which will be presen}ed later.

1.4.1 A Generalization. Consider the initial value problem

y' =galy) f(x.y) y(xo) = g>0 (1.12)

where g is such that the operator G, defined via
i du
G(u) +C = o (C constant) (1.13)

is a continuous operator on the space of differentiable functions D, G'] exists as a
strictly positive antitone continuous operator on D and (1.12) has a strictly positive
solution y(x), for every x, Xo S X5 X+ hs h > 0. Further suppose f(x,y) has the
following properties:
a) f(x,y) is strictly monotone increasing function of y;
b) 0 < f(x,y) < M for every x, Xg S X s X+ h;
c) f satisfies a weakened kipschitz condition on a closed region about Y
denoted by U(xl,r) = {y: lly - yyll < r, r>0}; thatis f(X.E]) - f(X.EZ)
< K(x) (&) = &) . &) > £, for every &, &, < Uly;.r) < D and for < K(x)
< N, for every x, Xy € X = Xg + h.

Theorem 1.2. Let the preceding assumptions be satisfied. Then there is a
sequence of positive iterates {yn} satisfying

dyn
T = Fly,) flxy, ) (1.14)
Yolxg) = 8>0 (1.15)
where
X
Yo%) = 67! [f fluy,_(u)) du + G(e)] : (1.16)
5.5

Further, the sequence {yn} is such that



10

y](x) < y3(x) /e ™y . 8 yZn-l(x) Lo nand S APTEAE y2n(x) L ETRra y4(x) < yz(x)

for every x in Xg S X < X, + h. The sequence has a limit function y(x) which satisfies
the initial value problem (1.12).

To establish the successive approximation (1.16), Equation (1.12) is rear-
ranged and integrated. Development of the.order relationships amongst the even and
odd iterates follows from the two relations '

<Y, implies T .

n-1 n
(1.17)
Yn-17Yn implies Yn < Ya#d
If it is assumed that Yoot =¥y then
flxoy, 1) < flxy,)
since f is strictly monotonic increasing. Consequently
X X
[ flu,y,_1(u)) du + G(p) < f fu,y, (u)) du + G(g)
0 X
whence
x . X
AR G"[ f flu,y,_1(u)) du + a(s):l > s"[ f Flu.y, (u)) du + G(e)] s
Xg = Xg
since 6! is strictly antitone. The second relation of (1.17) is developed in a sim-

ilar fashion. Let y, = 0. Since 0 < G'](é)'for every £ in D it follows that all
yi» 12 1, defined by (1.16) are positive.

Now G'] must be shown to be a contraction mapping to justify the application
of Theorem 1.1. To this end write (1.16) as

y = G'](yn_‘) X 02 dm=i v i (1.18)

n

where &~ ‘45 defined on

U(y].r) = {y: |y~ y]" ST o isapedr > 0F < DY

Using the weakened Lipschitz condition it then follows by an indirect proof that



