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Preface

Born in the ice-blue waters of the festooned Norwegian coast; amplified (by an
aberration of world currents, for which marine geographers have yet to find a suitable
explanation) along the much grayer range of the Californian Pacific; viewed by some as
a typhoon, by some as a tsunami, and by some as a storm in a teacup — a tidal wave is
reaching the shores of the computing world.

“Object-oriented” is the latest in term, complementing or perhaps even replacing
“structured” as the high-tech version of “good”. As is inevitable in such a case, the
term is used by different people with different meanings; just as inevitable is the well-
known three-step sequence of reactions that meets the introduction of a new
methodological principle: (1) “it’s trivial”; (2) “besides, it won’t work”; (3) “anyway,
that’s how I did it all along”. (The order may vary.)

Let’s make it clear right away, lest the reader think the author takes a half-hearted
approach to his topic: I do not think object-oriented design is a mere fad; I think it is
not trivial (although I shall strive to make it as limpid as I can); I know it works; and I
believe it is not only different from but even, to a certain extent, incompatible with the
software design methods that most people use today — including some of the principles
taught in most programming textbooks. I further believe that object-oriented design has
the potential for significantly improving the quality of software, and that it is here to
stay. Finally, I hope that as the reader progresses through these pages, he will share
some of my excitement about this promising avenue to software design and
implementation.

“Avenue to software design and implementation”. The view of object-oriented
design taken by this book is definitely that of software engineering. Other perspectives
are possible: there has been much interest in applying object-oriented methods to
Artificial Intelligence, graphics or exploratory programming. Although the presentation
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does not exclude these applications, they are not its main emphasis. We study the
object-oriented approach as a set of principles, methods and tools which can be
instrumental in building “production” software of higher quality than is the norm
today.

Object-oriented design is, in its simplest form, based on a seemingly elementary
idea. Computing systems perform certain actions on certain objects; to obtain flexible
and reusable systems, it is better to base the structure of software on the objects than
on the actions.

Once you have said this, you have not really provided a definition, but rather
posed a set of problems: What precisely is an object? How do you find and describe
the objects? How should programs manipulate objects? What are the possible relations
between objects? How does one explore the commonalities that may exist between
various kinds of objects? How do these ideas relate to classical software engineering
concerns such as correctness, ease of use, efficiency?

Answers to these issues rely on an impressive array of techniques for efficiently
producing reusable, extendible and reliable software: inheritance, both in its linear
(single) and multiple forms; dynamic binding and polymorphism; a new view of types
and type checking; genericity; information hiding; use of assertions; programming by
contract; safe exception handling. Efficient implementation techniques have been
developed to allow practical application of these ideas.

In the pages that follow, we shall review the methods and techniques of object-
oriented software construction. Part 1 (chapters 1 to 4) describes the software
engineering issues leading to the object-oriented approach, and the basic concepts of
object-oriented design. Part 2 (chapters 5 to 16) reviews object-oriented techniques in
detail; this part of the book relies on the object-oriented language Eiffel. Part 3
(chapters 17 to 20) looks at the implementation of object-oriented concepts in other
environments: classical, non-object-oriented languages such as Fortran, Pascal and C;
modular but not really object-oriented languages such as Ada and Modula-2; object-
oriented languages other than Eiffel, such as Simula 67 and Smalltalk. Part 3 concludes
with a brief review of current issues such as concurrency and persistency. Part 4
contains a number of appendices, particularly on details of Eiffel.

Eiffel plays an important part in this book and its use deserves a few comments.
Attempts to discuss issues of software design independently of any notation may seem
commendable, but are in fact naive, and bound to yield superficial results. Conversely,
many discussions of what appear to be language problems are in fact discussions of
serious software engineering problems. Object-oriented design is no exception; to
describe it thoroughly, one needs a good notation. For me, Eiffel is that notation, which
I designed because no existing language was up to my expectations. In other words,
Eiffel is used in this book to support the concepts rather than the other way around.
My estimate is that 90% of the material will be useful to readers interested in object-
oriented design, even if they never approach the Eiffel programming environment. The
remaining 10% is mainly concentrated in the appendices and syntactic notes at the end
of each chapter. Part 3 explains how the concepts may be transposed to other
languages.

Some of the chapters of part 2 include a “discussion” section explaining the
design issues encountered during the design of Eiffel, and how they were resolved.
Being the language designer, I felt this was some of the most useful information I
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could try to convey. I hope the reader will see in these discussions not attempts at
self-justification, but candid insights into the process of language design, which holds
much in common with the process of software design. I often wished, when reading
descriptions of well-known programming languages, that the designers had told me not
only what solutions they chose, but why they chose them.

The use of a programming notation should not lead the reader to believe that
object-oriented techniques only cover the implementation phase. Quite to the contrary,
much of this book is about design. Software design is sometimes mistakenly viewed
as an activity totally secluded from actual implementation. A tendency has even arisen
recently to present simple graphical notations, perhaps adequate for expressing designs,
as “design methods” (or better yet, “methodologies”). In reality, design involves the
same intellectual mechanisms and the same intellectual challenges as programming,
only at a higher level of abstraction. Much is to be gained from an approach that
integrates both activities within the same conceptual framework. Eiffel was conceived
with this goal in mind; such language features as deferred classes, information hiding
and assertions address it directly. Several chapters (especially 3, 4, 7, 9, 12 and 14)
specifically discuss issues of high-level design.

Although I take full responsibility for any flaws in this book and the design of
Eiffel, I acknowledge with great pleasure the help received from many people. The
foremost influence has been that of Simula, which introduced most of the concepts
twenty years ago, and had most of them right; Tony Hoare’s remark about Algol 60 —
that it was such an improvement over most of its successors — applies to Simula as
well. The staff of Interactive Software Engineering helped tremendously. Jean-Marc
Nerson contributed numerous insights and implemented some of the tools of the Eiffel
environment; his constant support has been decisive. He and Reynald Bouy, as the first
Eiffel programmers, provided feedback and suggestions at a crucial time. The first
implementation of Eiffel was started by Deniz Yuksel and brought to completion by
Olivier Mallet, Frédéric Lalanne and Hervé Templereau; in this process they came up
with many brilliant insights, regarding not only implementation techniques but the
language itself. Key contributions were also made by Pascal Boosz. The help of Ruth
Freestone and Helen Martin from Prentice-Hall International in bringing the manuscript
to production was much appreciated. I am also indebted to Peter Lohr, W. Rohdewald
and especially David Yost for pointing out a number of errors in the first printing.
Finally, I have given short courses and lectures on the topics of this book on three
continents, and the participants’ questions and comments have considerably enriched
my understanding of the field, as have the many suggestions contributed by the
commercial and academic users of Eiffel.

Santa Barbara B.M.
July 1988
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Syntax notation

The following notation, a simple variant of BNF (Backus-Naur Form), is used in the
syntactical descriptions found at the end of each chapter on Eiffel and in Appendix C.

Language structures are defined as ‘‘constructs’’, whose names start with a capital
letter and are written in normal (roman) font, as Class, Instruction etc. The syntactical
form of the instances of a construct is given by a production of the form:

Construct = Right_hand_side

Every syntactical construct appears on the left-hand side of exactly one
production, except for the lexical constructs (Identifier, etc.) which are defined
separately.

The right-hand side of a production is a sequence of constructs and/or terminals,
where a terminal represents an actual language element (keyword such as class,
operator such as +, etc.). Terminals are written as follows:

e Keywords appear in boldface and stand for themselves, for example class, loop

etc.

e Predefined types, entities or routines such as INTEGER, Result or Create appear

in italic font and stand for themselves.

e Special symbols are enclosed in double quotes, for example ";", ":", etc. The

double quote character is written in simple quotes as '’ (the simple quote

character is written as "’").

Alternative right-hand sides are separated by vertical bars, as in
Type = BOOLEAN | INTEGER | CHARACTER | REAL |

Class_type | Association
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where the first four alternatives are terminals and the last two are references to non-
terminals defined elsewhere.

Two notational simplifications are used in right-hand sides:
e [comp] denotes the optional presence of an optional component comp;

e {Construct § ...} describes sequences of zero or more instances of Construct,
separated from each other, if more than one, by the separator §.

¢ {Construct § ...}* describes sequences of one or more instances of Construct,
separated from each other, if more than one, by the separator §.

Note that special symbols are quoted, so that there is no danger of confusion
between the meta-symbols of this notation, such as [, {, + etc., and corresponding
symbols in the language described, which will appear as "[", "{", "+" etc.

As an example of this notation, the following describes a trivial language with
instructions ‘‘skip’’ and ‘‘goto’’, each instruction being possibly labeled, and separated
from the next by a semicolon.

Warning: this is not the syntax of Eiffel!

Program =  {Instruction ";" ...}
Instruction =  [Label ":"] Simple_instruction
Simple_instruction =  Skip | Goto
Skip = skip
Goto =  goto Label
Label = Identifier
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