Bertrand Meyer
Object-oriented
Software
Construction

C.A.R. HOARE SERIES EDITOR

OBJECT-ORIENTED
SOFTWARE
CONSTRUCTION

Bertrand Meyer

Interactive Software Engineering,

Santa Barbara, California
and

Société des Outils du Logiciel,
Paris

|

PRENTICE HALL
NEW YORK LONDON TORONTO SYDNEY TOKYO

|

Pour Annie, Caroline, Isabelle-Muriel,
Laurent, Raphaél et Sarah

First published 1988 by

Prentice Hall International (UK) Ltd,
66 Wood Lane End, Hemel Hempstead,
Hertfordshire, HP2 4RG

A division of

Simon & Schuster International Group

© 1988 Betrand Meyer

All rights reserved. No part of this publication may be
reproduced. storedin a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior
permission, in writing, from the publisher.

For permission within the United States of America
contact Prentice Hall Inc., Englewood Cliffs, NJ (07632.

Printed and bound in Great Britain at
the University Press, Cambridge.

Library of Congress and British Library Cataloging-in-
Publication Data are available upon application to the

publisher.

345 92919089 88

ISBN 0-13-k29049-3
ISBN 0-13-629031-0 PBK

OBJECT-ORIENTED
SOFTWARE
CONSTRUCTION

Prentice Hall International
Series in Computer Science

C. A. R. Hoare, Series Editor

BACKHOUSE, R. C., Program Construction and Verification

BACKHOUSE, R. C., Syntax of Programming Languages: Theory and practice

DE BAKKER, J. W., Mathematical Theory of Program Correctness

BIRD, R., AND WADLER, P., Introduction to Functional Programming

BJORNER, D., AND JONES, C. B., Formal Specification and Software Development

BORNAT, R., Programming from First Principles

BUSTARD, D., ELDER, J., AND WELSH, J., Concurrent Program Structures

CLARK, K. L., AND MCCABE, F. G., micro-Prolog: Programming in logic

DROMEY, R. G., How to Solve it by Computer

DUNCAN, F., Microprocessor Programming and Software Development

ELDER, J., Construction of Data Processing Software

GOLDSCHLAGER, L., AND LISTER, A., Computer Science: A modern introduction (2nd edn)

HAYES, 1. (ED.), Specification Case Studies

HEHNER,E. C. R., The Logic of Programming

HENDERSON, P., Functional Programming: Application and implementation

HOARE, C. A. R., Communicating Sequential Processes

HOARE, C.A.R., AND SHEPHERDSON, J. C. (EDS), Mathematical Logic and
Programming Languages

INMOS LTD, occam Programming Manual

INMOS LTD, occam 2 Reference Manual

JACKSON, M. A., System Development

JOHNSTON, H., Learning to Program

JONES, C. B., Systematic Software Development using VDM

JONES, G., Programming in occam

JONES, G., Programming in occam 2

JOSEPH, M., PRASAD, V. R., AND NATARAIJAN, N., A Multiprocessor Operating System

LEW, A., Computer Science: A mathematical introduction

MACCALLUM, 1., Pascal for the Apple

MACCALLUM, 1., UCSD Pascal for the IBM PC

MEYER, B., Object-oriented Software Construction

PEYTON JONES, S. L., The Implementation of Functional Programming Languages

POMBERGER, G., Software Engineering and Modula-2

REYNOLDS, J. C., The Craft of Programming

SLOMAN, M., AND KRAMER, J., Distributed Systems and Computer Networks

TENNENT, R. D., Principles of Programming Languages

WATT, D. A., WICHMANN, B. A., AND FINDLAY, W., ADA: Language and methodology

WELSH, J., AND ELDER, J., Introduction to Modula-2

WELSH, J., AND ELDER, J., Introduction to Pascal (2nd edn)

WELSH, J., ELDER, J., AND BUSTARD, D., Sequential Program Structures

WELSH, J., AND HAY, A., A Model Implementation of Standard Pascal

WELSH, J., AND MCKEAG, M., Structured System Programming

WIKSTROM, A., Functional Programming using Standard ML

Preface

Born in the ice-blue waters of the festooned Norwegian coast; amplified (by an
aberration of world currents, for which marine geographers have yet to find a suitable
explanation) along the much grayer range of the Californian Pacific; viewed by some as
a typhoon, by some as a tsunami, and by some as a storm in a teacup — a tidal wave is
reaching the shores of the computing world.

“Object-oriented” is the latest in term, complementing or perhaps even replacing
“structured” as the high-tech version of “good”. As is inevitable in such a case, the
term is used by different people with different meanings; just as inevitable is the well-
known three-step sequence of reactions that meets the introduction of a new
methodological principle: (1) “it’s trivial”; (2) “besides, it won’t work”; (3) “anyway,
that’s how I did it all along”. (The order may vary.)

Let’s make it clear right away, lest the reader think the author takes a half-hearted
approach to his topic: I do not think object-oriented design is a mere fad; I think it is
not trivial (although I shall strive to make it as limpid as I can); I know it works; and I
believe it is not only different from but even, to a certain extent, incompatible with the
software design methods that most people use today — including some of the principles
taught in most programming textbooks. I further believe that object-oriented design has
the potential for significantly improving the quality of software, and that it is here to
stay. Finally, I hope that as the reader progresses through these pages, he will share
some of my excitement about this promising avenue to software design and
implementation.

“Avenue to software design and implementation”. The view of object-oriented
design taken by this book is definitely that of software engineering. Other perspectives
are possible: there has been much interest in applying object-oriented methods to
Artificial Intelligence, graphics or exploratory programming. Although the presentation

xiv PREFACE

does not exclude these applications, they are not its main emphasis. We study the
object-oriented approach as a set of principles, methods and tools which can be
instrumental in building “production” software of higher quality than is the norm
today.

Object-oriented design is, in its simplest form, based on a seemingly elementary
idea. Computing systems perform certain actions on certain objects; to obtain flexible
and reusable systems, it is better to base the structure of software on the objects than
on the actions.

Once you have said this, you have not really provided a definition, but rather
posed a set of problems: What precisely is an object? How do you find and describe
the objects? How should programs manipulate objects? What are the possible relations
between objects? How does one explore the commonalities that may exist between
various kinds of objects? How do these ideas relate to classical software engineering
concerns such as correctness, ease of use, efficiency?

Answers to these issues rely on an impressive array of techniques for efficiently
producing reusable, extendible and reliable software: inheritance, both in its linear
(single) and multiple forms; dynamic binding and polymorphism; a new view of types
and type checking; genericity; information hiding; use of assertions; programming by
contract; safe exception handling. Efficient implementation techniques have been
developed to allow practical application of these ideas.

In the pages that follow, we shall review the methods and techniques of object-
oriented software construction. Part 1 (chapters 1 to 4) describes the software
engineering issues leading to the object-oriented approach, and the basic concepts of
object-oriented design. Part 2 (chapters 5 to 16) reviews object-oriented techniques in
detail; this part of the book relies on the object-oriented language Eiffel. Part 3
(chapters 17 to 20) looks at the implementation of object-oriented concepts in other
environments: classical, non-object-oriented languages such as Fortran, Pascal and C;
modular but not really object-oriented languages such as Ada and Modula-2; object-
oriented languages other than Eiffel, such as Simula 67 and Smalltalk. Part 3 concludes
with a brief review of current issues such as concurrency and persistency. Part 4
contains a number of appendices, particularly on details of Eiffel.

Eiffel plays an important part in this book and its use deserves a few comments.
Attempts to discuss issues of software design independently of any notation may seem
commendable, but are in fact naive, and bound to yield superficial results. Conversely,
many discussions of what appear to be language problems are in fact discussions of
serious software engineering problems. Object-oriented design is no exception; to
describe it thoroughly, one needs a good notation. For me, Eiffel is that notation, which
I designed because no existing language was up to my expectations. In other words,
Eiffel is used in this book to support the concepts rather than the other way around.
My estimate is that 90% of the material will be useful to readers interested in object-
oriented design, even if they never approach the Eiffel programming environment. The
remaining 10% is mainly concentrated in the appendices and syntactic notes at the end
of each chapter. Part 3 explains how the concepts may be transposed to other
languages.

Some of the chapters of part 2 include a “discussion” section explaining the
design issues encountered during the design of Eiffel, and how they were resolved.
Being the language designer, I felt this was some of the most useful information I

PREFACE XV

could try to convey. I hope the reader will see in these discussions not attempts at
self-justification, but candid insights into the process of language design, which holds
much in common with the process of software design. I often wished, when reading
descriptions of well-known programming languages, that the designers had told me not
only what solutions they chose, but why they chose them.

The use of a programming notation should not lead the reader to believe that
object-oriented techniques only cover the implementation phase. Quite to the contrary,
much of this book is about design. Software design is sometimes mistakenly viewed
as an activity totally secluded from actual implementation. A tendency has even arisen
recently to present simple graphical notations, perhaps adequate for expressing designs,
as “design methods” (or better yet, “methodologies”). In reality, design involves the
same intellectual mechanisms and the same intellectual challenges as programming,
only at a higher level of abstraction. Much is to be gained from an approach that
integrates both activities within the same conceptual framework. Eiffel was conceived
with this goal in mind; such language features as deferred classes, information hiding
and assertions address it directly. Several chapters (especially 3, 4, 7, 9, 12 and 14)
specifically discuss issues of high-level design.

Although I take full responsibility for any flaws in this book and the design of
Eiffel, I acknowledge with great pleasure the help received from many people. The
foremost influence has been that of Simula, which introduced most of the concepts
twenty years ago, and had most of them right; Tony Hoare’s remark about Algol 60 —
that it was such an improvement over most of its successors — applies to Simula as
well. The staff of Interactive Software Engineering helped tremendously. Jean-Marc
Nerson contributed numerous insights and implemented some of the tools of the Eiffel
environment; his constant support has been decisive. He and Reynald Bouy, as the first
Eiffel programmers, provided feedback and suggestions at a crucial time. The first
implementation of Eiffel was started by Deniz Yuksel and brought to completion by
Olivier Mallet, Frédéric Lalanne and Hervé Templereau; in this process they came up
with many brilliant insights, regarding not only implementation techniques but the
language itself. Key contributions were also made by Pascal Boosz. The help of Ruth
Freestone and Helen Martin from Prentice-Hall International in bringing the manuscript
to production was much appreciated. I am also indebted to Peter Lohr, W. Rohdewald
and especially David Yost for pointing out a number of errors in the first printing.
Finally, I have given short courses and lectures on the topics of this book on three
continents, and the participants’ questions and comments have considerably enriched
my understanding of the field, as have the many suggestions contributed by the
commercial and academic users of Eiffel.

Santa Barbara B.M.
July 1988

Acknowledgments

Some of the material in appendix B appeared in part in ‘‘Eiffel: Programming for reusability and
extendibility’’, SIGPLAN Notices, 22, 2, February 1987, pp. 85-94.

Some of the material in chapters 3 and 12 appeared in part in ‘‘Reusability: The Case for Object-
Oriented Design’’, IEEE Software, 4, 2, March 1987, pp. 50-64

Some of the material in chapter 19 appeared in part in ‘‘Genericity vs. Inheritance’’, Proc. OOPSLA
Conference, ACM, October 1986; revised version to appear in Journal of Pascal, Ada and Modula-2.
Some of the material in chapter 4 and appendix A appears in part in ‘‘Eiffel: A Language and
Environment for Software Engineering’’, The Journal of Systems and Software, 1988.

Trademarks used in this book: Ada (US Department of Defense); Eiffel (Interactive Software
Engineering, Inc.); Objective-C (Productivity Products International); Simula 67 (Simula AS); Smalltalk
(Xerox); Unix (AT&T Bell Laboratories).

Author’s addresses

Interactive Software Engineering, Inc.
270 Storke Road, Suite 7 Goleta, CA 93117 - USA

Société des Outils du Logiciel
Centre d’Affaires 3 MPP, 4 rue René Barthélémy 92120 Montrouge - France

Syntax notation

The following notation, a simple variant of BNF (Backus-Naur Form), is used in the
syntactical descriptions found at the end of each chapter on Eiffel and in Appendix C.

Language structures are defined as ‘‘constructs’’, whose names start with a capital
letter and are written in normal (roman) font, as Class, Instruction etc. The syntactical
form of the instances of a construct is given by a production of the form:

Construct = Right_hand_side

Every syntactical construct appears on the left-hand side of exactly one
production, except for the lexical constructs (Identifier, etc.) which are defined
separately.

The right-hand side of a production is a sequence of constructs and/or terminals,
where a terminal represents an actual language element (keyword such as class,
operator such as +, etc.). Terminals are written as follows:

e Keywords appear in boldface and stand for themselves, for example class, loop

etc.

e Predefined types, entities or routines such as INTEGER, Result or Create appear

in italic font and stand for themselves.

e Special symbols are enclosed in double quotes, for example ";", ":", etc. The

double quote character is written in simple quotes as '’ (the simple quote

character is written as "’").

Alternative right-hand sides are separated by vertical bars, as in
Type = BOOLEAN | INTEGER | CHARACTER | REAL |

Class_type | Association

xviii SYNTAX NOTATION

where the first four alternatives are terminals and the last two are references to non-
terminals defined elsewhere.

Two notational simplifications are used in right-hand sides:
e [comp] denotes the optional presence of an optional component comp;

e {Construct § ...} describes sequences of zero or more instances of Construct,
separated from each other, if more than one, by the separator §.

¢ {Construct § ...}* describes sequences of one or more instances of Construct,
separated from each other, if more than one, by the separator §.

Note that special symbols are quoted, so that there is no danger of confusion
between the meta-symbols of this notation, such as [, {, + etc., and corresponding
symbols in the language described, which will appear as "[", "{", "+" etc.

As an example of this notation, the following describes a trivial language with
instructions ‘‘skip’’ and ‘‘goto’’, each instruction being possibly labeled, and separated
from the next by a semicolon.

Warning: this is not the syntax of Eiffel!

Program = {Instruction ";" ...}
Instruction = [Label ":"] Simple_instruction
Simple_instruction = Skip | Goto
Skip = skip
Goto = goto Label
Label = Identifier

Contents

Preface
Syntax notation
PART 1 ISSUES AND PRINCIPLES

Chapter 1 Aspects of software quality
1.1 External and internal factors
1.2 External quality factors
1.3 About software maintenance
1.4 The key qualities
1.5 Key concepts
1.6 Bibliographical notes

Chapter 2 Modularity
2.1 Five criteria
2.2 Five principles
2.3 The open-closed principle
2.4 Key concepts
2.5 Bibliographical notes
Exercises

Xvii

O N9 b~ W W

10
10

11
12
18
23
25
26
26

vi CONTENTS

Chapter 3 Approaches to reusability 27
3.1 Repetition in programming 27
3.2 Simple approaches 30
3.3 Five requirements on module structures 31
3.4 Routines 35
3.5 Packages 36
3.6 Overloading and genericity 37
3.7 Key concepts 39
3.8 Bibliographical notes 40

Chapter 4 The road to object-orientedness 41
4.1 Process and data 41
4.2 Functions, data and continuity 42
4.3 The top-down functional approach 43
4.4 Why use the data? ' 49
4.5 Object-oriented design 50
4.6 Finding the objects 51
4.7 Describing objects: abstract data types 52
4.8 A precise definition 59
4.9 Seven steps towards object-based happiness 60
4.10 Key concepts 63
4.11 Bibliographical notes 63
Exercises 64

PART 2 TECHNIQUES OF OBJECT-ORIENTED DESIGN AND

PROGRAMMING 65
Chapter 5 Basic Elements of Eiffel programming 67
5.1 Objects 67
5.2 A first view of classes 71
5.3 Using classes 73
5.4 Routines 79
5.5 Reference and value semantics 86
5.6 From classes to systems 90
5.7 Classes vs. objects 94
5.8 Discussion 94
5.9 Key concepts 101

5.10 Syntactical summary 102

CONTENTS vii

Chapter 6 Genericity 105
6.1 Parameterizing classes 105
6.2 Arrays 108
6.3 Discussion 109
6.4 Key concepts 110
6.5 Syntactical summary 110
6.6 Bibliographical notes 110

Chapter 7 Systematic approaches to program construction 111
7.1 The notion of assertion 112
7.2 Preconditions and postconditions 113
7.3 Contracting for software reliability 115
7.4 Class invariants and class correctness 123
7.5 Some theory 129
7.6 Representation invariants 131
7.7 Side-effects in functions 132
7.8 Other constructs involving assertions 140
7.9 Using assertions 143
7.10 Coping with failure: disciplined exceptions 144
7.11 Discussion 155
7.12 Key concepts 161
7.13 Syntactical summary 162
7.14 Bibliographical notes 163
Exercises 163

Chapter 8 More aspects of Eiffel 165
8.1 Style standards 165
8.2 Lexical conventions 168
8.3 External routines 169
8.4 Argument passing 170
8.5 Instructions 172
8.6 Expressions 176
8.7 Strings 179
8.8 Input and output 180
8.9 Key concepts 181

8.10 Syntactical summary 181

viii CONTENTS

Chapter 9 Designing class interfaces
9.1 Lists and list elements
9.2 Objects as machines
9.3 Dealing with abnormal cases
9.4 Selective exports
9.5 Documenting a class
9.6 Discussion
9.7 Key concepts
9.8 Syntactical summary
9.9 Bibliographical notes
Exercises

Chapter 10 Introduction to inheritance
10.1 Polygons and rectangles
10.2 The meaning of inheritance
10.3 Deferred classes
10.4 Multiple inheritance
10.5 Discussion
10.6 Key concepts
10.7 Syntactical summary
10.8 Bibliographical notes
Exercises

Chapter 11 More about inheritance
11.1 Inheritance and assertions
11.2 Redefinition vs. renaming
11.3 The Eiffel type system
11.4 Declaration by association
11.5 Inheritance and information hiding
11.6 Repeated inheritance
11.7 Key concepts
11.8 Syntactical summary
11.9 Bibliographical note
Exercises

Chapter 12 Object-oriented design: case studies

12.1 Outline of a window system
12.2 Undoing and redoing

12.3 Full-screen entry systems
Exercises

183
184
191
199
203
204
210
214
215
215
215

217
218
228
234
241
250
251
252
253
253

255
255
259
261
266
272
274
279
280
280
280

281
281
285
291
304

CONTENTS ix

Chapter 13 Constants and shared objects 305
13.1 Constants of simple types 306
13.2 Use of constants 306
13.3 Constants of class types 308
13.4 Constants of string type 314
13.5 Discussion 316
13.6 Key concepts 321
13.7 Syntactical summary 321
Exercises 322
13.4 Bibliographical notes 322

Chapter 14 Techniques of object-oriented design 323
14.1 Design philosophy 323
14.2 Finding the classes 326
14.3 Interface techniques 328
14.4 Inheritance techniques 329
14.5 Would you rather buy or inherit? 332
14.6 Bibliographical notes 334
Exercises 334

Chapter 15 Implementation: the Eiffel programming environment 335
15.1 The implementation 335
15.2 Compilation and configuration management 336
15.3 Generating C packages 341
15.4 Performance issues 343
15.5 Other aspects of the environment 345

Chapter 16 Memory management 353
16.1 What happens to objects 353
16.2 The casual approach 358
16.3 Reclaiming memory: the issues 359
16.4 Programmer-controlled deallocation 359
16.5 The self-management approach 360
16.6 Automatic storage management 365
16.7 The Eiffel approach 367
16.8 Key concepts 369
16.9 Bibliographical notes 370

Exercises 370

X CONTENTS

PART 3 APPLYING OBJECT-ORIENTED TECHNIQUES IN OTHER

ENVIRONMENTS 373
Chapter 17 Object-oriented programming in classical languages 375
17.1 Levels of language support 375
17.2 Object-oriented programming in Pascal? 376
17.3 Fortran 376
17.4 Object-oriented programming and C 379
17.5 Bibliographical notes 383
Exercises 383
Chapter 18 Object-oriented programming and Ada 385
18.1 Packages 386
18.2 A stack implementation 386
18.3 Hiding the representation: the private story 390
18.4 Exceptions 392
18.5 Tasks 396
18.6 Key concepts 397
18.7 Bibliographical notes 398
Exercises 398
Chapter 19 Genericity versus inheritance 399
19.1 Genericity 400
19.2 Inheritance 406
19.3 Simulating inheritance with genericity 409
19.4 Simulating genericity with inheritance 410
19.5 Genericity and inheritance in Eiffel 418
19.6 Discussion 420
19.7 Key concepts 421
19.8 Bibliographical notes 421
Exercises 422
Chapter 20 Other object-oriented languages 423
20.1 Simula 423
20.2 Smalltalk ' ' 437
20.3 C extensions 440
20.4 Lisp extensions 442
20.5 Other languages 443
20.6 Bibliographical notes 443

Exercises 444

