WORKSHOPS IN COMPUTING

Series edited by Professor C.J. van Rijsbergen

G. Birtwistle and A. Davis (Eds)

Asynchronous
Digital Circuit
Design

)

? Springer

N £

G. Birtwistle and A. Davis (Eds)

Asynchronous Digital
Circuit Design

Published in collaboration with the
British Computer Society

Springer

London Berlin Heidelberg New York
Paris Tokyo Hong Kong
Barcelona Budapest

Graham Birtwistle, BSc, PhD, DSc
Department of Computer Science,
University of Calgary, 2500 University Drive,
Calgary, Alberta, T2N 1N4, Canada

Alan Davis, BSEE, PhD
Department of Computer Science,
University of Utah, Salt Lake City,
UT 84112, USA

ISBN 3-540-19901-2 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-19901-2 Springer-Verlag New York Berlin Heidelberg

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
Asynchronous digital circuit design / G. Birtwistle and A. Davis. eds.
p. cm. - (Workshops in computing)
Based on a workshop held in Banff, Alberta, August 28-September 3, 1993.
“Published in collaboration with the British Computer Society.”
Includes bibliographical references and index.
ISBN 3-540-19901-2
1. Digital integrated circuits-Design and construction-Data processing.
2. Asynchronous circuits-Design and contruction-Data processing. 3. Computer-
aided design. 1. Birtwistle, G.M. (Graham Mark), 1946—

II. Davies A. (Alan Lynn), 1946~ . III. British Computer Society. IV. Series.
TK7874.65.A88 1995 95-1009
621.39's-dc20 CIP

Apart from any fair dealing for the purposes of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act 1988, this publication
may only be reproduced, stored or transmitted, in any form, or by any means, with the
prior permission in writing of the publishers, or in the case of reprographic reproduction
in accordance with the terms of licences issued by the Copyright Licensing Agency.
Enquiries concerning reproduction outside those terms should be sent to the publishers.

© British Computer Society 1995
Printed in Great Britain

The use of registered names, trademarks etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant laws and
regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of
the information contained in this book and cannot accept any legal responsibility or
liability for any errors or omissions that may be made.

Typesetting: Camera ready by contributors
Printed by Athenaum Press Ltd., Gateshead
34/3830-543210 Printed on acid-free paper

WORKSHOPS IN COMPUTING
Series edited by C. J. van Rijsbergen

Also in this series

Logic Program Synthesis and Transformation
Proceedings of LOPSTR 93, International
Workshop on Logic Program Synthesis and
Transformation, Louvain-la-Neuve, Belgium,
7-9 July 1993

Yves Deville (Ed.)

Database Programming Languages (DBPL-4)
Proceedings of the Fourth International
Workshop on Database Programming Languages
- Object Models and Languages, Manhattan, New
York City, USA, 30 August-1 September 1993
Catriel Beeri, Atsushi Ohori and

Dennis E. Shasha (Eds)

Music Education: An Artificial Intelligence
Approach, Proceedings of a Workshop held as
part of AI-ED 93, World Conference on Artificial
Intelligence in Education, Edinburgh, Scotland,
25 August 1993

Matt Smith, Alan Smaill and

Geraint A. Wiggins (Eds)

Rules in Database Systems

Proceedings of the 1st International Workshop
on Rules in Database Systems, Edinburgh,
Scotland, 30 August-1 September 1993
Norman W. Paton and

M. Howard Williams (Eds)

Semantics of Specification Languages (SoSL)
Proceedings of the International Workshop on
Semantics of Specification Languages, Utrecht,
The Netherlands, 25-27 October 1993

D.]. Andrews, J.F. Groote and

C.A. Middelburg (Eds)

Security for Object- Oriented Systems
Proceedings of the OOPSLA-93 Conference
Workshop on Security for Object-Oriented
Systems, Washington DC, USA,

26 September 1993

B. Thuraisingham, R. Sandhu and

T.C. Ting (Eds)

Functional Programming, Glasgow 1993
Proceedings of the 1993 Glasgow Workshop on
Functional Programming, Ayr, Scotland,

5-7 July 1993

John T. O’Donnell and Kevin Hammond (Eds)

Z User Workshop, Cambridge 1994
Proceedings of the Eighth Z User Meeting,
Cambridge, 29-30 June 1994

].P. Bowen and J.A. Hall (Eds)

6th Refinement Workshop

Proceedings of the 6th Refinement Workshop,
organised by BCS-FACS, London,

5-7 January 1994

David Till (Ed.)

Incompleteness and Uncertainty in Information
Systems

Proceedings of the SOFTEKS Workshop on
Incompleteness and Uncertainty in Information
Systems, Concordia University, Montreal,
Canada, 8-9 October 1993

V.S. Alagar, S. Bergler and F.Q. Dong (Eds)

Rough Sets, Fuzzy Sets and

Knowledge Discovery

Proceedings of the International Workshop on
Rough Sets and Knowledge Discovery
(RSKD’93), Banff, Alberta, Canada,

12-15 October 1993

Wojciech P. Ziarko (Ed.)

Algebra of Communicating Processes
Proceeedings of ACP94, the First Workshop on
the Algebra of Communicating Processes,
Utrecht, The Netherlands,

16-17 May 1994

A. Ponse, C. Verhoef and

S.F.M. van Vlijmen (Eds)

Interfaces to Database Systems (IDS94)
Proceedings of the Second International
Workshop on Interfaces to Database Systems,
Lancaster University, 13-15 July 1994

Pete Sawyer (Ed.)

Persistent Object Systems

Proceedings of the Sixth International Workshop
on Persistent Object Systems,

Tarascon, Provence, France, 5-9 September 1994
Malcolm Atkinson, David Maier and

Véronique Benzaken (Eds)

Functional Programming, Glasgow 1994
Proceedings of the 1994 Glasgow Workshop on
Functional Programming, Ayr, Scotland,

12-14 September 1994

Kevin Hammond, David N. Turner and
Patrick M. Sansom (Eds)

East/West Database Workshop
Proceedings of the Second International
East/West Database Workshop,
Klagenfurt, Austria, 25-28 September 1994
J. Eder and L.A. Kalinichenko (Eds)

continued on back page. ..

Preface

The contents of this book are an expanded and thorough treatment of a
set of presentations made at a workshop held in Banff, Alberta,
28 August - 3 September 1993 by leading practitioners in asynchronous
hardware design. The papers cover a wide range of current practice
from practical design, through silicon compilation, to the applications
of formal specifications.

Jo Ebergen, John Segers and Igor Benko (Waterloo) describe work on
the formal specification of asynchronous circuits in a CSP-like notation
which they then go on to analyze for delay, safety, progress, and
performance issues.

Al Davis (Utah) describes a set of automatic asynchronous design
synthesis tools that were used to implement a large, compact and fast
industrial design (a message passing post-office). These tools have been
integrated into an existing commercial VLSI CAD framework. The tools,
their usage, algorithms, and interfaces are presented.

Kees van Berkel (Philips) and Martin Rem (Eindhoven) view VLSI
design as a programming activity using the CSP-based programming
language Tangram. They show how Tangram descriptions can be
compiled into handshake circuits and thence into layout.

Steve Furber (Manchester) describes and motivates the design of a
working asynchronous implementation of the ARM microprocessor
developed at Manchester University. The design is based upon
Sutherland’s micropipelines. The architecture is described in detail and
an evaluation of the first silicon is presented.

The collection is rounded out by a paper by Steven Nowick (Columbia)
and Al Davis which gives a state-of-the-art survey of asynchronous
hardware design. This paper was not presented at the workshop.

Alain Martin (CalTech) also lectured at the workshop but was
precluded from contributing to this volume by pressures of work.

The workshop was held at the Banff Conference Center and ran, as
ever, as though by clockwork. It is a pleasure to record our thanks to
their well-organised, and ever helpful and friendly staff.

Graham Birtwistle Al Davis
Calgary Utah

Published in 1990-92

Al and Cognitive Science 89, Dublin City
University, Eire, 14-15 September 1989
Alan F. Smeaton and Gabriel McDermott (Eds)

Specification and Verification of Concurrent
Systems, University of Stirling, Scotland,

6-8 July 1988

C. Rattray (Ed.)

Semantics for Concurrency, Proceedings of the
International BCS-FACS Workshop, Sponsored
by Logic for IT (S.E.R.C.), University of
Leicester, UK, 23-25 July 1990

M. Z. Kwiatkowska, M. W. Shields and

R. M. Thomas (Eds)

Functional Programming, Glasgow 1989
Proceedings of the 1989 Glasgow Workshop,
Fraserburgh, Scotland, 21-23 August 1989
Kei Davis and John Hughes (Eds)

Persistent Object Systems, Proceedings of the
Third International Workshop, Newcastle,
Australia, 10-13 January 1989

John Rosenberg and David Koch (Eds)

Z User Workshop, Oxford 1989, Proceedings of
the Fourth Annual Z User Meeting, Oxford,

15 December 1989

]. E. Nicholls (Ed.)

Formal Methods for Trustworthy Computer
Systems (FM89), Halifax, Canada,

23-27 July 1989

Dan Craigen {Editor) and Karen Summerskill
(Assistant Editor)

Security and Persistence, Proceedings of the
International Workshop on Computer
Architectures to Support Security and
Persistence of Information, Bremen, West
Germany, 8-11 May 1990

John Rosenberg and J. Leslie Keedy (Eds)

Women into Computing: Selected Papers
1988-1990
Gillian Lovegrove and Barbara Segal (Eds)

3rd Refinement Workshop (organised by
BCS-FACS, and sponsored by IBM UK
Laboratories, Hursley Park and the
Programming Research Group, University of
Oxford), Hursley Park, 9-11 January 1990
Carroll Morgan and J. C. P. Woodcock (Eds)

Designing Correct Circuits, Workshop jointly
organised by the Universities of Oxford and
Glasgow, Oxford, 26-28 September 1990
Geraint Jones and Mary Sheeran (Eds)

Functional Programming, Glasgow 1990
Proceedings of the 1990 Glasgow Workshop on
Functional Programming, Ullapool, Scotland,
13-15 August 1990

Simon L. Peyton Jones, Graham Hutton and
Carsten Kehler Holst (Eds)

4th Refinement Workshop, Proceedings of the
4th Refinement Workshop, organised by BCS-
FACS, Cambridge, 9-11 January 1991

Joseph M. Morris and Roger C. Shaw (Eds)

Al and Cognitive Science 90, University of
Ulster at Jordanstown, 20-21 September 1990
Michael F. McTear and Norman Creaney (Eds)

Software Re-use, Utrecht 1989, Proceedings of
the Software Re-use Workshop, Utrecht,

The Netherlands, 23-24 November 1989
Liesbeth Dusink and Patrick Hall (Eds)

Z User Workshop, 1990, Proceedings of the Fifth
Annual Z User Meeting, Oxford,

17-18 December 1990

].E. Nicholls (Ed.)

IV Higher Order Workshop, Banff 1990
Proceedings of the IV Higher Order Workshop,
Banff, Alberta, Canada, 10-14 September 1990
Graham Birtwistle (Ed.)

ALPUKags, Proceedings of the 3rd UK
Annual Conference on Logic Programming,
Edinburgh, 10-12 April 1991

Geraint A.Wiggins, Chris Mellish and
Tim Duncan (Eds)

Specifications of Database Systems
International Workshop on Specifications of
Database Systems, Glasgow, 3-5 July 1991
David J. Harper and Moira C. Norrie (Eds)

7th UK Computer and Telecommunications
Performance Engineering Workshop
Edinburgh, 22-23 July 1991

]. Hillston, P.J.B. King and R.]. Pooley (Eds)

Logic Program Synthesis and Transformation
Proceedings of LOPSTR 91, International
Workshop on Logic Program Synthesis and
Transformation, University of Manchester,
4-5 July 1991

T.P. Clement and K.-K. Lau (Eds)

Declarative Programming, Sasbachwalden 1991
PHOENIX Seminar and Workshop on Declarative
Programming, Sasbachwalden, Black Forest,
Germany, 18-22 November 1991

John Darlington and Roland Dietrich (Eds)

Building Interactive Systems:
Architectures and Tools
Philip Gray and Roger Took (Eds)

Functional Programming, Glasgow 1991
Proceedings of the 1991 Glasgow Workshop on
Functional Programming, Portree, Isle of Skye,
12-14 August 1991

Rogardt Heldal, Carsten Kehler Holst and
Philip Wadler (Eds)

Object Orientation in Z
Susan Stepney, Rosalind Barden and
David Cooper (Eds)

Code Generation - Concepts, Tools, Techniques
Proceedings of the International Workshop on
Code Generation, Dagstuhl, Germany,

20-24 May 1991

Robert Giegerich and Susan L. Graham (Eds)

Z User Workshop, York 1991, Proceedings of the
Sixth Annual Z User Meeting, York,

16-17 December 1991

J.E. Nicholls (Ed.)

Formal Aspects of Measurement

Proceedings of the BCS-FACS Workshop on
Formal Aspects of Measurement, South Bank
University, London, 5 May 1991

Tim Denvir, Ros Herman and R.W. Whntty (Eds)

Al and Cognitive Science ’91 University College,
Cork, 19-20 September 1991
Humphrey Sorensen (Ed.)

5th Refinement Workshop, Proceedings of the sth
Refinement Workshop, organised by BCS-FACS,
London, 8-10 January 1992

Cliff B. Jones, Roger C. Shaw and

Tim Denvir (Eds)

Algebraic Methodology and Software Technology
(AMAST’91)

Proceedings of the Second International
Conference on Algebraic Methodology and
Software Technology, Iowa City, USA,

22-25 May 1991

M. Nivat, C. Rattray, T. Rus and G. Scollo (Eds)

ALPUK92, Proceedings of the 4th UK
Conference on Logic Programming,
London, 30 March-1 April 1992
Krysia Broda (Ed.)

Logic Program Synthesis and Transformation
Proceedings of LOPSTR 92, International
Workshop on Logic Program Synthesis and
Transformation, University of Manchester,
2-3 July 1992

Kung-Kiu Lau and Tim Clement (Eds)
NAPAW 92, Proceedings of the First North
American Process Algebra Workshop, Stony
Brook, New York, USA, 28 August 1992

S. Purushothaman and Amy Zwarico (Eds)

First International Workshop on Larch
Proceedings of the First International Workshop
on Larch, Dedham, Massachusetts, USA,

13-15 July 1992

Ursula Martin and Jeannette M. Wing (Eds)

Persistent Object Systems

Proceedings of the Fifth International Workshop
on Persistent Object Systems, San Miniato (Pisa),
Italy, 1-4 September 1992

Antonio Albano and Ron Morrison (Eds)

Formal Methods in Databases and Software
Engineering, Proceedings of the Workshop on
Formal Methods in Databases and Software
Engineering, Montreal, Canada, 15-16 May 1992
V.S. Alagar, Laks V.S. Lakshmanan and

F. Sadri (Eds)

Modelling Database Dynamics

Selected Papers from the Fourth International
Workshop on Foundations of Models and
Languages for Data and Objects,

Volkse, Germany, 19-22 October 1992

Udo W. Lipeck and Bernhard Thalheim (Eds)

14th Information Retrieval Colloquium
Proceedings of the BCS 14th Information
Retrieval Colloquium, University of Lancaster,
13-14 April 1992

Tony McEnery and Chris Paice (Eds)

Functional Programming, Glasgow 1992
Proceedings of the 1992 Glasgow Workshop on
Functional Programming, Ayr, Scotland,

6-8 July 1992

John Launchbury and Patrick Sansom (Eds)

Z User Workshop, London 1992
Proceedings of the Seventh Annual Z User
Meeting, London, 14-15 December 1992
J.P. Bowen and J.E. Nicholls (Eds)

Interfaces to Database Systems (IDSg2)
Proceedings of the First International Workshop
on Interfaces to Database Systems,

Glasgow, 1-3 July 1992

Richard Cooper (Ed.)

Al and Cognitive Science 92
University of Limerick, 10-11 September 1992
Kevin Ryan and Richard F.E. Sutcliffe (Eds)

Theory and Formal Methods 1993

Proceedings of the First Imperial College
Department of Computing Workshop on Theory
and Formal Methods, Isle of Thorns Conference
Centre, Chelwood Gate, Sussex, UK,

29-31 March 1993

Geoffrey Burn, Simon Gay and Mark Ryan (Eds)

Algebraic Methodology and Software
Technology (AMAST 93)

Proceedings of the Third International
Conference on Algebraic Methodology and
Software Technology, University of Twente,
Enschede, The Netherlands, 21-25 June 1993

M. Nivat, C. Rattray, T. Rus and G. Scollo (Eds)

Contents

Asynchronous Circuit Design: Motivation, Background and
Methods
A. Davis and S.M. Nowick

Parallel Program and Asynchronous Circuit Design
J.C. Ebergen,]. Segers and I. Benko

Synthesizing Asynchronous Circuits: Practice and Experience
A. Davis

VLSI Programming of Asynchronous Circuits for Low Power
K. van Berkel and M. Rem

Computing Without Clocks: Micropipelining the ARM
Processor
S. Furber

Author Index

50

104

151

211

263

. Asynchronous Circuit Design:
Motivation, Background, & Methods

Al Davis

Department of Computer Science, University of Utah
Salt Lake City, UT 84112, USA

Steven M. Nowick

Department of Computer Science, Columbia University
New York, NY 10027, USA

Abstract

The purpose of this book is to present a current view of the state of the
art for the field of asynchronous circuit design and analysis which was
the topic of a workshop in Banff in the fall of 1993. Asynchronous cir-
cuits have been studied in one form or another since the early 1950’s [64]
when the focus was primarily on mechanical relay circuits and when the
differences between the asynchronous and clocked circuit design styles
were somewhat indistinct. A number of theoretical issues were studied
in detail by Muller and Bartky as early as 1956 [92]. Since then, the
field of asynchronous circuits has gone through a number of high-interest
cycles. In the last 5 years there has been an unprecedented level of inter-
est in both academic and industrial settings [56]. This historical trend
continues today with the majority of the current research effort focused
more on theory than on practice. Nonetheless, the advance of practical
asynchronous circuit design techniques also has an unusual level of inter-
est. The work presented at the Banff workshop was concerned more with
practice than theory and provided a reasonable coverage of the current
approaches to asynchronous circuit design. Similarly this chapter will
primarily focus on practical design issues. Prior to introducing the four
chapters which follow, we present an introduction to the basic concepts
and motivations behind asynchronous circuit design. This will hopefully
enable those not already familiar with asynchronous circuit design to
better understand the subsequent chapters.

1 Motivation and Basic Concepts

Circuit design styles can be classified into two major categories, namely syn-
chronous and asynchronous. It is worthwhile to note that neither is indepen-
dent of the other and that there are many designs that have been produced
using a hybrid design style which mixes aspects of both categories. There is
also considerable debate within the asynchronous circuit community as to what
constitutes a pure asynchronous circuit. It may be difficult to understand the
motivation for asynchronous circuit techniques when the bulk of commercial
practice and considerable experience, artifact, and momentum exists for the
synchronous circuit design style. For some, the motivation to pursue the study
of asynchronous circuits is based on the simple fact that they are different.
Others find that asynchronous circuits have a particular modular elegance that

2

is amenable to theoretical analysis. However, for those interested in the prac-
tical aspects of asynchronous circuit design, the motivation often comes from
some concern with the basic nature of synchronous circuits.

Of common concern are the cost issues associated with the global, periodic,
and common clock that is the temporal basis for all purely synchronous circuits.
The fized clock period of synchronous circuits is chosen as a result of worst-
case timing analysis. It is not adaptive and therefore does not take advantage
of average- or even best-case computational situations. Asynchronous circuit
proponents view this as an opportunity to achieve increased performance since
asynchronous methods are inherently adaptive. Arithmetic circuits are a good
example in this regard. Arithmetic circuit performance is typically dominated
by the propagation delay of carry or borrow signals. The worst-case prop-
agation situation rarely occurs, yet synchronous arithmetic circuits must be
clocked in a manner that accommodates this rare worst-case condition. Some
asynchronous circuit designers have made the mistake of generalizing this obser-
vation into a view that the inherent adaptivity of asynchronous circuits implies
that they are capable of achieving higher performance in general, but this is
not necessarily the case.

All asynchronous circuits have additional operational constraints when com-
pared to their synchronous counterparts. All forms of asynchronous circuits
are concerned with providing hazard or glitch free outputs under some tim-
ing model. In order to achieve this behavior, the asynchronous circuit will
often contain more gates than a functionally equivalent synchronous circuit.
Therefore in terms of the number of basic components, asynchronous circuits
are often somewhat larger than synchronous circuits. More gates implies more
wires, and this often results in slower rather than faster circuit latencies. Fur-
thermore in order to achieve their inherently adaptive nature, asynchronous
circuits must generate their own control signals such as a request and an ac-
knowledge signal. The acknowledge signal indicates completion of a previously
requested action. In synchronous circuits much of this type of control signaling
is implicit in the common clock signal. The generation of these additional con-
trol signals further exacerbates the complexity of asynchronous circuits, and
may lead to a further performance degradation.

The adaptive potential remains where the worst-case situation is rare and
when the difference between the worst-case and average-case latencies is sig-
nificant. However, synchronous circuit designers are also well aware of this
situation and take considerable care to create a clock model and circuit struc-
ture that can take advantage of these differences. The most notable example of
this tactic is in the finely-grained pipeline structures of modern floating point
units. Yet, for very large circuits, such as microprocessors, balancing all the
timing constraints of a large computational space so that there is little dif-
ference between the worst and average case timing models is a difficult task.
The work by Mark Dean on the STRiP processor [39] provides an interesting
example. Dean showed that even a well-balanced and well-designed processor
such as the MIPS-X CPU could be sped up if the instruction set were split
into three classes, and the clock period adjusted appropriately to match the

temporal needs of each class.

Dean also demonstrated that an even greater performance enhancement
could be achieved due to the tighter margins which are possible with adaptive
clocking. Synchronous systems usually rely on an externally-generated clock
signal which is distributed as the common timing reference to all of the sys-
tem components. The speed at which integrated circuits operate varies with
the circuit fabrication process, and fluctuations in operating temperature and
supply voltage. In order to achieve a reasonable shield against these variables,
the clock period is extended by a certain margin. In current practice, these
margins are often 100% or more for high-speed systems. Adaptive clocking
cannot be generated externally, and therefore must be provided internally to
each device. The fact that the clock generator is affected by the same process,
temperature, and supply variations as the rest of the chip permits the safety
margin to be reduced significantly.

Clock distribution is becoming an increasingly costly component of large
modern designs. Today’s microprocessors contain over two million transistors
and their clock rates are around 200 MHz. The clock period is determined by
adding the worst case propagation delay, the margin, and the maximum clock
skew. Clock skew is simply the maximum difference in the clock arrival as
seen by all clocked points in the circuit. The latency of the clock pulse to the
reception points is not a concern. With today’s large VLSI circuits exceeding
15 mm per side, several nanoseconds of skew is easily possible. However with
a 5 nanosecond clock period, several nanoseconds of skew is a disaster. Clock
distribution and deskewing methods are abundant but they share the common
characteristic of being extremely expensive. A common method is to distribute
the clock via a balanced H-tree configuration [6] with amplifying buffers placed
at the fanout points. The problem with this approach is that as more buffers
are added to a clock path, larger skew results. The designers of the DEC
Alpha CPU [119] took the opposite approach. The Alpha contains 1.68 million
transistors and is fabricated in a .75 micron, 3.3 volt CMOS process. Even
with three layers of metal, the chip is 16.8 mm by 13.9 mm. In order to keep
clock skew to within 300 picoseconds, the Alpha’s designers localized the clock
buffering to minimize process induced variations and therefore the skew induced
by the buffers. Details of the method can be found in [45] but the result is a
clock driver circuit that occupies about 10% of the chip area, and consumes
over 40% of the 30 watts of power dissipated by the chip. 19 mm? of area and
over 12 watts of power is a very high price to pay for keeping the skew under
control. Clearly this technique will be difficult to extend to a domain where
circuit speeds and transistor counts double.

A similar skew problem exists for circuit boards as well as chips. The
literature contains an abundance of methods for deskewing clocks (2, 26] on a
board but most of them are costly in either area or complexity, and some will
probably not be robust enough for use in commercial circuits. An interesting
example is the Monarch [110] processor chip which used active signal selection
on each input pad. In this instance, a five slot delay line was used to skew signals
to match the clock skew. The appropriate tap in the delay line was selected

4

based on analyzing the clock vs. the incoming signal. While the technique did
work, its cost and complexity are probably more instructive in a pathological
sense. The bottom line is that clock management is a difficult problem and
solving it in today’s high-speed, highly complex designs is costly. Asynchronous
circuit proponents advocate a simple solution, namely throw away the whole
concept of a global clock. This is not a free solution since global absolute
timing must be replaced with the relative and sequential mechanisms which lie
at the heart of asynchronous circuit signaling protocols. Chuck Seitz wrote an
excellent introduction to this general topic in his chapter on System Timing
in the classic VLSI book by Mead and Conway [85]. The next section of this
treatise presents some of the more commonly used protocols and terminology.

Another common motivation for pursuing the asynchronous circuit option
is the quest for low-power circuit operation. The consumer market’s hunger for
powerful yet portable digital systems which run on lightweight battery packs
is growing at a rapid rate. Hence there is a strong commercial interest in
low-power design methods which extend the operational life of a particular
battery technology. CMOS circuits have a particular appeal since they consume
negligible power when they are idle. This would not be true however if the
clock of a synchronous circuit were to continue running. Therefore, low power
synchronous circuits usually involve some method of shutting down the clock to
most of the system. The exception is the subcomponent that must monitor the
environment for the next call to action. However these techniques often result
in increased clock skew problems. Asynchronous circuits have the advantage
that they go into idle mode for free since, by nature, when there is nothing to
do there are no transitions on any wire in the circuit. Another advantage is
that even for an active system, only the subsystems that are required for the
computation at hand will dissipate any power. Researchers such as Kees van
Berkel [133] and Steve Furber [51] are pursuing asynchronous circuit designs
where they attempt to exploit this feature.

The final motivation is based on the inherent ease of composing asyn-
chronous subsystems into larger asynchronous systems. While there is still
room for doubt about whether asynchronous circuits can achieve their poten-
tial advantages in terms of higher performance or lower power operation than
synchronous circuits, there is little doubt that asynchronous circuits do have
a definite advantage with respect to composability. Asynchronous circuits are
functional modules in that they contain both their timing and data require-
ments ezplicitly in their interfaces. In a sense they “keep time for themselves”,
hence the term self-timed circuits. Synchronous circuit modules contain only
data requirements in their interfaces and share the clock. However, impor-
tant temporal issues such as when data must be valid to avoid set-up and hold
time violations between modules are implicit at best. Composing asynchronous
modules is almost trivial. If the interfaces match and observe the same signal-
ing protocol then they can simply be connected. More detailed knowledge of
module internals is required before synchronous subsystems can be connected.

The problem of combining synchronous systems is exacerbated when each
module has a separate clock, each running at a different frequency. The effects

5

of this problem are numerous and usually involve some variant of metastabil-
ity failure [25]. It is commonly accepted, although not definitively proven to
the authors’ knowledge, that it is impossible to build a perfect synchronizer.
Many of the subsystems in today’s computers run on clocks which are not syn-
chronized with the CPU. A good example is the I/O subsystem. In this case,
techniques must be used which trade increased latency for more reliable syn-
chronization. The reliability is adjusted to meet the MTBF (Mean Time Before
Failure) requirements of the system, and the resulting decreased performance
is simply viewed as the price that must be paid for the required reliability.

The ease of composing asynchronous subsystems is a tremendous advantage.
It allows components from previous designs to be reused, it permits modifica-
tion of slower components to permit incremental performance improvements
without impacting the overall design, and facilitates behavioral analysis by for-
mal methods. However, asynchronous circuits are presently not the mainstay
of commercial practice. The definite advantage of composability is not a strong
enough factor to counter the significant synchronous circuit momentum, and
the promises of improved performance and decreased power consumption re-
main to be generally realized. There is also a clear gap in the quality of the
design infrastructure, e.g. CAD tools, libraries, etc. In addition, the level
of synchronous design experience dwarfs the small experience base in asyn-
chronous circuit design. The individual chapters in this book are indications
that this gap is narrowing. The asynchronous circuit discipline is becoming
more viable even though much work remains to be done before we can hope to
compete in the commercial sector with synchronous design styles.

2 Signaling Protocols

Most asynchronous circuit signaling schemes are based on some sort of proto-
col involving requests, which are used to initiate action, and acknowledgments,
which are used to signal completion of an action. These control signals provide
all of the necessary timing information to properly sequence the computational
events in the system. The resulting computational model is very much like the
dataflow model [36, 1] where the arrival of the necessary operand data triggers
the operation. Similarly there is a concept of a sender of information and a
corresponding receiver. From the circuit perspective, and ignoring data trans-
mission issues for now, these request and acknowledge control signals typically
pass between two modules of an asynchronous system. For example let there
be two modules, a sender A and a receiver B. A request is sent from A to B
to indicate that A is requesting some action by B. When B is done with either
the action or has stored the request, it acknowledges the request by asserting
the acknowledge signal which is sent from B to A. Most asynchronous signaling
protocols require a strict alternation of request and acknowledge events.
There are several choices of how these alternating events are encoded onto
specific control wires. Two choices have been so pervasive that they will be
described here to illustrate the concept. One common choice is the 4-cycle
protocol shown in Figure 1. RZ (return to zero), 4-phase, and level-signaling

Request l | l
L

Acknowledge

A___ StartEvent i+l

A___ BEvent i done t
t Ready for next event
Start Event i

Figure 1: 4-cycle Asynchronous Signaling Protocol

are other names that have been used to identify this protocol. In Figure 1, the
waveforms appear periodic for convenience but they do not need to be so in
practice. The bold gray arrows indicate the required sequence of events. There
is no implicit assumption about the delay between successive events. Note that
in this protocol there are typically 4 transitions (2 on the request and 2 on the
acknowledge) required to complete a particular event transaction. Proponents
of this scheme argue that typically 4-cycle circuits are smaller than they are for
2-cycle signaling, and that the time required for the falling transitions on the
request on acknowledge lines do not usually cause a performance degradation
since they happen in parallel with other circuit operations, or are useful for
controlling the transmission of the answer back to the requester.

The other common choice is 2-cycle signaling shown in Figure 2, also called
transition or NRZ (non-return to zero) signaling. In this case the waveforms are
the same as for 4-cycle signaling with the exception that every transition on the
request wire, both falling and rising, indicates a new request. The same is true
for transitions on the acknowledge wire. 2-cycle proponents argue that that 2-
cycle signaling is better from both a power and a performance standpoint, since
every transition represents a meaningful event. The disadvantage is that most
2-cycle interface implementations require more logic than their 4-cycle equiv-
alents. 2-cycle signaling is particularly useful for high-speed micropipelines as
pointed out by Ivan Sutherland in his Turing Award paper [124].

So far, the discussion has only addressed control signals. There are also
choices for how to encode data. A common choice is the use of a bundled

Request I
&~ _
Acknowledge | * | [

Start Event i T Start Event i+1 A Start Event i+2
Event i done

Event i+1 done

Figure 2: 2-cycle Asynchronous Signaling Protocol

7

protocol which can be either 2- or 4-cycle. In this case if an n-bit data value
is to be passed from the sender to the receiver then n+2 wires will be required
(n bits of data, 1 request bit, and 1 acknowledge bit). While this choice is
conservative in terms of wires, it does contain an implied timing assumption.
Namely the assumption is that the propagation times of the control and data
lines are either equal or that the control propagates slower than the data signals.
A sending module will assert the data wires and when they are valid will assert
the request. It is important that the same relationship of data being valid
prior to request assertion be observed at the receiving side. If this were not
the case the receiver could initiate the requested action with incorrect data
values. This requirement is often simply called the bundling constraint. Most
asynchronous circuits have been designed with bundled data protocols because
the logic and wires required to implement bundled data circuits is significantly
less than with non-bundled approaches. However, in order for bundled data
asynchronous circuits to work properly, the bundling constraint must be met.
Antagonists of this approach note that these timing assumptions are similar to
those made for synchronous circuit design.

The common alternative to the bundled data approach is dual rail encoding.
In this case each bit of data is encoded with its own request onto 2 wires. A
typical 4-cycle dual rail encoding has four states:

1. 00 - Idle, data is not valid
2. 10-Valid 0
3. 01-Valid1

4. 11 - Illegal

After a valid data value is asserted the wires must return to the idle state
prior to assertion of the next valid datum. In this case for an n-bit data value
the link between sender and receiver must contain 2n+1 wires: 2n for the n-bits
of data and the associated requests and 1 for the acknowledge. In this dual
rail protocol, sending a bit requires the transition from the Idle state to either
the valid 0 or valid 1 state and then after receiving the acknowledge it must
transition back to the idle state. The illegal state is not used. If recognized by
the receiver, it should cause an error.

A 2-cycle variant would still require 2 wires per bit but could signal a valid
0 by a single transition of the left bit, while a valid 1 would be signaled by a
transition on the right bit. Concurrent transitions on both the left and right
bits are illegal. Sending a 0 or a 1 must be followed by a transition on the
acknowledge wire before another bit can be transmitted. Alternative encoding
schemes have been proposed as well [139, 41]. Dual rail signaling is insensitive
to the delays on any wire and therefore is more robust when assumptions like
the bundling constraint cannot be guaranteed. The receiver will need to check
for validity of all n-bits before using the data or asserting the acknowledge.

8

3 Completion Signals

One of the added complexities of asynchronous circuits is the need to generate
completion signals that often correspond to the acknowledge signal in the vari-
ous signaling protocols. There are many methods, none of which is universally
satisfactory. A common approach is to design an asynchronous module in a
manner that is similar to a synchronous circuit. Namely the arrival of the re-
quest starts the modules internal clock generator and after a certain number of
internal clocks the circuit is done and an acknowledge can be generated. The
idea was originally suggested by Chuck Seitz and was used during the construc-
tion of the DDM1 dataflow computer [36]. This technique works well when the
size of the module is large, but when the module is small, the additional logic
required for the internal clock generator represents an overhead that is too
costly.

Another choice for completion signal generation is the use of a model delay.
In this case, conventional synchronous timing analysis of the datapath is used
to determine how long the circuit will take to compute a valid result after the
request has been received. A delay element such as an inverter chain is then
used to turn the request into the appropriately delayed acknowledge signal.
Note that this method works equally well for both 2- and 4-cycle signaling
protocols.

Special functions often have unique opportunities. For example, arithmetic
circuits can be built to generate completion signals based on carry propagation
patterns [62]. Other functions can independently compute both F and F and
use the exclusive-OR of their outputs to generate the acknowledge signal. Note
that this technique will only work directly in a 4-cycle signaling protocol. If
used for a 2-cycle protocol, then additional logic such as a T flip-flop will be
required.

Another common case is when multiple subsystems are activated in paral-
lel by a master controller. When all of their completion signals are asserted
then the master controller should be acknowledged. A tree of C-elements is
commonly used to provide the appropriate control in this situation.

A novel technique was proposed by Mark Dean [40] where completion detec-
tion was performed by observing the power consumption of the circuit. When
activated the circuit consumes power and when it is done the power consump-
tion falls below a particular threshold.

The study of completion signal generation methods in asynchronous circuits
could be the topic of an entire book. For now, it is only necessary to realize
that some method must be chosen and that the need for completion signals
and related signaling protocols is a necessary overhead of asynchronous circuit
design. '

