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PREFACE

The aim of these notes is to pursue a line of research
adopted by many authors (W. Feller, M.G. Krein, I.S. Kac,

F.V. Atkinson, W.T. Reid, among others) in order to develop a

qualitative and spectral theory of Volterra-Stieltjes integral
equations with specific applications to real ordinary differ-

ential and difference equations of the second order.

We begin by an extension of the classical results of
Sturm (comparison theorem, separation theorem) to this more
general setting. In chapter 2 we study the oscillation theory
of such equations and, in Chapters 3,4,5, apply some aspects of
it to the study of the spectrum of the operators generated by
certain generalized ordinary differential expressions associated
with the above-mentioned integral equations.

In order to make these notes self-contained some appen-
dices have been added which include results fundamental to the
main text. Care has been taken to give due credit to those
researchers who have contributed to the development of the theory
presented herein - any omissions or errors are the author's sole
responsibility.

I am greatly indebted to Professor F.V. Atkinson at
whose hands I learned the subject and I also take this opportunity
to acknowledge with thanks the assistance of the Natural Sciences
and Engineering Research Council of Canada for continued finan-

cial support. My sincere thanks go to Mrs. Frances Mitchell
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for her expert typing of the manuscript.

Finally, I am deeply grateful to my wife Leslie
Jean for her constant encouragement and patience and I also
wish to thank Professor A. Dold for the possibility to

publish the manuscript in the Lecture Note series.

Angelo B. Mingarelli
Ottawa, April 1980.



INTRODUCTION

Let p,gq: I- IR, p(t) > 0 a.e. (in the sense of
Lebesgue measure) and 1/p, g € L(I) where I = [a,b] ¢ IR .

Consider the formally symmetric differential equation

(p(t)y")' - g(t)y = 0, t e T (1)
By a solution of (1) we will mean a function y: I - C ,
y € AC(I), (i.e., absolutely continuous on I) such that
py'e AC(I) and y(t) satisfies (1) a.e. on I. Let vy ¢ I.

Then a quadrature gives, for t ¢ I,

t
p(t)y'(t) = 8 + [ y(s)g(s)ds
Y
where B = (py') (y). Since g € L(I) its indefinite integral
o(t) = ft q(s)ds exists for t ¢ I and 0 ¢ AC(I). Hence y

a

will be a solution of (1) if and only if y(t) satisfies a

Stieltjes integro-differential equation of the form

p(t)y'(t) = 8+ [Cy(s)do(s), t ¢ I, (2)
Y

where the integral may be interpreted, say, in the Riemann-

Stieltjes sense. On the other hand (2) also has a meaning

whenever o0 ¢ BV (I) (i.e., bounded variation on I) and y
is continuous on I. Hence equations of the form (2) may be
used to deal with differential equations (1). Moreover G

need not be continuous on I (as long as we require a solution
of (2) to be continuous on I) and so (2) can be used to treat
discrete problems, e.g., difference equations (or three-

term recurrence relations) as well as continuous problems



X

as we have seen. More precisely let t__= a<t0<tl suw <t

1 m-1
<tm = b bea fixed partition of I. Define step-functions
p,0 € BV(I) as follows: p,0 will be right-continuous on

I and their only jumps, if any, will be at the points {ti}

defined above with the saltus of ¢ being given by

o(tn) - G(tn—O) = bn’

where bn, n=20,1,...,m1, is a given real finite sequence,

and p is defined on [a,b] upon setting

= IC - €
p(t) n—l(tn tn—l)’ L [tn—l'tn)

where Cn n=20,1,..., m 1is a given positive real finite

_l’
sequence. With these identifications one finds that the
corresponding real solutions of (2) will be continuous

polygonal curves whose vertices (tn,y(tn)) = (tn,yn) have

their ordinates, ¥ o satisfying the formally symmetric

second-order linear difference equation

A(Cn—lAyn—l) N bnyn = D L3
for n=0,1,..., m-1, and A 1is the forward difference
operator, Ayn = Y41~ Yp- So use of (2) now leads one to

understand that solutions of (3) should perhaps be inter-
preted as continuous functions defined on I and not just

as the finite sequence Y_1r/¥gr+--sY, @s one may at first
sight suspect. That for (3) solutions are to be interpreted
as continuous functions, has its historical precedents.

For example, M. BScher noted in his survey article [ 61
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that a Sturmian theory could be naturally developed for (3)
if "solutions" were treated as continuous functions (in fact,
the same polygonal curves that were mentioned above). The
advantage in using (2) is that a Sturmian theory can be
developed for (2) thus simultaneously yielding such a theory
for each of (1) and (3).

If in (2) one chooses o0 ¢ C(I) (i.e., continuous on
I) then (2) is a pure Stieltjes integro-differential equation.
If, in addition, p ¢ C(I) say, then (2) may be integrated
once again to yield the Volterra-Stieltjes integral equation

t ds t
y(t) = o + 6{( =7 * { (t-s)y(s)do(s) t el

Note that (2) also includes equations of mixed type obtained
by, say, setting o « Cl(I) except at a finite number of
points or by defining o to be a Cl—function on a part of I
and a step-function elsewhere.

An intensive study of equations of the form (2) was
undertaken by F. W Atkinson [3] in his monograph, (See also
the fundamental paper of Krein [39] and the related papers

of W.T. Reid [791, [80] ).

In order to derive a spectral theory for (2) one
needs to use (2) in order to define an operator on some
suitable space. To this end, note that if y 1is a solution

of (2) then
a t
TS {p(t)y'(t) - [ y(s)do(s)} =0 (4)
Y
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and conversely if one defines a solution of (4) as a function
t
y € AC(I) for which p(t)y'(t) - f y(s)do(s) € AC(I). We can
Y

then recover (2) from (4). On the other hand the left-side

of (4) defines a generalized differential expression, viz.
d t
2lyd(t) = - g¢ {p()y'(t) - [ y(s)do(s)].
Y

and such an expression may then be used to define a linear
operator on L2(I) with due care for domain considerations.
If one wishes to treat boundary problems for

Sturm-Liouville equations with a weight-function r(t) e L(I),

-(p(t)y") " + g(t)y Ar(t)y,

consideration of the generalized ordinary differential
expression
a t

Y1) = - ForEy {p(t)y'(t) - [ y(s)do(s)}, (5)
Y

may be made, where the generalized derivative appearing on
the right is, in general, a Radon-Nikodym derivative. The
case r(t) >0 corresponds to Vv (t) non-decreasing and the
case of unrestricted r(t) corresponds to v(t)e BV (I).

In the former case the operator defined by the differential
expression is formally symmetric (under suitable domain
restrictions) in the weighted Hilbert space L2(I,dv). In
the latter case the operator is J-symmetric in a Krein
(Pontrjagin) space, since the measure induced by v(t) is a

signed measure.
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Expressions of the form (5) were first considered by

W. Feller [681,[691,0701,(711,0721,[73] in the case when

o(t) = constant on I, p(t) = 1, and v a given non-decreasing

function on I, (cf., also Langer [41]). The more general case

0 ¢ BV(I) was treated by I.S. Kac [35],[36],[37] when v is

monotone, cf., [46,p.49].
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CHAPTER 1

INTRODUCTION:

In this chapter we shall study the Sturmian theory of
Stieltjes integro-differential equations; that is, equations

of the form
t
p(t)y'(t) = c + J y(s)do(s) (1.0.0)
a
defined on a finite interval I = [a, b] and p, o are real
valued right-continuous functions of bounded variation on I

and p(t) > 0 there.

Historical Background:

The comparison and separation theorems of Sturm com-
prise what we call the Sturmian theory. Comparison theorems

for the scalar equation

(p(t)y' ()" - gq(t)y(t) =0 (1.0.1)

were first obtained by Sturm [58, p. 135] in his famous memoir

of 1836. In that paper Sturm considered the equations

(Kly ) - Gly =0 (1.0.2)



(Kzz') - ng =0 (1.0.3)

K,

on a finite interval and showed that if 0 < K 1

A

2

€,

A

G1 , equality not holding everywhere on the interval,
then between any two zeros of some solution of (1.0.2) there
is at least one zero of any solution of (1.0.3). This is the
result usually known as the Sturm-Comparison Theorem. Sturm's
proof depended upon the introduction of a parameter in the
coefficients which allowed him to pass continuously from Kl
to K2 and from G1 to 62 , as the parameter was increased,

and then he studied the location of the zeros of the solutions

as the parameter varied. It also depended upon the identity
valid for all t1 ’ t2 e I,
t2 t2 t2
L 1 - _ _ L 0
[K2yz K,y z]t J (G,-G,)yz dt + j (K, -K,)y'z' dt
1 t t1
4 (1.0.4)

which can be obtained by an application of Green's theorem

[13, p« 291].

It seems [58, p. 186] that Sturm came to the conclusion
of the comparison theorem by first having shown it true for the
case of a three-term recurrence relation or second order
difference equation though the latter result was not published.
A discrete analog of the comparison theorem was published by
Fort [21, p. ] whose method of proof was, in essence, that
of Sturm applied to difference equations instead of differential

equations.



In 1909 Picone [48, p. 18] gave by far the simplest
proof of the comparison theorem in the continuous case. He

made use of the formula

= t t

2 2 5 2 2
B(KQYZ'-Kly'z)]t =J (K, - K )y'" dt + J (G,-G,)y" dt
1 t1 t1
t2 2
- J Kg(y'—z—l] dt (1.0.5)
Z
tl

commonly known as the Picone Identity. The use of (1.0.5)
allows an immediate proof of the Sturm Comparison Theorem

[33, p. 226]. (cf., also [74]).

One important extension of the comparison theorem was
that of Leighton [42, p. 604] who interpreted the theorem in
a variational setting: He made use of a "quadratic functional"

Qly] associated with (1.0.2-3) acting on functions

y € Cl(a, b) and y(a) = y(b) = 0 (such functions were
termed 'admissible'). For such vy ,
ac (b 02 7
Qoly] = f (sz + G,y )ydt . (1.0.6)
a

The main result was that if some non-trivial admissible function
y had the property that Q[y] < 0 then every real solution

of (1.0.3) would have to vanish at some point in (a, b) .
Swanson [59, p. 3] weakened Leighton's condition Q[y] < 0 to
Qlyl] £ 0 for y # 0 reaching the same conclusion provided

the solutions were not constant multiples of vy .



The Sturm-Separation theorem states that the zeros of
linearly independent solutions of, say, (1.0.2) interlace or
separate one another. A similar result holds for three-term
recurrence relations and in fact a more general result is

known in the latter case. (See section 2).

In section 1 we shall give an extension of the afore-
mentioned "Leighton-Swanson Theorem" to the class of integral
equations (1.0.0) and give, as corollaries, the corresponding

continuous and discrete versions of the comparison theorem.

In section 2 we give a proof of the Sturm Separation
Theorem for (1.0.0) and give some applications to both
differential and difference equations. We conclude this
chapter with a study of the Green's function for boundary
problems associated with (1.0.0) and its application to the
problem of finding an explicit representation for the solution

of the non-homogeneous problem. (See section 3).

§1.1 COMPARISON THEOREMS FOR STIELTJES INTEGRO-DIFFERENTIAL

EQUATIONS :
Let pi(t) 7 oi(t) , 1=1,2 , Dbe real valued
functions of bounded variation over [a, b] . We assume that
p.(t) >0, te [a,b]l] , i=1,2 , and that all four

functions are right-continuous on [a, b] with each possess-
ing a finite number of discontinuities there. (This is for
simplicity only. In the following chapters this hypothesis
can be omitted, in most theorems, without affecting the

conclusions.) We will, in general, assume that all these



