Mathematics for
Computing

G. P. McKeown
V. J. Rayward-Smith

School of Computing Studies and Accountancy,
University of East Anglia

© G. P. McKeown and V. J. Rayward-Smith 1982

All rights reserved. No part of this publication may be reproduced or
transmitted, in any form or by any means, without permission.

First published 1982 by

THE MACMILLAN PRESS LTD
London and Basingstoke
Companies and representatives
throughout the world

Filmset in 10/12 Monophoto Times by
MID-COUNTY PRESS, LONDON SW15
Printed in Hong Kong

ISBN 0 333 29169 7
ISBN 0 333 29170 0 pbk

The paperback edition of the book is sold subject to the condition that it
shall not, by way of trade or otherwise, be lent, resold, hired out, or
otherwise circulated without the publisher’s prior consent in any form of
binding or cover other than that in which it is published and without a
similar condition including this condition being imposed on the
subsequent purchaser.

Macmillan Computer Science Series

Consulting Editor
Professor F. H. Sumner, University of Manchester

S. T. Allworth, Introduction to Real-time Software Design

Ian O. Angell, A Practical Introduction to Computer Graphics

G. M. Birtwistle, Discrete Event Modelling on Simula

T. B. Boftey, Graph’ Theory in Operations Research

Richard Bornat, Understanding and Writing Compilers

J. K. Buckle, The ICL 2900 Series

Robert Cole, Computer Communications

Derek Coleman, A Structured Programming Approach to Data*
Andrew J. T. Colin, Fundamentals of Computer Science

Andrew J. T. Colin, Programming and Problem solving in Algol 68*
S. M. Deen, Fundamentals of Data Base Systems*

J. B. Gosling, Design of Arithmetic Units for Digital Computers
David Hopkin and Barbara Moss, Autpmata*

Roger Hutty, Fortran for Students

H. Kopetz, Software Reliability

A. M. Lister, Fundamentals of Operating Systems, second edition*
G. P. McKeown and V. J. Rayward-Smith, Mathematics for Computing
Brian Meek, Fortran, PL/I and the Algols

Derrick Morris and Roland N. Ibbett, The MUS Computer System

John Race, Case Studies in Systems Analysis
Peter Wallis, Portable Programming

1. R. Wilson and A. M. Addyman, 4 Practical Introduction to Pascal

* The titles marked with an asterisk were prepared during the Consulting
Editorship of Professor J. S. Rohl, University of Western Australia.

To Mary and Sheila

Preface

The problems that early computers solved were mostly mathematical.
Since then, as everyone knows, the use of computers has greatly diversified
such that today the majority of applications are non-numerical. Thus,
while it is immediately clear that a good mathematical background is
essential for the obviously mathematical areas of computing, such as
numerical techniques, computer simulation or the theory of computation,
the question arises as to whether mathematics is now important in
computing as a whole. We believe the answer to this question to be an
unqualified yes. The last decade or so has seen the development of
computing from little more than a ‘bag of tricks’ into a science. As in any
scientific or engineering discipline, mathematics is the medium through
which the underlying concepts and principles of computer science may be
understood. Mathematical notation is now found in virtually every branch
of computing, from the mathematical areas mentioned above, through
compiling techniques, data structures and algorithm design and analysis,
to data base systems. Without the ability to appreciate and apply
mathematical concepts and techniques, the aspiring computer scientist
cannot hope to grasp the fundamental principles of computing, principles
that will still be relevant even if the particular programming skills that he
has learnt become obsolete.

This book is designed for two types of user. The first is the student
starting tertiary education in computing, who will need to develop a
reasonable mathematical maturity in order to cope with the use of
mathematical notation in subsequent computer science courses. We
assume that no such student will be without a reasonable ‘A’-level (or
equivalent) in mathematics. The book provides a basis for a course
equivalent to about one-third of the first year of study in a degree
programme.

The second category of reader for whom the book is designed is the
practising computer scientist who needs a reference book on his shelf to
which he can go when he needs a definition and an example of some
concept only vaguely remembered. For this reason, after most definitions
in the book, one or more examples are given to illustrate the new term.

While the material in this book is essentially traditional mathematics, it
has been given a computer science flavour through the use of algorithms.

The algorithm is the core concept in computing, but one which normally
has little place in traditional mathematics. Nevertheless, an algorithm is
often the best way of describing well-known mathematical techniques.

Since this book is intended primarily to be of use on a general first
mathematics course in a computer science degree programme, it is not
constrained to just discrete mathematics. We believe that calculus contains
a wealth of results with applications in computing, and for this reason a
substantial amount of calculus is presented in the third chapter. Although
this chapter is called “Calculus’ it does, in fact, contain some finite
mathematics. In particular, the section on series includes both the finite
and the infinite cases.

G. P. McKEOWN
V.J. RAYWARD-SMITH

ACKNOWLEDGEMENTS

The authors wish to thank Miss Gillian Hall, who produced all of the
computer-generated figures in the book. The figures were generated using
the GINO-F general-purpose graphics package on a PRIME 400
computer.

The authors also wish to thank Mr E. W. Haddon for his constructive
criticism of the text.

Finally, the authors offer their warmest thanks to Mrs Jane Copeman
and to Mrs Jane Loughlin for their excellent and patient typing of a
difficult manuscript.

Contents

Preface

1

Foundations

1.1 Propositional logic
1.2 Set theory
1.3 Numbers
1.4 Complex numbers
1.5 Functions

Linear Algebra

2.1 Vectors

2.2 Matrices

2.3 Systems of linear equations

2.4 The solution of systems of linear equations
2.5 Determinants

Calculus

3.1 Sequences

3.2 Series

3.3 Continuous real functions
3.4 Differentiation

3.5 Integration

Probability

4.1 Introduction

42 Conditional probability. Multi-step experiments

4.3 Independent trials. Discrete probability distributions
4.4 Continuous probability distributions

4.5 Independent random variables

4.6 Computer sampling

Algebraic Structures

5.1 Relations
5.2 Digraphs

19
37
52

73

73
90
105
121
141

160

160
173
196
214
235

260

260
271
287
306
320
333

343

343
355

5.3 Groups and semigroups
5.4 Rings, fields and vector spaces
5.5 Boolean algebras

References

Solutions to Selected Exercises

Index

368
377
390
406
407

419

1 Foundations

1.1 PROPOSITIONAL LOGIC

Throughout this book, the mathematical reasoning is presented in the
English language, suitably augmented by a collection of special symbols.
These symbols are defined not only as a shorthand tool but also for the
sake of clarity and precision. In this opening section, notation is
introduced to show how a complex statement in English is constructed
from simple statements and how, given the truth value of these simple
statements, the truth value of the complex statement can be determined.

A simple statement may be represented by a statement letter, either an
upper-case letter of the roman alphabet (4, B, C, ...) or such a letter with
an integer subscript (4,, 4,, ...). The simple statement

It is raining

might thus be represented by the statement letter, R, while H might be
chosen to represent

Today is a holiday

Complex statements are constructed from simple statements using
connectives such as: ‘not’, ‘and’, ‘or’, ‘implies’. For example, a complex
statement constructed from the above simple statements using the
connectives ‘not’ and ‘and’ is

It is not raining and today is a holiday

Whether this statement is true or not will depend on the truth values of
the simple statements used in its construction. For this example, the
complex statement constructed from R and H is true if and only if R is
false and H is true.

Connectives, Statement Forms and Truth Tables

A statement is either a simple or a complex statement and is represented
by a capital, script letter of the roman alphabet (., F, €,...)

Given a statement % (~.%) [read: not] represents the statement
that is true if 7 is false and is false if . is true. If true is denoted by T

1

2 Mathematics for Computing

and false by F, then this definition can be summarised in a tabular form

& (~)
T F
F T

Such a table is known as a truth table.

Given statements 2 and F, (A F) [read: & and #] represents the
statement that is true if and only if both # and & are true. In terms of a
truth table

N4 K4 (ANF)

T T T
T F F
F T F
F F F

Further connectives, v[or], > [implies] and = [if and only if, sometimes
written iff], can also be defined using truth tables

v F (VDB (A>B) (A=)

T T T T T
T F T F F
F T T T F
F F F T T

The definition of (%'>.%) may seem a little strange at first — the idea
that (% >%) should be true whenever % is false can be puzzling.
However, consider the following example. Let % be the statement

It is a sunny day
and let # be the statement
It is daytime

No one would dispute that statement &7 implies statement %, even
though &is, in fact, often false. However, 7 can never be true when &
is false. In general, therefore, (%> %) is taken to be true when either S is
false or both % and Fare true. If & is true and % is false then (&

> %) is taken to be false.

The five connectives (~, v, A, D, =) are used to combine simple
statements into complex statements whose truth values will usually
depend on the truth values of the constituent simple statements. A
statement may thus be represented by an expression composed of

Foundations 3

statement letters and connectives. Such an expression is called a statement
form. For example, the statement

It is not raining and today is a holiday

can be represented by the statement form ((~ R)AH).
A statement form can be formally defined as follows.

Definition 1.1.1

(a) All statement letters (capital roman letters and such letters with
numerical subscripts) are statement forms.

(b) If and # are statement forms, then so are (~), (A F),

(v B, (¥ >F) and (F=F),

(c) Only those expressions that are determined by (a) and (b) are statement
forms.

In ordinary algebra, a+ b x c+d may be used to represent
((a+ (b x ¢))+ d) since there is a convention for the restoration of
parentheses based on the priorities of operators. There is a similar
convention in propositional logic which works according to the following
rules.

(a) The connectives

~, A, V, D, =

El

are ranked from left to right, with ~ having the highest priority.

(b) If there is only one connective in a statement form then parentheses
can be omitted by association to the left.

(¢) The outer parentheses can be omitted.

Example 1.1.1
Removing parentheses from ((4 =>(~ B))>(C v(~ A))) results in the
following steps

(A>(~B)>(Cv(~A)
A>(~B)=(Cv(~A4))
AD(~B)oCv(~A)
A>~B>oCv ~A

Of course, it is not always possible to remove all the parentheses from a
statement form and indeed, for the sake of readability, it is often not
desirable to remove the maximum number of parentheses.

Given any statement form, 7 and an assignation of truth values to the
individual statement letters occurring in %/, a truth value for % can be
deduced. It is possible to tabulate all possible such assignations of truth
values to the individual statement letters, giving the resulting truth values
of the statement form.

4 Mathematics for Computing

Example 1.1.2 The truth table for Ao ~B>Cv ~A4

A B C ~A Cv~4A ~B A>~B A>~BoCv~A
T T T F T F F T
T T F F F F F T
T F T F T T T T
T F F F F T T F
FTT T T F T T
FTVF T T F T T
FFT T T T T T
F FF T T T T T

A more compact form of the truth table can be achieved by writing the
truth values of statement letters immediately beneath them and writing the
truth values constructed using a particular connective immediately
beneath that connective. The final result is indicated by means of the
symbol +. Using this technique for the above table results in a table of the
following form.

oD ~

Mmoo oS A4 A
4 94 449494977
4 5 m ™ H 41
T T T R QS R Ry
e I I R R R e R Y
Mg T a3 ™m0
e L T T T ™
o = = =mmmm T
e B B I B R BN

Tautologies and Contradictions

Definition 1.1.2
A statement form that is always true no matter what truth values are
assigned to its statement letters is called a rautology. The truth table for a
tautology thus has only T occurring in the final column calculated.

A contradiction is the opposite of a tautology, with only F appearing in
the final column calculated.

An immediate consequence of these definitions is the result that & is a
tautology if and only if ~ o is a contradiction.

Example 1.1.3
(A~ B)> A is a tautology since its truth value yields a column consisting
entirely of T values.

Foundations 5

(A A B o A

T T T T T

T F F T T

F F T T F

F F F T F
+

A complex statement in English that can be derived from a tautology
by substituting English statements for statement letters, such that each
occurrence of a particular statement letter is replaced by the same English
statement, is said to be logically true (according to propositional logic).
Similarly, a complex English statement arising from substitution into a
contradiction is said to be logically false (according to propositional logic).

In example 1.1.3, it was shown that (AAB)> A4 is a tautology. If A is
replaced by ‘the sun shines’ and B by ‘the grass grows’ then the result is
the logically true statement, ‘the sun shines and the grass grows implies
the sun shines’

Definition 1.1.3

Two statement forms, o and %, are said to be equivalent if and only if
(= %) is a tautology. & implies # if and only if (>) is a
tautology.

Theorem 1.1.1
& and & are equivalent if and only if .o implies % and % implies .«
Proof There are two parts to this proof.

The first part is to show that o/ and % are equivalent if .o implies %
and % implies &, If & is true then, since (&> &) is a tautology, it
follows that % is true. If & is false then, since (F>.%) is a tautology,
% must be false. Hence, (/=) is a tautology.

The second part is to show that o/ and % are equivalent only if .
implies % and .% implies .o that is, if . and % are equivalent then it
follows that o implies % and & implies o If (/' = %) is a tautology
then, if &/ is true, & must be true and, if .o is false, then % must
be false. In either case, (.'> %) and (F >) are tautologies.

A more concise proof of this theorem can be achieved by rewriting it in
propositional logic. The theorem states that (w'= #F)=(.v> Z) N (F
> &) and it is left as an exercise for the reader to check that this is a
tautology by using a truth table.

Definition 1.1.4

Two English statements represented by .o and .# are said to be logically
equivalent if and only if & and # are equivalent. The statement
represented by is said to logically imply the statement represented by
& if and only if o/implies Z.

6 Mathematics for Computing

Proving two English sentences to be logically equivalent is particularly
important.

Example 1.1.4
Show that ‘It is not raining or snowing so it is sunny’ is logically
equivalent to ‘It is not raining and it is not snowing so it is sunny’.

If A represents ‘It is raining’, B represents ‘It is snowing” and C
represents ‘It is sunny’,-then the first sentence is represented by ~(A4 v B)
> C and the second sentence is represented by (~A4 A~B)>C. The truth
table below shows the two statement forms to be equivalent.

~ (4 v BB o C = (~ A A ~ B o C
F T T T T T T F T ¥ F T T T
F T T T T F T F T F F T T F
F T T F T T T F T F T F T T
F T T F T F T F T F T F T F
F F T T T T T T ¥ F F T T T
F ¥ T T T F T T F ¥ F T T F
T F F F T T T T F T T F T T
T ¥ F F F F T T ¥ T T F F F
+
Adequate Sets of Connectives
A truth table involving » statement letters 4, ..., A, will consist of 2"
rows. If a truth value is arbitrarily assigned to each row, the following
question naturally arises: can a statement form involving A4,, ..., 4, and

the connectives ~, v, A, D and = be found whose truth values
correspond to the assigned column of truth values? For example, consider
a truth table involving three statement letters A,, 4,, A5 and assume the
last column arbitrarily chosen as below.

A, A, A,

T T T T
T T F F
T F T F
T F F F
F T T T
F T F T
F F T F
F F F T

Foundations 7

What statement form would then give a truth table with this last column?
One way to construct such a statement is to use algorithm 1.1.1.

Algorithm 1.1.1

if last column has no T values then the statement form required is
A A~A,;
else for each row i where the last column has value T do
for j from 1 in steps of 1 to n do
if A; has value T then
Uj—4;
else
Uy~ A4
endif
endfor
&—U ANULA.. . AUE
endfor
The required statement form is given by combining the various
% s using the connective V.
endif
For the above example, & is A, AA,AA;, Esis ~A; ANA AA;, By is
~A nA3A~Ayand Fyis ~A; A~ AyA~ A;. The required statement
form is thus
(A ANAZNAJNV(I~ A ANAZANANVI~NAAAZ A ~ AV~ A A~ AA~ As)

The construction above shows that ~, v and A form an adequate set
of connectives in the sense that every truth table corresponds to some
statement form constructed using just these connectives.

A stronger result can be obtained by noting that (o/v %) is equivalent
1o ~(~ A~ &), so every occurrence of v can be replaced using ~ and
A. Hence just ~ and A form an adequate set of connectives. Similarly, by
noting the equivalence of (A %) and ~(~ v ~F) one can see that ~
and v also form an adequate set of connectives.

The connective v is sometimes known as a disjunction and the
connective A as a conjunction. If a statement form & can be written as
v ¥ then g, % are known as disjuncts. Similarly, if % can be written
as WA F, & and F are known as conjuncts.

Definition 1.1.5
A statement form is in disjunctive normal form if it is a disjunction of one
or more disjuncts, each of which is a conjunction of one or more
statement letters and negations of statement letters.

Algorithm 1.1.1 shows that for every statement form there is an
equivalent statement form in disjunctive normal form.

8 Mathematics for Computing

Exercise 1.1

1. Write the following as statement forms, using statement letters to stand
for simple statements.

(a) If John is good, Mark is bad and if Mark is bad, John is good.
(b) A sufficient condition for John to be good is that Mark is bad.
(c) A necessary condition for John to be good is that Mark is bad.

2. Determine whether each of the following statement forms is a tautology,
contradiction or neither.

(a) A=AvB

(b) (A>ByAB> A

(c) ~(A=>(B>A))

(d) Ao(Bo(C)o>((A>B)2(A=C))

(e) Ao((B>~A)>~B)

3. Show that the following pairs of statements are equivalent.

(a) &~ and ~~ &

(b) ~(vFand ~ X' A~ F

) ~(FAF)and ~ w'v~ F

(d) APV E)and (A FD)V(L A F)
@I V(FA Z)and (Vv BINFV F)

4. Find a statement form .o constructed from the statement letters A, B,
C corresponding to the following truth table.

A B C W

R R R RS I
M a4 -4 mmH -
e R T B
Mm-S mH ™S ™

F F F F
5. Define the connective | [alternative denial] by

& ¥ AT
T T F

o oM A

F T
T T
F T

