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Preface
These are extended lecture notes for @ course on transformation groups
which I gave at the Mathematical Institute at G&ttingen during the

summer term 1978,

The purpose of these notes is to give an introduction to that part of
the theory of transformation groups which centers around the Burnside
ring and the topology of group representations. It is assumed that the
reader is acquainted with the basic material in algebraic topology, re-
presentation theory, and transformation groups. Nevertheless we have

presented some elementary topics in detail.

Section 11 contains joint work with Henning Hauschild.

My thanks are due to Christian Okonek who read part of the manuscript

and made many valuable suggestions and to Margret Rose Schneider who

typed the manuscript.
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1. The Burnside ring of finite G-sets.

In this section let G denote a finite group. In order to motivate
some of the subsequent investigations we give an introduction to the
Burnside ring of a finite group. Later we generalize this to compact
Lie groups by geometric methods which in case of a finite group are not
always suitable for the applications of the Burnside ring in represen-
tation theory. The material in this section is mainly due to Andreas

Dress.

1.1. Finite G-sets.

A finite G-set S is a finite set together with a left action of G on
this set. A finite G-set is the disjoint union of its orbits. The orbits
are transitive G-sets and are G-isomorphic to homogeneous G-sets

G/H = {gH]gG G} . The G-sets G/H and G/K are isomorphic if and only

if H is conjugate to K in G. The set of G-isomorphism classes of finite
G-sets becomes a commutative semi-ring A+(G) with identity with addition
induced by disjoint union and multiplication induced by cartesian pro-
duct with diagonal action. The non-triviality of the multiplication
arises from the decomposition of G/H x G/K into orbits. These orbits
correspond to the double cosets HgK, g € G, which can be identified with
the orbit space of G/K under the left H-action. This correspondence can
be described as follows: If X is an H-space the H-orbits of X corres-
pond to the G-orbits of GxHX. If moreover X is a G-space then we have
the G-isomorphism G/H x X-—é)GxHX : (g,x)k—n—9(g,g-1x). We apply this
to X = G/K. Explicitely, the double coset HgK corresponds to the orbit

through (1,9).

1.2. The Burnside ring A(G).

+
The Grothendieck ring constructed from the semi-ring A (G) is denoted

A(G) and will be called the Burnside ring of G. If S is a finite G-set



let Bﬂ or S be its image in A(G). Additively, A(G) is the free abelian
group on isomorphism classes of transitive G-sets. Equivalently, an
additive Z-basis is given by the [C/H] where (H) runs through the set
C(G) of conjugacy classes of subgroups of G. The multiplication comes
from the decomposition of G/H X G/K into orbits. The ring A(G) is

commutative with unit [G/G] .

Example 1.2.1.

Let G be abelian Then, since generally the isotropy group of G/H x G/K
at (g1H, gzK) is g1Hg;1r\ gng;1, all isotropy groups are Hn K in the
abelian case. Therefore [G/H]- [G/K] = a [G/Hn K] where a € Z is ob-

tained by counting the number of elements on both sides. In particular
[G/H]2 = |G/H| [G/H] , where |S| is the cardinality of S. We see that

for abelian G the [G/H] are almost idempotent.

If H< G and S,T are finite G-sets then we have for the cardinality
of the H-fixed point sets |sP + T8 |= |s®| + | T"|ana lisxm®| =
ISH‘ ITH‘. Hence SI——%ISHl extends to a ring homomorphism

Py b AR e T «

Conjugate subgroups give the same homomorphism so that we have one ‘PH

for each (H) € C(G). We let
w= (g : a6 —> T ;¢ ciq 2
be the product of the ?H'

Proposition 1.2.2.

¥ is an injective ring homomorphism.



Proof.

By definition ¢ is a ring homomorphism. Suppose x # o is in the kernel
of ¢ . We write x in terms of the basis x = 3 aH[G/H]' We have a partial
ordering on the [G/H] , namely [G/H] < [G/K] if and only if H is sub-
conjugate to K. Let [G/H] be maximal among the basis elements with

ay # o. Then c/xY ¢ @ implies [G/H] < [G/K] - Hence o = ¢ x =

s [G/HH] = | NH/H| # 0, a contradiction.
Since ¢ is an injection of a subgroup of maximal rank the cokernel
is a finite group. We want to compute its order. We consider the

diagram of injective ring homomorphisms

A(G) Tz

A(G) ® Q >Ta

where the lower ?o is the rational extension of the upper ¢

Recall that WH = NH/H acts freely on G/H as the group of G-auto-
morphisms: The action is given by WH X G/H —) G/H : (wH,gH)k——)gw—1H.
Hence it acts freely on any fixed point set G/HK. In particular IG/HKI

is divisible by |WH| . Therefore P [c/H] ® twal*') is contained Tz.

Proposition 1.2.3.

The elements ?Q( ES/H] R IWH|-1) =: Xy form a Z—basis.QE Tz. The

order of cokernely [wH( .

is Tiyyec(o




Proof.
The first assertion implies the second one. We view elements in e
as row vectors. Then the Xy form (suitably ordered) a triangular matrix

with one's on the diagonal. Hence they must be a basis.

Remark 1.2.4.
The homomorphism P may be discovered from the ring structure of A(G)
as follows. An element x € A(G) is a non-zerodivisor if and only if

¢ x has no zero component. Therefore A(G) ® Q is the total quotient
ring of A(G) (i.e. all non-zero-divisors made invertible). If
X€ A(G) ® Q is integral over A(G) then the components of (pr are
integral over Z hence integers. Conversely T Z is integral over cfA(G),
e. g. because T Z is generated by idempotent elements which are
integral over any subring. Hence ¢ may be identified with the inclusion
of A(G) into the integral closure in its total quotient ring. (For the
notion of integral ring extension see Lang [Ho;], Chapter IX; Bourbaki

[23] ., ch. 5.)

1.3. Congruences between fixed point numbers.

We have seen in 1.2. that ¥ A(G) is a subgroup of maximal rank in W Z.
How can we describe its image? If G = Z/pZ is the cyclic group of prime
order p then |S| = lSGI mod p because the orbits of S\ SG have
cardinality p. Hence this congruence gives a condition for elements to
be in the image of ¢ . The reader can easily check that this is the

only condition, for G = Z/pZ. We generalize such congruences.

Let S be a finite G-set and let V(S) be the complex vector space
spanned by the elements of S. The G-action on the basis S of V(S) in-
duces a linear action on V(S). The resulting G-module V(S) is called

the permutation representation associated to S. The character of V(S)

is a function on G; it will be denoted with the same symbol. The



orthogonality relations for characters say in particular that for any

complex G-module V the number IGI_1 :E V(g) is the dimension of

g€G

VG. Hence

0 mod |G| .

W

(1.3.1) 2

gea v(s) (9)

Now note that
V(8) (g) = Trace(ly : V(S) —3 V(S) : VvV —> gv) = |s9]

(look at the matrix of lg with respect to the basis S). Therefore 1.3.1

can be rewritten

(x) = 0 mod |Gl

(1.3.2) 2 6 ? (g

for any x € A(G), where (g) denotes the cyclic group generated by g.
If H is a cyclic subgroup of G the number of elements g with (g)

conjugate to H is
\e®| |o/nul

where H*-is the set of generators of H and IG/NH| is the number of
groups conjugate to H. Therefore (1.3.2) can be rewritten

(1.3.3) [a®| | e/nu | ¢, (x) =0 mod Il

<
“(H) cyclic

where now the summation is taken over conjugacy classes of cyclic sub-

groups of G.

We now apply the same argument to V(SH) considered as NH/H-module

and obtain



* ¥
> k) |N&/NEANK||K/ET| @ (x) = 0 mod |wH/H|
where we sum over NH-conjugacy classes K such that H is normal in K
and K/H is cyclic. This may also be written in the form
(1.3.4) 2 (x) REX) @ (x) =0 mod |NH/EH|
where the n(H,K) are certain integers with n(H,H) = 1 and the sum is
over the G-conjugacy classes(K) such that H is normal in K and K/H is

cyclic.

For the next Proposition we view elements of Tz as functions

C(G) —> 2.

Proposition 1.3.5.

The congruences 1.3.4 are a complete set of congruences for image ¢ .,

i. e. x € Mz is contained in the image of ¢ if and only if

&

(k) BH/K) x(K) = 0 mod | NH/H|

for all (H) € C(G).

Proof.

We have already seen that the elements in the image of ¢ satisfy these
congruences. The congruences 1.3.6 are independent because they are
given by a triangular matrix with one's on the diagonal. Hence they
describe a subgroup A of index T |NH/H| . By Proposition 1.2.3 there-

fore A = im ¥



Remark 1.3.7.

A slightly different set of congruences is obtained if one considers
V(SH) as NpH/H—module where NpH/H is a Sylow p-group of NH/H. This
yields a set of p-primary congruences which may be used instead of
1.3.4. These congruences are useful when localizations of A(G) are
considered; e. g. for A(G)(p), the Burnside ring localized at P, only

p-primary congruences are valid.

1.4. Idempotent elements.

Idempotent elements in T Z are the functions with values O and 1. We
use 1.3 to see when such functions come from A(G). We consider A(G) as

subring of Tz via ¢ .

A subgroup H of G is called perfect if it is equal to its commutator
subgroup. Each H < G has a smallest normal subgroup Hs such that H/Hs
is solvable. One has (Hs)s = Hs' A subgroup H is perfect if and only
if H = Hs' Let P(G) be the subset of C(G) represented by perfect sub-

groups.

Proposition 1.4.1.

An idempotent e € W Z is contained in A(G) if and only if for all

(H) € C(G) the equality e(H) = e(H,) holds.

Proof.
Suppose e € A(G). Then e satisfies 1.3.6. Given K ¢ G. Choose

1 144

n n- o i . . ofF .
Ks = K 4 K 4 ... 4 K =K such that K /K is cyclic prime order

p(i). Then by 1.3.6 applied to the group Ki+1 we have e(Ki) = e(Ki+1)

mod p(i). Since the values of e are O or 1 we must have e(Ki) - e(Ki+1)
and therefore e(KS) = e(K). Conversely assume that e(Ks) = e(K) for all
K. Then we must have e(H) = e(K) for all H 4 K with K/H cyclic so that

e satisfies the congruences 1.3.6.



Corollary 1.4.2.

The set of indecomposable idempotents of A(G) corresponds bijectively

to P(G). In particular G is solvable if and only if O and 1 are the

only idempotents in A(G).

Remark 1.4.3.

Let PC Z be a set of prime numbers. Let A(G)P be the localization of
A(G) at P, i. e. the primes not in P are made invertible. Then one can
show as in the proof of Proposition 1.4.1 that the idempotents of
A(G)P are the functions e with e(H) = e(HP) where Hp is the smallest
normal subgroup of H such that H/HP is solvable of order involving only

primes in P.

15, Units.
If A is a commutative ring we let A* be the multiplicative group of its

units.

Let e € A be an idempotent. Then 1-2e = u is a unit. Conversely it
can happen that for a unit u the element (1-u)/2 = e is contained in A.
Then e is an idempotent, because (1-u)2 = 2(1-u) for any unit u. In
case of the Burnside ring (1-u)/2 is contained in T Z but not in
general in A(G) as we shall see in a moment. But if G has odd order
then coker ¢ is odd and hence 1-u € A(G) and (1-u)/2 € T2z implies
(1-u)/2 € A(G). Since a non-solvable group has non-trivial idempotents,

by 1.4.2, we obtain

Proposition 1.5.1.

¥*
If G is non-solvable then A(G) # { + 1 } . If G is solvable of odd

order then A(G)* = {+ 1}

Let H be a subgroup of index 2 in G. Then H 4 G, [G/H] 2 -2 [c/H]



*
and therefore u(H) := 1 - [G/H] € A(G) . Note that (1-u(H))/2 is not
in A(G). The subgroups of index 2 are precisely the kernels of non-

trivial homomorphisms G —) Z/2Z. Hence we obtain an injective map

j : Hom(G,2/2%Z) ———AAA(G)*' given by j(f) = 1-G/ker(f). The image of j

is in general not a subgroup.

Problem 1.5.2.

Determine the structure of A(G)* in terms of the structure of G. (Of
course one knows by the famous theorem of Feit - Thompson that groups
of odd order are solvable. Therefore the 2-primary structure of G is
relevant. In particular A(G)* for 2-groups would be interesting. (See

also the next remark.)

Remark 1.5.3.

We shall prove later by geometric methods that for a real representation
s H

V the function (H)p——»(—1)dlm L is contained in A(G). This function

is then a unit in A(G). It would be interesting to see units which are

not of this form (2-groups?).

1.6. Prime ideals.

Since M Z is integral over A(G) by the "going-up theorem" of Cohen-
Seidenberg (see Atiyah-Mac Donald EH] + P. 62) every prime ideal of

A(G) comes from T Z hence has the form
a(H,p) := {x € (@) | ¢, (x) =0 mod p }

for a subgroup H of G and a prime ideal (p) of Z. The elementary proof
of Dress [#3] for this fact shall be given later (section 5) in the
slightly more general context of compact Lie groups. The prime ideals
q(H,0) are minimal; the ideals g(H,p), p # O, are maximal with residue

field z/pZz. If q(H,p) = q(K,q) then p = g and



