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Preface

The search for the underlying structure of physical reality is as old as
speculative thought. Our deepest experimental insights to date are ex-
pressed in the language of quantum field theory, in terms of particles that
interact at points in space-time, subject to the constraints of special relativ-
ity. The theoretical developments that lead to this portrait are the subject
of this book. Its aim is to provide a self-contained introduction to relativ-
istic quantum field theory and its applications to high-energy scattering.
Some of the methods described predate quantum theory, while others are
quite recent. What makes them vital is not only their considerable success
thus far, but aiso the very limitations of that success.

There is every reason to believe that quantum field theory is not a closed
chapter. A great deal of freedom remains in the choice of particles and
their interactions within the field-theoretic description of fundamental pro-
cesses. The ‘standard model’, which describes elementary processes as they
are known at this time, is a grab bag of matter and forces, in which
breathtaking theoretical elegance coexists with seemingly senseless arbi-
trariness. Whatever the next step in our understanding of elementary
processes, however, the elements of quantum field theory will remain
relevant to their description.

Quantum field theory is a vast subject, and an introductory presentation
necessarily involves choices of emphasis and of omission. My approach
begins with the fundamental considerations of space—time and internal
symmetry. These issues are at the heart of gauge invariance, which plays a
dominant role in modern field theory. I have emphasized group theory, as
a description of the symmetry and invariance properties that are required
of any field. In addition, I have chosen to concentrate on the perturbative
description of scattering as the best window into the underlying structure of
the relevant fields and as the source of our most direct knowledge of the
corresponding theories. These topics occupy the first half of the book.

The central formal issues in perturbative field theory concern the self-
consistency of the quantum-mechanical expansion, which is the subject of
the third quarter of the book. The history of quantum field theory has been
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driven, in large measure, by a creative tension between the demands of
renormalizability and unitarity and the aesthetics of symmetry. Finally, in
the fourth part, I discuss the structure of the perturbative expansion at
higher orders, by which we may confront quantum field theories with
precision experiments. This is a process which, despite some signal succes-
ses, is still in its infancy.

This book is intended as both text and reference. Its introductory and
intermediate chapters (through Chapter 11) are directed at a reader famil-
iar with classical and quantum mechanics, as taught at the advanced under-
graduate or beginning graduate level. Familiarity at a similar level with
electromagnetism and complex variable analysis are also assumed, as well
as an aquaintance with the basic taxonomy of elementary particles such as
electrons, neutrinos and quarks. The more advanced chapters can be used
by both those familiar with the first half of the book, or with another text in
field theory. I have tried to keep the discussion pedagogical and self-con-
tained, with an emphasis on calculation. Without attempting mathematical
rigor, I have tried to indicate where it may be found, as well as the nature
of more advanced and formal arguments.

The material outlined below is probably more than can be conveniently
presented in a year’s course. As a result, it has been organized so that
certain more advanced topics, although presented in their natural place in a
logical progression, may be bypassed without loss of coherence. An intro-
ductory course might extend up to Section 12.4, with the omission of
Sections 3.2, 3.3, 8.6, 9.5, 9.6, 10.4, 11.2-11.4 and 12.3. No essential cross
references to these sections are made ustil Chapter 13.

The discussion is divided broadly into four parts. The first develops the
methods of field theory through scalar fields. This somewhat simplified
context is used to introduce the fundamental applications of group theory
(Chapters 1 and 2), canonical quantization and the S-matrix (Chapter 2),
the path integral and Feynman rules for diagrams and integrals (Chapter
3), and cross sections (Chapter 4). Many readers may already be familiar
with some of the material in Chapter 1, especially group theory and
Lorentz transformations. These topics are so central to what follows,
however, that I considered it necessary to include them.

In the second part, realistic theories, with intrinsic angular momentum,
are introduced and quantized, from the point of view of their space—time
symmetries (Chapters 5, 6). Nonabelian fields and spontaneous symmetry
breaking are introduced at the outset, on an equal footing with abelian
fields. Chapter 6 includes an elementary introduction to unitary representa-
tions of the Poincaré group, and their relation to field quantization. Chap-
ters 7 and 8 develop the Feynman rules for the components of the standard
model, and give lowest-order applications to experimentaily relevant Cross
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sections. Here, representative examples are chosen from quantum electro-
dynamics, low-energy weak interactions and quantum chromodynamics,
including a discussion of the role of ghost fields. Chapter 8 concludes with a
brief introduction to the parton model, viewed as a way of interpreting
cross sections in quantum chromodynamics.

As mentioned above, the order of chapters within the first two parts
follows a presentation in which spin is introduced only after a relatively
extensive discussion of scalar fields, up to the computation of cross sections
at tree level. This approach is a matter of taste, however, and I have
organized the material so that the first eight chapters may also be read in
the order 1, §, 2, 6, 3, 7, 4, 8. Realistic field theories are then discussed
earlier, but it takes a little longer to get to the first cross section.

The third part deals with questions of renormalization and unitarity. The
method of dimensional regularization is explained, and employed through-
out. Chapter 9 also includes an introduction to various general features of
Feynman integrals, including Wick rotation, time-ordered perturbation
theory and perturbative unitarity. Renormalization is discussed in Chapters
10 and 11, including renormalization schemes and scales, and the renormal-
ization group. For gauge theories, I have concentrated on the issue of
unitarity. At the end of Chapter 11, the axial anomaly is used to jllustrate
the crucial issue of the consistency of classical symmetries at the quantum
level,

Finally, in Part IV 1 undertake a more extensive discussion of perturba-
tive cross sections, with an emphasis on results that extend to all orders in
perturbation theory. Loop corrections in quantum electrodynamics are
discussed, as well as the infrared problem at all orders. For quantum .
chromodynamics, 1 emphasize the concept of infrared safety, and its con-
nection with renormalization, jets and the determination of the strong
coupling constant. Chapter 13 treats the analytic structure of Feynman
diagrams, dispersion relations and collinear divergences and presents a
proof of the Kinoshita~Lee—Nauenberg theorem. Chapter 14 deals with
the basis of our understanding of high-energy scattering, including factor-
ization, evolution and the operator product expansion. Although the first
two of these results are often identified with perturbative QCD, they are
introduced here as general results in field theory. Finally, Chapter 15
briefly presents two issues that go beyond fixed orders in perturbation
theory: bound states, and the likely asymptotic nature of the perturbative
series. f

In the appendices several important topics that do not fit naturally into
any chapter are treated. Included are a review of the interaction picture, a
derivation of symmetry factors and generating functionals and descriptions
of the full standard model Lagrangian, the discrete symmetries of time
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reversal and charge conjugation, the Goldstone theorem and the role of the
chiral anomaly in neutral pion decay. Finally, two appendices consist of de
rigeur summaries of some useful formulas and Feynman rules.

There are two sets of references within the text. The first set is included
for purposes of attribution, and often for historical interest. The second
consists of references to reviews and other texts, where more discussion on
a relevant topic may be found. These are marked with an ‘r’ before the
date, as for example (r1980). The ‘r’ is not included in the reference list at
the conclusion. In the list of references, the location of each reference is
given by section in parenthesis (an ‘i’ indicates that the reference occurs in
the introduftary comments in a chapter, an ‘e’ that it occurs in the exerc-
ises). ’

The list of topics I have omitted would be longer than the list of those
included. Generally, however, topics that go under the rubric of ‘nonper-
turbative’ have been slighted, including instantons and other types of
vacuum structure in QCD, as well as lattice gauge theory. Loop corrections
in the weak interactions have alsa been omitted. I have left out any
discussion of supersymmetry, and other extensions of the known symmet-
ries of the standard model. Beyond this, the great questions of gravity and
of the nature of space—time remain unaddressed here, and in the standard
model. In time, one may expect new theoretical structures to emerge,
involving new, more unified field theories, perhaps with supersymmetry,
andfor a substructure underlying the fields themselves, perhaps string
theory. Whether they fall into the categories already known at this time or
not, such theoretical structures will be interpreted in terms of, and their
success will be measured by, the quantum field theories of today. I there-
fore hope that many readers will find what is included here useful in their
research and their understanding.
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SCALAR FIELDS






1

Classical fields and symmetries

Our discussion begins with the action principle for classical fields, from
which may be derived the field equations of motion. The symmetry proper-
ties of a field theory profoundly constrain its time development, through
conservation laws. We introduce the Klein-Gordon Lagrangian to illus-
trate classical space-time and internal symmetries.

1.1 Action principle

Hamilton’s principle in point mechanics
A system in classical mechanics is described by a set of generalized coordin-
ates {q;}, along with a Lagrangian L({g;, 4;}), which depends on the g¢;
and their associated velocities {¢; ® dq;/d¢}. The equations of motion for
the system are the Lagrange equations,

dL/3q; ~ (d/dr)(3L/3¢;) = 0. BN (R))

Equation (1.1) may be derived from Hamilton’s principle that the motion
of the system extremizes the action:

55 = ], de L(a(0), 40 = 0, 1.2

where the variation is taken over paths {q;(¢)} between any fixed boundary
values, {qi(1)} and {g(t;)}. (The derivation of eq. (1.1) from eq. (1.2)
closely follows the field theory argument to be given below.)

Local field theory

In field theory, the analogue of the generalized coordinates, {g;(r)}, is a
field ¢(x, ¢), in which the discrete index i has been replaced by the continu-
ous position vector x. The position x is not a coordinate, but rather a
parameter that labels the field coordinate ¢ at point x at a particular time ¢,
There may be more than one field at each point in space, in which case the

3



4 Classical fields and symmetries

fields may carry a distinguishing subscript, as in ¢,(x, ¢). To qualify as a
mechanical system, the fields must be associated with a Lagrangian, which
determines their time development. Each field describes an infinite number
of coordinates, however, and we must make specific assumptions about the
Lagrangian to make the system manageable.

We shall be interested in local field theories, in which the dynamics does
not link different points in space instantaneously. It is then natural to
assume that the Lagrangian may be written as an integral over another
function, called the Lagrange density, &£,

L() = [ x2x, 1), (1.3)
which depends on the set of fields and their first derivatives,
£(x, 1) = L(@a(x, 1), 3¢a(x, 1)/3x*). (1.4)
Conventions

In eq. (1.4) and the following, we employ the conventions
vt = (0% V) = g"v,, v, = (%, —V) = g,0", (1.5a)

for any vector v¥, where the metric tensor 8, {=g"") is the diagonal matrix
with nonzero elements (1, -1, ~1, —1). For derivatives with respect to the
coordinate vector x* = (x?, x) we use the notation (see Section 1.5),

3ubs = BPfOx*, B, m 3¢, /0x,. (1.5b)

Here x% = ct, where ¢ is the speed of light, so that all the x* have
dimensions of length. Generally, we shall use lower case Greek letters
(a,B,...10,...) for space~time vector indices 0,1,2,3), and lower
case italic letters (i, j, . . .) for purely spatial vector indices (1, 2, 3). Finally,
except where explicitly indicated, we shall use the convention that repeated
indices are summed.

Lagrange equleions

Since we are interested in local field theories, the fields in any region, R, of
space communicate with the rest of space only through their behavior at the
surface o of R. Thus, if we specify the values of the fields everywhere in R
at times 1, and r,, and on the surface ¢ for all times ty <t <t,, we ought to
have enough information to determine the fields everywhere in R for all
times between r, and f,. And indeed, we can derive equations of motion
for any Lagrangian of the form (1.3), by demanding that the action §
within R be extremal:
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I3
8s=8f daif ¢xgx,0=0. (1.6)

This variation is over all possible fields ¢,(x, 1) inside R,
Da(x, 1) = Pu(x, 1) + €4,(x, 1), L7

where € is an infinitesimal parameter and where the function §,(x,1)
satisfies

Ea(x, ,Vl) =&u(x, 1) =0, Lu(y,1)=0, yono, (1.8)

but is otherwise arbitrary. For a fixed ,(x, t), the variation in the action is
given by

_ a5 ([ag 3z P
BS=e===c | [a% et 3 S"C,Jd xdr. (1.9)

Next, we integrate by parts, using eq. (1.8) to eliminate end-point contribu-

tions:
_ [lee 8 | a2 ]} .
85 =¢f { Pl vl vt L AZLAL (1.10)

This result must be true for every choice of € and £,, so we conclude that
R4 9 [ R4 ]
3¢,  3x, 13(3%¢,)
at every point inside R for every time between ¢, and t,. But eq. (1.11)
must then hold at every point in space—time, since t,, 1, and R were chosen
arbitrarily. These are the Lagrange equations for any fields @.(x, t) that
satisfy the assumptions embodied in eqs (1.3) and (1.4).
In point mechanics, the Lagrange equations are total differential equa-
tions in time, one for each coordinate. In contrast, eq. (1.11) gives one

partial differential equation, involving both spatial and time derivatives, for
each field ¢,. .

=0 (1.11)

1.2 Relativistic scalar fields

There are many examples in which an infinite set of total differential
Lagrange equations, eq. (1.1), has a limit in a single partial differential
equation of the type (1.11) (see exercise 1.1). The corresponding field
theory may then be thought of as the continuum limit of a discrete system.
We shall not generally take this viewpoint, however, and instead accept a
continuum description as given. The inspiration for particular field theories
as elementary processes has most often been found in underlying invariance
principles (see Section 1.3). Thus, to begin with, we are interested in



