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Preface

Ten years have now elapsed since the publication of the three-volume work
Membranes and Ion Transport. During those years considerable advances
have been made in our knowledge of membranes and ion movements. This
particular volume is about ion transport. Though it is anything but a syn-
thesis, its aim is to bring the essentials of ion transport into relief. Several
topics frequently discussed in symposium books and reviews have been pur-
posely avoided. This has kept the size of the volume rather reasonable. My
hope therefore is that it will, like Volume 1, reach a wider circle of middle-of-
the-road students and research workers.

E. EDWARD BITTAR

Madison, Wisconsin
September 1980
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2 Network Thermodynamics
1 INTRODUCTION

The history of the elucidation of biological structure and function has been
essentially reductionist. It has been necessary to determine the function of
each part of the cell and then, on isolation of these parts, to subdivide and
analyze down to molecular level, isolating substrates, pf'éducts, enzymes,
proteins, and all the functional and structural units of the cell. In that analy-
sis the complexity, basic economy, and elegance of cell chemistry has become
increasingly apparent. Once the sequence of the individual steps of a process
is clearly defined and made quantitative, both the energetics and dynamics of
the whole process must be considered. The task is formidable: even if the
mechanism and kinetics of each step were known, their synthesis to give the
dynamical behavior of the process is a mathematical problem of the highest
order. We must bear in mind the spatial dispersion of events that demand
consideration of diffusional links between them and which will involve all the
concepts of solution and membrane transport as well as the essential pro-
cesses of energy transduction.

If dynamic processes must be accounted for in terms of local and global
energy, then the discipline of thermodynamics is required. Moreover, since
any cellular process, by definition, occurs at a finite rate, only irreversible
thermodynamics will suffice. Onsager nonequilibrium thermodynamics has
been of considerable use for numerous applications in biology, but it is
restricted to what are, in essence, linear processes close to equilibrium.
Biological processes are characteristically complex, involving both parallel
and sequential steps which may not be confined to one location or one phase.
The individual steps frequently are nonlinear, and indeed nonlinearity is an
essential feature of structural organization (1), oscillatory phenomena (2),
and most chemical reactions.

In their search for a viable calculus, biophysicists have stayed loyal to ther-
modynamic principles as the only rigorous basis for energy discussion, but in
dealing with the topological problems of biological reaction/diffusion
schemes, they look to circuit theory, linear graph theory, and various
schemes of system dynamics currently used in physics and engineering. Such
applications are not new to thermodynamics. Meixner, who did so much to
develop Onsager’s theory, also proposed a nonequilibrium thermodynamic
treatment based on the theory of linear passive systems (3-7).

Oster, Pereison, Katchalsky, and Auslander (8-12), in a series of papers
beginning in 1971, developed a much more widely based ‘‘network thermo-
dynamics’” capable of dealing with both linear and nonlinear and with highly
reticulated biological schemes involving chemical reactions, diffusion, cou-
pling. membrane phenomena, and energy transduction while incorporating
cybernetic flows (at essentially zero energy levels) essential to all self-reguia-
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tory processes. The basis of their treatment is not new to engineering science
or to physics, but their application of system dynamics and the “bond graph”
formalism to problems in membranology and reaction diffusion kinetics has
created new possibilities for greater understanding of complex biological pro-
cesses.

Network theories of continuous systems have had a long and successful
history in physics, engineering, and neurophysiology. It was shown by Sudar-
shan (13) and Hermann (14) that there is an underlying mathematical unity
for most dynamical theories in physics. General dynamical theories can en-
compass, as special cases, classical and quantum mechanics, hydro-
dynamics, electrical circuit theory, and a number of other fields (see ref. 15).
The methods of system dynamics—particularly the bond graph formalism of
Paynter (16), Karnopp and Rosenberg (17), and Takakashi, Auslander, and
Rabins (18)—are now an essential part of the curricula in engineering
schools and are treated in several textbooks (e.g., see ref. 19). Oster, Aus-
lander, Perelson, and Katchalsky have presented irreversible ther-
modynamics in bond graph terms.

The success of network methods in simulating the dynamics of continuum
systems has been shown to be a natural consequence of the underlying unity
of the mathematical structures of network and field theory. The ultimate
criterion for the validity of the network approach and its ability to recreate
field theory is the postulate of local equilibrium familiar to students of ir-
reversible thermodynamics. This postulate requires that on conceptual and
mathematical subdivision or reticulation of a continuum in which there are
gradients of state variables, local regions may be considered to have thermo-
dynamic state variables which have their normal meanings and in which the
laws of thermodynamics still apply. The degree to which a system is sub-
divided in the reticulation process determines the ultimate precision of the
model. In the limit, as the system is increasingly finely grained, the predic-
tions of network theory and the field equations become identical.

A single unit approximation to any process is termed a /ump. The one-
lump network, although crude, contains the minimum information required
to reproduce the major features of the real system. To illustrate, many of the
cxamples given in this chapter are one-lump models. The bond graph nota-
tion of network thermodynamics provides a generalization of electrical cir-
cuit theory and borrows some of its nomenclature from that discipline. The
major appeal of network thermodynamics to the biologist is that it is speci-
fically designed to follow energy rate (or, equivalently, power flow) through a
system. In this way the dual requirements for information energy and rate,
necessary for a complete bioenergetic analysis, are satisfied. As with other
graphical methods, it also allowsinformational or zero power signal bonds to
be incorporated. These progressively update the constitutive reiationships of
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the graph components to take account of the changing physical response of
the system as it evolves or decays in response to external conditions. These
signal bonds are essentially feedback controls and are of primary importance
in self-regulatory and oscillatory phenomena.

Experience in the application of system dynamics to physical and engineer-
ing problems has created a large literature of techniques in computer analy-
sis of such systems, which may now be transferred directly to bioenergetic
problems. The bond graph of a dynamic system is essentially a topographical
map in which the relationships between the components are immediately ob-
vious and in which the mathematical equations for system response are ar-
rived at by using the bond graph algorithmically to facilitate computer
analysis (20).

2 BOND GRAPH NOTATION
2.1 The Power Bond

The power P(t) entering or leaving a subsystem at any time (¢) may be ob-
tained from the product of an effort e(z) and a flow £(¢):

P(t) = e(t)f (1) (1)

If § is a subsystem of a network, then the power “lost” in S is e; fi — e f>
(Figure 1). Power bonds are represented in the manner of chemical bonds, as
a single line on which the half arrow indicates the assigned direction of power
flow. For electrical circuits effort and flow are simply voltage and current,
whereas for thermodynamic networks they are chemical potential, u;, and
molar flow, J; (= dn;/dt). In all cases their product, e(z)(¢), has the dimen-
sions of joules per second (watts). Effort and flow thus are classified as power
variables.

The definition of effort and flow is to some degree arbitrary, but for ther-
modynamic systems the Gibbs equation is used to define these quantities:

dU=TdS —PdV+ Lp;dn; + vdg )

The thermodynamic terms have their usual significance and v and g are
voltage and electrical charge in coulombs, respectively. Each term on the
right-hand side of Eq. 2 represents a possible work interaction. These are, in
sequence, thermal, mechanical, chemical, and electrical. Following Eq. 2,
the corresponding efforts are temperature 7, pressure P, chemical potential
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Figure 1 A two-port system, §, with power input e;f; and output ¢,/
e indicated by the half-arrows on the power bonds. § may be a basic two-port
—=f = such as a transformer or any more complex unit which has two points at
i Ip) which power may be exchanged with the environment.

€2

ki, and voltage v; the conjugate flows are the time differentials of entropy,
volume, moles, and charge. Since these differentials are flows, they are given
the symbols J5, Q, J;, and i (the electrical current in amperes).

Table 1 summarizes commonly used power variables in a number of energy
domains. Since network thermodynamics traces power flow it is particularly
suited to analyses of energy transduction between any pair of the four energy
domains: thermal, mechanical, chemical, and electrical.

2.2 Energy Variables

In a dynamic system, effort e(z), flow f(¢), and power P(z) all vary with time
(except in the special case of the steady state). By the formal analogy with
mechanical systems, the time integrals of effort and flow are defined as
generalized momenta and displacements, respectively, in all energy domains.
The momentum p(¢) is defined by
.t .
PO =\ en)dt=po+ | e(r)dt 3)
d »
In mechanical systems, where e(¢) is the Newtonian force F (= m V), Eqg. 3
defines kinetic momentum p (= mV).
In a similar fashion the generalized displacement g(¢) is defined as the in-
tegral of flow, leading, as we shall see, to the concept of a generalized capaci-
tance:

q() = E A dt =gqo+ ‘ fe) dt (4)

Again the term “‘displacement” is borrowed from mechanics, where flow f(¢)
is simply velocity and so g(¢) is a linear displacement in the direction oi the
force. Efforts, flows, momenta, and displacements in the common energy do-
mains are given in Table 1. Oster, Perelson, and Katchalsky (12) point out
that notation is “‘a major difficulty in extending network techniques to ther-
modynamic systems.” There is no better example than the preceding nota-
tion. The definitions of momentum and displacement, although seemingly
logical, are nevertheless unfortunate, since, on theoretical grounds (because
mechanical forces obey Kirchoff’s current law), the roles of flow and effort
are reversed (21). The *““natural” assignment is still used by some authors, for
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example, Karnopp and Rosenberg (19). Displacements and momenta for
various energy domains are summarized in Table 1.

2.3 Energy: Dissipation and Storage

Energy E(z) is the time integral of power:

E@) = S P(t) dt (S)

We may choose to classify energy in three forms—dissipative, Ep(t), capaci-
tative, Ec(¢), and inductive, Ey(z)—according to how we integrate Eq. S.

i

Ep(t) = j eTf dt (6a)
q(1)

E(t) = EKL0) + s e(q) dq (6b)
q(0)
p(t)

E\ () = Ey(0) + j f(p) dp (6¢)
p(0)

Equation 6a represents energy dissipation by a resistive element. To per-
form the integration, and thus determine the energy dissipated, the constitu-
tive relationships between effort and flow, which define a generalized resis-
tance ®,, are required:

e=&f or f=& le )

In the simplest case ®, is a constant resistance R, and Eq. 7 defines linear
constitutive relationships such as Ohm’s law (V = Ri) or for a chemical dif-
fusion (in the simplest case of uncoupled flow) e; = R; J; where, as will be
discussed later, e; = Ay, .

In Eq. 6b E(t) represents energy stored by displacement in a capacitative
element. For its evaluation, the relationship e(q) (effort as a function of
displacement) is required:

e=<1>c"q=<bc‘1jfdt ®)

In Eq. 8 @ is a generalized capacitance. When & is constant (C), the
familiar relationship for an electrical capacitor is obtained:

e=q/C or v=gq/C (9a)
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f=C(de/dt) or i=C(dv/dt) (9b

(The relationships on the right are specifically electrical.)

The form of Eq. 8 shows that effort is stored in the capacitor by integrating
the flow over a time interval (z). This implies that flow is the natural input (or
independent) variable. As we shall see, this natural or preferred form of the
capacitance relationship is indicated by a ““causal’ stroke on the bond to the
capacitor, indicating that flow is the source of capacitance (Section 2.4).

By similar reasoning, the energy £, (¢) of Eq. 6c¢ is obtained by evaluating
flow as a function of momentum f(p):

f: q’L_lp or df/dl = ¢L4| e (10)

The natural, independent input to an inductor is effort. Again, by analogy
with electrical systems with constant inductance &, = L and Eq. 10 defines
Henry's law:

di/dt = v/L or v =L (di/dt) an

with constant inductance L.

The three expressions for energy derived from Eq. 6 define three funda-
mental elements of the bond graph: the resistor R, capacitor C, and inductor
L. Their application is now extended far from their originai meanings as
components of electrical circuits. In electrochemical systems the inductor is
not represented by any known process. This is unfortunate (as we shall see)
because as in electrical circuits a capacitor coupled to an inductor oscillates
naturally. Chemical and membrane oscillators operate by much less obvious
interactions (Section 3.6). Atlan and Weisbuch (22), however, have sug-
gested a mechanism by which inductancelike effects may occur in chemical
reactions.

2.4 One-Port Elements and Causality

The three possible methods for integration of power to obtain energy (Eq. 6)
correspond to three mathematical (and in some cases discrete physical) en-
tities, the resistor, capacitor, and inductor. They are represented in bond
graph notation as one-port (1-port) or two-terminal devices, because the
function of each is defined by one effort and one flow, and so by one bond.
Their bond graphs, which are given later, are symbolic representations of
their constitutive relationships, defined in Section 2.3 (Eqgs. 7, 8, and 10). In
electrical circuits these elements take concrete form as specific components
of the circuit. In other energy domains, their presence does not take such
tangibie form.
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The resistor’s role is purely dissipative and, since it is the only seat of
dissipation, all irreversible processes must have resistors in their bond graph
representation. Electrical, hydraulic, and chemical diffusion examples are
seen in Figure 2. '

The capacitor, on the other hand, stores energy without dissipation and so
operates reversibly. Figure 3 presents capacitors with bond graphs. The
chemical capacitor is more conceptual than its electrical or mechanical
analogs (Figures 3¢, 3d), although it has much in common with the hydraulic
example (Figure 3e). The chemical capacitor is just a volume element in a
chemical or biological system which accumulates molecules that raise their
own chemical potential (effort) in that volume: should any local volume
receive more molecules by inflow (J;") than are removed by outflow (J;"), the
resultant net accumulation of chemical species would raise its local concen-
tration and so raise its chemical potential, as seen in Figure 4. In the steady
state all state variables, including local chemical potential, are time invar-
iant. In consequence the capacitors within such a system will not contribute
or detract from flows and may, in that specific situation, be ignored. Further
discussion of the chemical capacitor is deferred to Section 3.1.

The bond graph of an element is simply a symbolic representation of the

(@) (b)
electrical hydraulic chemical
| N1 N
PL\\——J P ,uf\\\ a’
v R volume f1 Iwo ' 2 ‘Ii
P:=P-P Ai:,u;-ui"
v=RI P=RQ '«i:R'Ti
<R _P \r I N
i Q T

(c) (d) (e)

Figure 2 The resistor: (a) bond graph; (b) constitutive relationship (nonlinear); (c, d, e)
resistors in electrical, hydraulic, and diffusional systems.



10

f=q4

(a)

electrical mechanical hydraulic

V=X

:]_ “x—> P
v € F a—Aand—oF 0
I spring a— —>Q"

LN AN _P.c
; F Q
q=Cv p=mV i
C = m(mass) lewt)sCP

(c) (d) e}

Figure 3 The capacitor: (a) bond graph; (b) constitutive relationship (nonlinear); (c, d, ¢)
capacitors in electrical, mechanical, and hydraulic systems. Note that velocity V and force F are
effort and flow, respectively, in mechanical systems (Section 2.3, Table 1).

constitutive relationship it obeys. For any 1-port element the constitutive law
may either define effort as a function of flow or vice versa (Egs. 7-11). The
convention is that the independent variable (input) is on the right-hand side
of the constitutive equation. Since the bond graph of a dynamic system is
itself an algorithm by which the constitutive laws of all the elements may be
combined to give the dynamic behavior of the whole, it is essential not only to
assign positive directions for power flow (which has been done, using the
half-arrow as in Figures 1-8) but, additionally, to assign the natural, inde-
pendent power variable—either effort or flow—to each. Paynter (16) has
discussed this problem and augmented the bond graph with *‘causal” strokes
to assign the independent input variable for each element. The causal stroke
is placed at the end of the bond to which effort (defined as input) is directed.
In consequence, the end without the causal stroke is the end to which flow is
directed (as input) to some adjacent element of the bond graph. As an exam-
ple, = R signifies that flow into the resistance is the independent variable,
defining output effort and the constitutive form, ¢ = &, f. By the reverse
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a7
[T R
A

3

ul —

1
—l '
Hi

u
},_IAC
T
I

t
-1
e ¢ /Ji dt Figure 4 The chemical capacitor.

argument — R signifies input effort defining output flow and the inverse
form of the resistance equation, / = &, ! e. Causality may be assigned arbi-
trarily to resistors, because the relationship between flow and effort is purely
algebraic and does not involve integration or differentiation. Step functions
for effort or flow therefore do not involve infinite power pulses, which, as we
shall see, is a problem for both capacitors and inductors.

For a capacitor, which is naturally defined as an integrator of flow, gene-
rating effort (Eq. 8), the preferred causality will be = C. The alternative
—J C signifies the inverse relationship, f = d(®ce)/dt and a step in effort
would require flow and hence power to become infinite (8, 19). By similar
reasoning, the natural causality for an inductor will be —| L, indicating the
constitutive relationship

=7 | edt

Causal strokes must be assigned to the bond graph before it is analyzed and
causal considerations for the remaining bond graph elements will be dis-
cussed as they are introduced. A very useful logic for causal assignments has
been developed by Karnopp and Rosenberg (19). Since the causal implica-
tions of capacitors and inductors are of such importance, they are assigned
their preferred causalities first and those causal implications are used to ex-
tend assignments to the whole bond graph.

The only other 1-port elements are the sources of constant flow S( f) anq
constant effort S(e). Their symbols and causalities, which are obligatory in
their definitions, are shown in Figure S. The only other possible source or
sink for power is the capacitor. This may be an adjacent reservoir of limited
volume of either a concentrated solution from which molecules will flow or a
more dilute solution inté which molecules will flow. In the process, however,
it will be continuously depleted (or concentrated) and so will act as a variable
source (or sink) for power.
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SOURCES

S()——> constant flow (output)

Sle)——>| constant effort (output)

C——> variable effort (output) Figure S Sources: S(f). constant flow; S(e).

constant effort and capacitors. which repre-

C<——— wvariable flow (1nput)

1 sent variable sources or sinks.

2.5 Two-Port Elements

There are only three fundamental 2-port elements: the transformer, —TF —,
transducers, —TD—, and gyrators, —GY—. In all cases they conserve
power, so that the power entering by one bond, (¢, f)), will equal that leaving
by the second, (e; f>), as seen in Figure 1. In Figures 6 and 7 the through-
power convention indicates that power is considered to flow through the
2-port. Transformers and transducers alter the outgoing effort and flow in
inverse proportion, as determined by the modulus r according to the consti-
tutive laws:

e, = (r)e; L . TF}

l (12a)

Since, by definition, power is conserved (e, f; = e, f>). Fq. 12 also implies a
second relationship:

i = f2/tr) - | TF | (120)
J1

The causal implications of Eqs. 12a and 12b are given above. Although the
distinction is not universally observed it seems better to reserve the term
“transformer’’ for a device that operates within one energy domain, such as
an electrical transformer, a lever, or a gear (Figure 6). The term “trans-
ducer’ is reserved to indicate identical constitutive relationships in which
energy is converted from one domain to another or even from one chemic: |
component to another. Transducers occur in bond graphs for chemical reac-
tion schemes (Section 4) and in such common examples as electric motors
(electromechanical), heat engines (thermomechanical), and a large number
of biophysical processes such as muscle action (mechanochemical).

The third 2-port is the gyrator GY, in which the effort of one port is pro-
portional to the flow of the other. The constitutive relationships are given in



