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PREFACE

This volume is an account of the proceedings of a conference on transcen-
dence theory and its applications held in the University of Cambridge during
January and February, 1976. It consists of sixteen papers, contributed by
leading mathematicians in the field and containing detailed expositions of
their latest researches. Reflecting the considerable current activity in this
area, a wide variety of original results are established, emanating, in several -
instances, from a long series of earlier developments. The authors have been
encouraged, therefore, to explain fully the background to their studies and, -
in general, to make their memoirs as readable as possible; we hope that
they have succeeded.

The papers have been arranged in groups with a common theme, rather
than in lexicographical order as is perhaps more usual in works of this nature.
The first five consist of an account of the most recent progress in connexion
with the theory £ linear forms in the logarithms of algebraic numbers and
its applications, and they constitute, in fact, an essentially self-contained
essay on the subject. A similar remark applies to the next four papers which
are devoted to various topics in the transcendence theory of elliptic and
Abelian functions. There follow five articles of a more miscellaneous
character relating, in particular, to linear and algebraic independence of
meromorphic functions and to arithmetical properties of polynomials in
several variables. The work concludes with two papers on an old, but
recently much revived transcendence method of Mabhler.

A useful introduction to this volume is provided by the book Transcen-
dental Number Theory by A. Baker (Cambridge University Press, 1975).
Other valuable texts are the monographs by M. Waldschmidt (1974), D. W.
Masser (1975) and K. Mabhler /1976) in the Springer Lecture Note Series.
Indeed, we believe that the present work, if read in conjunction with these
tracts, will bring the reader to the forefront of knowledge in essentially all
major aspects of the subject.
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We should like to express our gratitude to the Department of Pure Mathe-
matics and Mathematical Statistics in Cambridge for providing the financial

support that made the conference possible, and to the Academic Press for
their willing cooperation in the production of these Proceedings.

Cambridge, 1977 A.B.
D.W.M.

&



e-M 5

CONTENTS

CONTRIBUTORS
PREFACE

1.
2.

10.

11.

12.

13.

14.
15.

. A TRANSCENDENCE MEASURE FOR . By P L Cljsouw ..

THE THEORY OF LINEAR FORMS IN LOGARITHMS By A. Baker
LINEAR FORMS IN LOGARITHMS IN THE p-ADIC CASE. By A. J. van

der Poorten ..

. APPLICATIONS OF THE GEL FOND—BAKER METHOD TO0 DI0o-

PHANTINE EQUATIONS. By T. N. Shorey, A. J. van der Poorten,
R. Tijdeman and A. Schinzel

. PRIMITIVE DIVISORS OF LUCAS AND LEHMER NUMBERS By C: L

Stewart

SOME VECTOR SPACES ASSOCIATED WITH TWO ELLiPpTIC FUNC-
TIONS. By D. W. Masser

. INHOMOGENEOUS LINEAR FORMS IN ALGEBRAIC POINTS OF AN

ELLipTIC FUNCTION. By M. Anderson

. A NoTE oN ABELIAN FuNcTIONS. By D. W. Masser

ALGEBRAIC VALUES OF p-ADIC ELLIPTIC FUNCTIONS. By D.
Bertrand

A MEASURE OF LINEAR INDEPENDENCE FOR SOME EXPONENTIAL
FuNcrTions. By W. D. Brownawell

ON FUNCTIONS OF SEVERAL VARIABLm HAVING ALGEERAxc
TAYLOR COEFFICIENTS. By M. Waldschmldt

A TRANSCENDENCE CRITERION FOR MEROMORPHIC FUNCTIONS.
By D. Bertrand

SOME ARITHMETIC PROPERTIES OF POLYNOMIALS IN SEVERAL
VARIABLES. By H. L. Montgomery and A. Schinzel

SOME REMARKS ON SEMI-RESULTANTS. By W. D. Brownawell

TRANSCENDENCE AND ALGEBRAIC INDEPENDENCE BY A METHOD
OF MAHLER. By J. H. Loxton and A. J. van der Poorten

ix

- & <

29

59.

79
93

101

121
145

149
161
169
187

195
205

211



X CONTENTS

16. LINEAR FUNCTIONAL EQUATIONS AND ALGEBRAIC INDEPENDENCE.

By K. K. Kubota .. - = o iy o, ..o 227
AUTHOR INDEX .. .. o3 .. .. .. .. 231
SuBJECT INDEX .. .o .. .. .. s .. e 233

Q.. o»



, CHAPTER 1
The Theory of Linear Forms in Logarithms

A. BAKER
Trinity College, Cambridge, England.

1. INTRODUCTION

We shall begin with a short account of the history of the subject and we
shall then establish two further results in the field that include many of the
earlier theorems as special cases. We shall write, for brevity,

A=B,+ Bloga, +...+ B, loga,

where the «’s and f’s denote algebraic numbers. We shall assume that the
o’s arenot 0 or 1, that the f’s are not all 0, and that the logarithms have their
principal values. The latter assumption involves no essential loss of generality,
since the results that we shall describe would apply to any values of the
logarithms if the constants were allowed to depend on their determinations.

The first result on the non-vanishing of A goes back to the famous work of
Hermite[26] of 1873 in which he proved that e, the natural base for logarithms,
is transcendental; this implies that A # 0 when n = 1, Bo=1,B8,=—1
Hermite’s work rested on the construction of simultaneous approximations
to the exponential series e%,...,e" by rational functions, and it can be
regarded as the main source of modern transcendence theory. The work was
generalized by Lindemann [28] in 1882; in his classic memoir, he proved that
A # Owhenn = 1forall B, B, not both 0, and this yields, in particular, the
transcendence of 1 = — ilog(— 1). The next major step was taken by Gel’fond
[17] in 1929; he showed that A # 0 when n = 2, B, = 0 and B,/B, is an
imaginary quadratic irrational, whence, in particular, e = (—1)~' is tran-
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2 A. BAKER

scendental. Gel'fond’s argument has its origins in earlier studies on integral
integer-valued functions (cf. [16]), and it depends on an analysis of an extra-
polation formula for the exponential function similar to that occurring in some
well-known papers of Pélya and Hardy. Gel'fond’s result was extended to real
quadratic irrationals §,/8, by Kuzmin [27] in 1930; the work implies, in
particular, that 22 is transcendental. The result was further extended by
Gel'fond [18] and Schneider [37] independently in 1934; they succeeded in
covering all B, B, with B,/B, irrational, and thereby solved the famous
seventh problem of Hilbert. One of the main features of the work is the con-
struction by means of Dirichlet’s box principle of an auxiliary function that
vanishes to a high order at certain extrapolation points; some antecedents
of the method can be found in the writings of Siegel [42] and Mahler [29],
and it has proved to be remarkably powerful.

The Gel'fond-Schneider theorem was generalized to arbitrarily many
logarithms of algebraic numbers by the author [2:1,1I] in 1966; it was shown
in fact that A # O when B, = 0 and either B,,..., B, or loga,,.., log o, are
linearly independent over the rationals, and shortly afterwards the author
[2:1II] showed further that A # O when B, # 0. We shall subsequently refer
to the conditions 8, = 0and B, # Oas the homogeneous and inhomogeneous
cases respectively ; and we shall speak of the general case when either condition
can occur. The author’s work depended on the construction of an auxiliary
function of several complex variables in place of the function of a single
variable as employed by Gel'fond, and it also involved a new extrapolation
technique. Here the range of extrapolation was extended and the order of the
derivatives reduced, whereas, in previous work, the range was essentially
fixed while the differential order increased.

We shall be concerned henceforth with lower bounds for |A|in terms of the
degrees and heights of the «’s and f's; it will be recalled that the height of an
algebraic number is the maximum of the absolute values of the relatively
prime integer coefficients in the minimal defining polynomial. We shall
suppose that the height of a; is at most A (=4, and we put 4 = max 4;.
Further we shall suppose that the height of B, is at most B(=4). The field K
generated by the a’s and B’s over the rationals will be assumed to have degree
at most d. The first theorem giving a positive lower bound for | A| was obtained
by Morduchai-Boltovskoj [32] in 1923. He showed that |A| > B~ when
n = 1 and B, B, are rational integers, where C depends only on a, (see also
[23]). In 1935 Gel'fond [19] proved that if n=2, B, =0, x> 5 and if
log @, /log o, is irrational then

IA| > Gez 8, (1)
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where C > 0 is effectively computable in terms of o, «,, d and k. The result
was obtained by a refinement of the method he had used to solve Hilbert’s
seventh problem, a particular feature being the utilization of the Hermite
interpolation formula in place of the maximum-modulus principle. In 1939,
Gel'fond [20] relaxed the condition x > 5to x > 3, and, in 1949, he relaxed
it further to x > 2 [22]. He also showed, at about the same time [21], that if
a,, ... o, are multiplicatively independent then, as a consequence of the
Thue-Siegel theorem, an inequality of the form |A| > C e™®? holds for any
6 > O where B, = 0 and B, ..., B, are rational integers, and C > 0 depends
oply on 6, d and the «’s; but here C cannot be effectively computed. We shall
subsequently refer to the conditions g, = 0 and B;, ..., B, rational integers
as “therational case”. In fact, in this case, it is easy to show by a Liouville-type
argument that if A # 0 'then

|A| > (d4)~*m; )

moreover the dependence of (2) on 4 and n is essentially best possible. But,
from the point of view of applications, it is crucial to have a slightly stronger
dependence on B, and thus (2) has proved to be of value only as a supple-
mentary estimate.

In 1966, by means of the many variable techniques referred to earlier, the
author [2: I, IT] showed that, for any x > 2n + 1, the inequality (1) holds in‘
the homogeneous case, where C > 0 depends only on n, d, k¥ and A. Further

like all constants mentioned subsequently, C is effectively computable. The

work was extended to cover the inhomogeneous case in 1968 [2: III]; here
the condition on k was relaxed to k > n + 1 in general and to k > n when
B, = 0.Shortly afterwards, Fel'dman [11], [12], using a rather more compli-
cated auxiliary function, succeeded first in reducing the condition to « > 1,
and then proved that indeed, if A # 0, we have |A| > B~€, where C depends
only on n, d and A ; and here the dependence on B is best possible. The value
for C, as calculated by Fel’dman ,takes the form C’(log A)*, where x depends
only on n, and C’ depends only on n and d.

In another direction, the author [2: IV] proved in 1968 that if, in the
rational case, we have 0 < |A| < e™?® for some & with 0 < § < 1, and if
d > 4, then : '

B < (4 671 d*" log A)*"+ 1, (3)
and it was implicit in the same paper thatif A = 0 but the f’s are not all 0 then

in fact A = 0 for some §,, ..., B, not all 0, with absolute values at most B,
where B satisfies (3) with 6 = 1. The estimate (3) was derived mainly for
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computational purposes and it remains the most useful result of its kind
nestablished to date. Frequently in applications, however, it is known that one
ofthe a’s has a large height relative to the remainder, and, in this connexion, it
was proved by the author [3] in 1968 that (3) could be replaced by B <
C(log A)foranyx > n + 1,where C dependson onlyn,d, x and the maximum
A',say,ofA,,..., A, _,.Thecondition on x could readily be relaxed to x > n,
and a further relaxation to k¥ > n — 1 was obtained by Fel’dman [13], [14].
Moreover, in 1971, Stark and the author [7], in a joint study motivated by
certain class number problems, reduced the condition to x > 1, and here
Kummer theory played an important réle.
Several of the preceding theorems were combined by the author in a general
result established in 1972 [4:I]. It was shown, namely, that if, in the rational
case, we have A # 0 then

IAl > C-logA logB, (4)

where C > 0 depends only on n, d and A’. The result is plainly best possible
with respect to B when A is fixed and with respect to 4 when B s fixed. It was
generalized in 1973 to yield

IAI > (5/Bf)Cl°8A e-—aB (5)

for any 6 with 0 < § < 1, where B’ = |b, | (>0), and C > 0 depends only on
n,d and A’ [4:II]. Plainly (5) gives (4) on taking 6 = 1/B, and furthermore if
b,= —land 0 < |A| < e 2, where 0 < ¢ < 4, then (5) gives B < Clog 4,
where C depends only on n, d, A’ and ¢. The latter result furnishes, as a corol-
lary, an effective improvement upon Liouville’s theorem concerning rational
approximations to algebraic numbers (cf. [3] and [15]). An inequality of the
same kind as (4) but uniform with respect to each of the parameters 4,, ..., 4
was derived by the author [4: IIT] in 1975; it was proved, namely, that

IAI ~ B—Cnlogn, (6)

where
Q=1logA,...log4, 7

and C > 0 depends only on n and d. Further, van der Poorten [33] recently
noted that log Q in (6) can be replaced by log ', where Q' = Q/log 4,, and
then (6) includes (4). The refinement depends on a strengthened version of one
ofthe preliminary lemmasin [4:I],as obtained by Tijdeman [45] in connexion
with his well-known work on Catalan’s equation (see Lemma 1, below); in
fact Tijdeman used the lemma to give an expression for C in (4) of the form
exp{C'(log A*}.

LY
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An analogue of (4) in the general case was established by the author [5] in
1973, viz:

|A| > (B log A)~Cles4, ()

where C > 0 depends only on n, d and A'. Further, Stark [44], using certain
techniques from the classical theory of algebraic numbers, showed that if, in
the homogeneous case, 0 < |A| < e~ %2, where § > 0, then, for any ¢ > 0, we
have B < CQ!**, where C depends only on n,d, ¢ and 6. Furthermore, Shorey
[41], developing Stark’s work, proved that if , = —1 and A # 0 then

|A] > exp{— CQ(log Q)* (log QB)? (log(Q log B))***2+¢},

where C = (nd)™ and ¢ > 0 depends only on . The expression for C is better
than any given hitherto, and the improvement rests on a new idea concerning
the size of the inductive steps. The result has been of particular value in
connexion with problems concerning the distribution of the primes (cf. [36]).

This brings our discussion essentially up to date but, before closing, it
should be said that we have by no means covered all the papers on the subject.
For instance, Ramachandra, Shorey and others have obtained still sharper
results when the o’s are near to 1 (cf. [1], [10], [36] and [40]), several precise
estimates have been given by Mahler, Fel’ldman and others in the case n = 1
(cf.[8],[9], [30] and [31]), and there is much related work (cf. [6], [23], [24],
[25], [34], [35], [38], [39] and [43]). There is moreover an extensive p-adic
theory, and this will be the theme of the following memoir in these Proceedings.

2. RESULTS

We shall adopt the notation of Section 1 without change. Thus A is the
linear form specified at the beginning of Section 1, where ;and f; are algebraic
numbers with heights at most 4 {(=4) and B(>4) respectively. The field K
generated by the o’s and ' f’s over the rationals has degree at most d, Q is
defined by (7), and Q" = Q/log 4,. We prove:

THEOREM 1. If A # O then |A| > (BQ)~ "% where C = (16nd)>°°".

When B, = 0 and B,,..., B, are rational integers, the bracketed factor Q
can be eliminated to yield:
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THEOREM 2. If, in the rational case, A # O, then |A] > B~ CR18¥ ' yhere
C = (16nd)*°°".

It will be seen that no particular significance attaches to the constant 200
occurring in the expression for C, and it could in fact be substantially reduced
if, for instance, one imposed minor restrictions on n or d. The theorems
include (4), (6), (8) and the results of Stark and Shorey referred to above; and
they could certainly be generalized to include also (5). Further, as noted by
van der Poorten [33], Theorem 2 yields at once a result announced by Chud-
novsky to the effect that |A| > B~C*¢2; for if O’ < B then the assertion is
obvious, and if @ > B then it follows from (2). But the theorems do not
include (2), and nor do they furnish numerical bounds as precise as those given
by (3). In fact, the analogue of (3), applicable when A = 0, is utilized in the
proof of Theorem 1, and both (2) and (3) occur in the proof of Theorem 2.
Apart from this, however, and also some preliminary lemmas relating mainly
to Kummer theory, the proof of Theorem 1 will be essentially self-contained.
Theorem 2, on the other hand, is new only with respect to the value of C and
it will suffice therefore to give the demonstration in outline.

In the course of this conference I learnt that Cijsouw and Waldschmidt
had obtained a result similar to Theorem 1 but with Qin place of Q' and with
an unspecified value of C; and Loxton and van der Poorten had derived
Theorem 2, with in fact rather better numerical values, but subject to a
restrictive condition concerning the gth roots of a,, ..., a, (cf. Section 6).

3. PRELIMINARIES
For any integer h > 1, let v(h) denote the least common multiple of 1,..., h.
Let
Alx;h) = (x + 1)(x + 2)...(x + h)/h!

" and let A(x; 0) = 1. Further, for any integers [ > 0, m > 0, write

1 ar

A(x;h, l,m) = ;' (E;

(AGxs; b))

The following lemma, due to Tijdeman [45], improves upon an earlier version
given in [4:1].

oK
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LemMa 1. Let g and gx be positive integers and let A = A(x;h,1,m). Then
q*™(v())"A is a positive integer and we have A < 4'*®_ y(h) < 4*.

Proof. For the last estimate we have merely to note that the number n(h) of
primes p < h is at most $h/log h, whence

V(h) al H p{logh/logp] < H h = hn(h) < 4h.

p<h p<h

To estimate A we observe that

= (AGGh) T ((x + ) ... (x + )78

where the summation is over all selections j, . . ., j, of m integers from the set
, h repeated [ tlmes and the nght-hand s1de is read as 0if m > hl. Thus

for x > 0 we have

A< ([x] + h+ 1)' (hl) < 2@xHRIFR _ qlx+h),

h m

Now from the above summation formula it is plain that g" ~"™(h!)'A is a
positive integer. Further, by a well-known counting argument, we see that if
p" is the highest power of a prime p that divides h! then also p” divides
h!g"A(x; h), provided that (p,q) = 1. Furthermore, the same holds if any
individual factor gx + gj in g*A(x; h) is replaced by v(h). Thus the denomi-
nator of g* ~™(v(h))"A, when expressed in lowest terms, is free of all primes that
do not divide q. To complete the proof we recall that r < h, whence, if p
divides g, then g" contains at least as many factors p as (h!)'. The desired result
clearly follows. It improves upon the original version to the extent that v(h)
now replaces the lowest common multiple of gx + g,...,gx + gh.

We record some further lemmas that will be needed later. The proofs of
Lemmas 2 and 3 are given in [6 pp. 13, 26] and the proofs of Lemmas 4 and
5in [7]. Lemma 2 is obtained as a consequence of Dirichlet’s box principle;
it is often referred to as Siegel’s lemma, though in fact the form we shall give is
slightly more precise than Siegel’s. Lémma 3 provides a basis for the space of
polynomials with bounded degree; a particular case was first utilized in this
context by Fel'dman [11]. Lemma 4 arises from Kummer theory and Lemma
5 follows from Gauss’ lemma in algebraic number fields. As remarked in
Section 1, Lemma 6 is implicit in the work of [2: IV].

LeEMMA 2. Let M, N denote integers with N > M > 0 and let u, j(l i< M,
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1 < j < N) denote integers with absolute values at most U(=1). Then there
exist integers x,, ..., Xy, not all 0, with absolute values at most (NU)M/® ~M)
such that

LEMMA 3. If P(x) is a polynomial with degree n > 0 and with coefficients in a
field K then, for any integer m with 0 < m < n, the polynomials P(x), P(x + 1),
..., P(x + m)and 1,x,...,x""™"! agre linearly independent over K.

LEMMA 4. Let a,, ..., o, be non-zero elements of an algebraic number field K
and let a}’®,...,al'’® denote fixed pth roots for some prime p. Further let
K' = K(a}’?,...,a}/). Then either K'(«}/?) is an extension of K’ of degree p or
we have

o, = oft...odnoiyP
for some y in K and some integers j,,...,j _, with0 < j < p.
LeMMA 5. Suppose that a, B are elements of an algebraic number field with
degree d and that for some positive integer p we havea = BP. If aais an algebraic
integer for some positive rational integer a, and if b is the leading coefficient in

the minimal defining polynomial of B then b < a®?.

LeEMMA 6. If, in the rational case, A = 0, then in fact A = 0 for some integers
By -, B, not all O, with absolute values at most

(4n2d2n log A)(2n+ l)z.

4. NOTATION

We assume now that the «’s and f’s are elements of a field K with degree at
most d(>8), and we put k = (nd)*°". We define

L=kQlogQ', h=L_, +1=/log(BL)],

L; = [k™"L/log 4] 0O<j<n),

where A; = (', and & = 1/(3n). We introduce the function

o«



