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Chapter 0O

Introduction

baf man eine ... Gruppe ... an die Spike flellen und den Stof
nady ben Untergruppen orbnen foll, die in der Gefamtgruppe erbalten find, ...
die ®ruppentbeorie al8 ordnended Pringtp im Wirrfal vder Erfdeinungen zu
benugen.
— Gelig Kletn

Geometry is one of the oldest and most basic branches of mathematics, as
is algebra. Nowhere is the interplay between the two more pronounced than
in group theory, and that interplay, with group theory acting as a mediator
between geometry and algebra, is the theme of this book. Group theory had
its genesis in a decidedly algebraic context, solving algebraic equations (Galois
theory). It was Felix Klein in his “Erlanger Programm”! who put group theory
at the basis of geometry. At that time (1872) he had been pursuing studies with
Sophius Lie on one-parameter families of algebraic curves?, whose invariants, as
they had noticed, were correlated. This was the advent of continuous groups,
here essentially one-parameter subgroups of the automorphism group of the pro-
jective plane, PGL(3,C). Klein advocated considering geometry as “invariance
properties under a group of automorphisms”, and using groups as a basis of
classifications of objects, which otherwise do not seem easily related with one
another (like formulas for elliptic functions). We shall take this standpoint and
consider the geometry of a very special kind of object, namely that of arithmetic
quotients of bounded symmetric domains. We shall require groups at several
different levels.

Level 1: Real Lie groups and symmetric spaces. A Riemannian manifold X is
said to be symmetric, if at any point z € X there is a symmetry o,. A symme-
try is an automorphism of X (i.e., a diffeomorphism preserving the Riemannian

! «“Vergleichende Betrachtungen iiber neuere geometrische Forschungen” was the title of the
talk

2Uber diejenigen ebenen Kurven, welche durch ein geschloBenes System von einfach un-
endlich vielen vertauschbaren Transformationen in sich iibergehen



2 CHAPTER 0. INTRODUCTION

structure) which is involutive and has z as an isolated fixed point. The auto-
morphism group of a symmetric space X, Aut(X), is a real Lie group, and the
symmetry at each point of X defines an involution of Aut(X) by g = o7 'ogoa,.
X decomposes into a product X = X; x --- X X, where each X; is irreducible;
on each irreducible component the curvature is negative, zero or positive. This
occurs when Aut(X) is non-compact simple, abelian or compact simple, respec-
tively. The abelian case yields the Euclidean geometry, and the other cases yield
a correspondence:

{real simple Lie groups} +—
{irreducible symmetric spaces of negative or positive curvature} .

Classifying the symmetric spaces amounts to a classification of involutary auto-
morphisms of compact, simple Lie groups, and was first accomplished by E. Car-
tan in 1926.

Level 2: Discrete subgroups of Lie groups and locally symmetric spaces. Let
G = Aut(X) be as in Level 1, and let I' C G be a discrete subgroup, which acts
properly discontinuously on X. This assures that the quotient I'\ X is a Hausdorf
space, and we assume, henceforth, it is of finite volume; I' is then called a lattice
in G. The notion of symmetric spaces of Level 1 can be expressed locally by
the condition: the curvature tensor is parallel with respect to the Levi-Cevita
connection, and a Riemannian manifold Y is called locally symmetric if this
condition is satisfied. The universal cover Y of ¥ is a symmetric space as in
Level 1, and of course Y = 71 (Y)\Y, with the fundamental group m (Y") acting
properly discontinuously. If ¥ is compact, then 7, (Y) is finite. Interesting things
occur if Y is non-compact, so we get a correspondence, specializing that of Level
L,

{pairs (G,T), I' alattice in G, G a non-compact
—y

semisimple real Lie group
{locally symmetric spaces of non-positive cur—}
vature and finite volume '

Remark: We must formulate this in terms of semisimple groups, since the
quotient I'\ X may be irreducible, even if the domain X is reducible.

Level 3: Normal subgroups of finite index in discrete groups and locally sym-
metric spaces with automorphism groups. Discrete subgroups I' C G as in Level
2 tend to have lots of normal subgroups of finite index, I C I'. Consider
the locally symmetric spaces I'\X and I"\X. Since I is normal in T, the fi-
nite group I'/T” acts on I'"\X with quotient I'\X, i.e., the natural morphism
mpp - I'\X — I'\X is a Galois cover. Assuming I' is torsion free it is étale,
while if T’ has torsion this cover will be branched. In this way we get locally
symmetric spaces with automorphism groups (here I'/T") and a correspondence

triples (G,T,I"), with (G,T') as in
{Level 2, T' 4T, [[: ] < o0 }‘_*
locally symmetric spaces of non-positive curvature and of
{ﬁnite volume with automorphism group }



The more interesting the group I'/T” is, the more interesting the automorphism
group of I'"\ X is.

Our concern in this book is basically with Level 3; we are interested in the
geometry of particular locally symmetric spaces with interesting automorphism
group. We will be placing two conditions on these data, namely we assume the
discrete group I is arithmetic and the symmetric space X is hermitian; these two
conditions are logically independent. Consider the first. Assuming the discrete
group I is arithmetic necessitates introducing a new object into the picture, an
algebraic group, which we may assume is defined over QQ. This algebraic group,
call it Gg, is, compared with the real Lie group, a rather mysterious object: it
is an algebraic scheme defined over Q. In fact, the real Lie group is just “a tiny
part” of Gg, namely the group of R-valued points of the algebraic group:

GQ(R) =~ G.

This very statement shows that, as far as notation is concerned, things can get
very confusing in this business, and we must be very careful in choosing notation
and making statements.

A discrete group I' C G is arithmetic, if there is a Q-group Gg with I' C
Go(Q) C Go(R) = G, and a rational representation p : Gg — GL(Vgp) such
that p~!(GL(Vz)) and T are commensurable. This presupposes a choice of lattice
L = Vg such that Vg = L®Q, and this is, or course, not entirely canonical. That
is why the notion “preserves a lattice” is only well-defined on a commensurability
class of groups. Now, note that since Gg defines G, it also defines X, and this
leads us to refine our levels of groups as follows:

Level 0: start with a semisimple algebraic group Gg defined over Q;

Level 1: the group of R-points of G is a real semisimple Lie group, Gg(R) = G,
and defines a symmetric space X

Level 2: choose a lattice £ C Vg and a representation p : Gg — GL(Vy); this
defines an arithmetic group

G :={g € GL(Vg)|g(L) C L};

Level 3: as above, normal subgroups I C G, determine arithmetic quotients
with automorphism group.

There is a subtle point about algebraic groups which we mention here. Even
if the group Gg is simple over Q (that is, has no normal Q-subgroups), there
will, in general, be a finite field extension k|Q for which the lifted group Gy
is no longer simple, but rather only semisimple, a product of simple groups.
Consequently, the real group Gg, and hence the symmetric space X, is also a
product. In particular, it can and does happen that some factors of Gg may be
compact, so this goes beyond the description we originally started with. It was
proven quite early by Borel and Harish-Chandra that the existence of a compact
factor of Gr implies that Gg is anisotropic, and this in turn implies that any
quotient I'\X for an arithmetic group I' C Gg(Q) is compact. A deep theorem
of Margulis states that if the R-rank of Gg is > 2, then any discrete subgroup
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I’ C GRr is automatically arithmetic. So the condition “I" is arithmetic” is only a
condition for the rank 1 real Lie groups.

The second assumption we will be making, which is much more serious, is that
X is hermitian symmetric. By definition, this means X has a complex structure
compatible with the symmetric Riemannian structure, in other words that X is
Kahler, with the Riemannian part of the hermitian metric being symmetric. In
particular, X is Kihler homogenous, and this implies that the compact dual X
of X is an algebraic variety, and in fact it is a rational variety. There is a natural,
group theoretic embedding X C X, displaying X as an (homogenous) open (in
the Euclidean topology) subset of an (homogenous) algebraic variety. But it
turns out that this assumption implies much more. First, taking the topological
closure (in the Euclidean topology) of X in X defines the boundary of X; this
decomposes into irreducible pieces (holomorphic arc components), defining the
boundary components of X. Then the following facts hold:

i) each maximal parabolic of Gg is the normalizer of a boundary component;

ii) for I' C Gg arithmetic, the quotient I'\ X can be compactified to a normal,
analytic space (I'\X)*, which is projective algebraic (I'\X)* c PV;

iii) the embedding (I'\X)* C PV is given by modular forms (with the usual
exception of dimension 1 factors);

iv) there is a smooth compactification I'\ X which resolves the singularities of
'\ X*, and for which A =T'\X —TI'\X is a normal crossings divisor.

Items ii) and iii) are the Baily-Borel embedding, iv) the toroidal compactifi-
cation. These results display the fact that in this case the locally symmetric
space I'\ X is an algebraic object, or more precisely, an object of algebraic ge-
ometry. And so we arrive at one of the main themes of this book: the geometry
of arithmetic quotients of bounded symmetric domains is geometry in the sense
of algebraic geometry. Let us pause for a moment to explain this statement.
Generally speaking, a locally symmetric space is an object in the category of
Riemannian manifolds, so geometry of them is clearly geometry in the sense of
Riemannian geometry. Everything is expressed in terms of curvature, and the
geometry is the geometry of that curvature tensor. On the other hand, in alge-
braic geometry, there is no curvature tensor to consider. Rather, one considers
embeddings in projective space (like I'\X* C PV) and their properties: singu-
lar locus, hyperplane sections (subvarieties), invariants (of the isomorphism class
under PGL(N +1,C)), inflection points and the like. If a variety V has an inter-
esting automorphism group, this usually induces a projective representation of
the group, and there will be some “invariant configuration” in the ambient PV,
of which V' is only one aspect. This is what we understand by geometry when
we speak of algebraic geometry of arithmetic quotients of bounded symmetric
domains.

We first explain the geometry of the boundary. The Satake compactification
X} (we will from now on use the notation of the text: D denotes the non-compact



hermitian symmetric space, D its compact dual, Xp = I'\D an arithmetic quo-
tient, X} (respectively Xr) the Satake compactification (respectively a toroidal
embedding)) is a disjoint union

Xt =XrUViU...UV,

with each V; an arithmetic quotient of lower rank than that of X, say V; =
[;\D;, I; C T. On the other hand, for the Baily-Borel embedding X C PV,
the singular locus (under mild assumptions on I') coincides with X8 — Xp =
Vi U---UV,, the union of lower-dimensional varieties. If one wishes, these lower-
dimensional subvarieties can be turned into divisors, by means of 7 : Xp —
Xp, under which 7' (V;) =: B; is a divisor and a fibre space over V;. The
neighborhood of B; in X is described by the normal bundle Nyrﬁi of the
closure B; of B; in Xp. Now the compactification X is not unique, but it will
be birationally unique, and if V; has some group of automorphisms H; then B;
is unique up to an equivariant birational equivalence.

There is a simplicial complex associated with this situation, the Tits build-
ing of ', T(T'), whose vertices correspond to the components V; and whose
j-simplices correspond to j-flags of components in the closures (Satake com-
pactifications) of the others, V;, C V;j C --- C V;7. This complex, together
with the descriptions of the individual components V; = I';\D;, completely de-
termines the boundary. But by its very definition (which is in terms of parabolic
subgroups), 7(I') thus relates the (geometric) boundary to a group theoretic
problem, that of parabolic subgroups. Indeed, each I'; is the intersection of I’
and a factor L; of the Levi component of a unique parabolic P; C Gg, I'; = L;NT.
But if we consider the smooth model Xr, then in fact, we can get the entire
parabolic lattice I'p, = P; N T by considering an e—neighborhood of B; in X
(with respect to any smooth Riemannian metric on the Riemannian manifold
Xr). In a nutshell, we have

{singular locus of X'} +— {parabolic subgroups of I'}.

For an algebraic group (semisimple, say) G, a symmetric subgroup is an algebraic
subgroup defined by a closed symmetric set of roots. If G is of hermitian type,
i.e., if the symmetric space associated with G(R) is hermitian symmetric, then
a symmetric subgroup M is hermitian symmetric, if Dy C D is a hermitian
symmetric subspace. Finally, if M is hermitian symmetric and defined over Q,
we call it Q-hermitian symmetric. This is the notion one requires on a subgroup
M to be able to conclude that for a lattice I' C G, the arithmetic subgroup
I'yr = M NT determines an algebraic subvariety Xr,, of Xp.

Having the notion of -hermitian symmetric subgroup M C G, it is canon-
ical to define the modular subgroups. It is a general property that I'ps is an
arithmetic subgroup of M, and given an explicit description of M and I, one
gets an explicit description of I'ps. A description of M is well known. A de-
scription of possible arithmetic groups is sketched in Appendix A. Generally
speaking this is given by a pair (V, £), where V' is a D-vector space and L is a
A-lattice, where A C D is a fixed maximal order in D, where D is a division
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algebra over an algebraic number field. Hence the description depends only on
the classification of maximal orders in divison algebras and is generally not too
much more complicated than the classification of the Q-groups themselves (see
Theorems A.5.2 and A.5.3).

We then turn to our original object of study, Level 3 above, arithmetic quo-
tients with “nice” automorphism group. More precisely, we wish to apply the
general theory of arithmetic quotients to give a conceptual understanding of an
incredible set of examples, which are the primary object of interest. To do this
the most natural way of viewing things is in terms of moduli spaces. Deligne has
shown that the bounded symmetric domains are parameter spaces of a certain
representation theoretic problem, which, in particular cases, is a known geomet-
ric moduli problem. Indeed, in his intensive studies of moduli spaces associated
with the moduli problem of isomorphism classes of abelian varieties with po-
larization, given endomorphism ring and level structure, Shimura (much earlier,
in the 1960’s) gave a complete list of domains and groups which occur in this
manner. In this list, all domains of types I q, II,, IIL,; occur. The domains
of type IV,, are period domains of pure Hodge structures of weight 2 and type
(1,n,1). So in fact, all except the exceptional domains occur in this way. We
give a real quick review of Shimura’s theory in Chapter 1, and in Chapter 2 we
study the split over R case, in which a maximal Q-split torus is also a maximal
R-split one. This is the easiest case, in which the well-known geometry of the
domain D is reflected in the geometry of the quotient. Most of the material of
Chapters 1 and 2 is more or less well-known, but we give them a unified treat-
ment, and, for example, Shimura’s theory is very easy to formulate. The result
in Chapter 2 on Janus-like varieties is recent; proofs have appeared in [J].

In Chapter 3 we come to “real geometry”, and study particular algebraic va-
rieties, say X C PV, which turn out to be Baily-Borel embeddings of arithmetic
quotients, say X = X[. There are, generally speaking, two general approaches
to this kind of problem. The first (and standard) method utilizes automorphic
forms (usually theta functions) to display explicit embeddings X3t C PV. The
second (and non-standard) approach is the question of uniformization. That
is, we take as given a singular algebraic variety X C PN with smooth locus
Xem C X and inquire as to the universal cover X, of Xy ,. Note that this
inverts Baily-Borel: Xr C X} is the smooth locus, and Xr = D. Although
we review the work of Igusa and Coble as well as recent results of v. Geemen
giving explicit embeddings by means of theta functions, we adhere to the second
approach and try to get uniformization results “without automorphic forms”.
Now, it turns out this works with present technology only for ball quotients,
which consequently give our most important examples. We now give a brief de-
scription of the examples studied in Chapter 3. First of all, we note that all the
examples are related with one another and in all examples the automorphism
group of the arithmetic quotient is ¥¢, the symmetric group on 6 letters. In all
cases we consider the following questions:

i) the geometry of X C PV;

ii) description of X as an arithmetic quotient, X = Xr;



