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FOREWORD

The Nankai Institute of Mathematics held a Special Year in Geometry
and Topology during the academic year 1986-1987. The program centered
around invited series of lectures, listed on the next page. This volume
! confains several sets of notes from these lectures, along with articles

submitted by the participants.

We would like to thank all the participants for their enthusiasm
and cooperation. Our thanks are also due to those who offered courses

~ in Fall 1986 which prepared the gfaduate students for fhe lectures. '
hFinally, we wish to thank Mr. Zhang Shu-dong for smoothing the English

of many articles.

For the editors,
Boju Jiang
Chia-Kuei Peng
Zixin Hou

June 1988




S.S. Chern
R«d. Stern
R.0. Wells, Jr.

U. Simon

R.L. Cohen

S. Murakami

W.S. Cheung

R.D. Edwards
N.H. Kuiper

J. Eells

R{ Kirby

P. May

R.S. Palais
€.L. Terng
S. Helgason
R.F. Brown
A. Granas

S.Y. Cheng

SERIES OF LECTURES

(in chronological order)

Fall 1986

Ten Lectures in Differential Geometry
Yang-Mills and 4-Manifolds

Supermanifolds

Spring 1987

A Course on Affine Differential Geometry
Immersions of Manifolds;

Algebraic K-Theory and Groups of Diffeomorphisms
of Manifolds

Exceptional Simple Lie Groups and Related Topics
in Recent Differential Geometry

Exterial Differential Systems and Calculus of
Variations

Decomposition of Manifolds

Geometry in Curvature Theory and Tightness
Harmonic Maps between Spheres

Topology of 4-Manifolds

Equivariant Homotopy Theory

Morse Theory

Geometry of Submanifolds

Topics in Geometric Analysis;

Lie Groups and Symmetric Spaces

from a Geometric Viewpoint

Nielsen Fixed Point Theory and

Parametrized Differential Equations

Fixed Point Theory and Applications to Analysis

Index of Minimal Hypersurfaces

.



R

10,

11,

12,

TABLE OF CONTENTS

Thomas E. Cecil and S. S. Chern:

Dupin Submanifolds in Lie Sphere Geometry.

Chen Weihuan (BR#EHE) .
The Mean Curvature of the Tubular Hypersurfaces in a Space

of Constant Curvature.

Chen Xiuxiong and Peng Chia-Kuei (Br&EME. X HK) .

Deformation of Surfaces Preserving Principal Curvatures.

Ralph L. Cohen and U. Tillmann:

Lectures on Immersion Theory.

Jiang Boju (FE/HH) .

Surface Maps and Braid Equations TI.

Li An-Min (ZEZR) ,

Affine Maximal Surface and Harmonic Functions.

Li Bang-He and Tang Zizhou (ZEHH . HHEM) .

Codimension 1 and 2 Immersions of Lens Spaces.

Li Bang-lle and Xu Tao (ZEHH. %&#H) .

1 2
On Third Order Nondegenerate Immersions and Maps of S in R .

Ma Zhisheng (BEE) .

Complete Surfaces in H® with a Constant Principal Curvature.

Shingo Murakami:
Exceptional Simple Lie Groups and Related Topics in Recent

Differential Geometry.

Peng Chia-Kuei and Hou Zzixin (¥%R%. BEH) .

A Remark on the Isoparametric Polynomials of Degree 6.

Shen Chunli (YL4EH)
On the Holomorphic Maps from Riemannian Surfaces to

Grassmannians.

45

63

71

125

142

152

164

176

183

282

225



13

14.

155

16.

17.

18.

19.

20.

21

22 5

23.

24.

Vi

Shen Yibing (#h—5) :
Stability of Totally Real Minimal Submanifolds.

Udo Simon:
Dirichlet Problems and the Laplacian in Affine

Hypersurface Theory.

Tai Hsin-Sheng (FEHFE)
A Class of Symmetric Functions and Chern Classes of

Projective Varieties.

Wang Shicheng (E#H ) .
Essential Invariant Circles of Surface Automorphisms

of Finite Order.

Wu Yingqing (REH) .

Jones Polynomal and the Crossing Number of Links.

Xiao Liang (M E) .

On Complete Minimal Surfaces with Parallel and Flat knds.

Xin Yuan-Long ({fFm#E) .

Regularity of Harmonic Maps into Certain Homogeneous Spaces.

Yang Wenmao (# X&)

On Infinitesimal Deformations of Surfaces in E*.

Yu Yanlin (EFH) .

Local Expressions of Classical Geometric Elliptic Operators.

Yu Yanlin (REFH) .

Volume of Geodesic Balls.

Zhang Shaoping () .
On Complete Minimal Immersions x: RP2-{a,b}>R® with Total

Curvature -10m.

Zhang Weiping (3#HEF) .

Local Atiyah-Singer Theorem for Families of Dirac Operators.

235

243

273

286

289

295

306

322

33

339

354




s e i

DUPIN SUBMANIFOLDS IN LIE SPHERE GEOMETRY
Thomas E. Cecil and Shiing-Shen Chern

1. Introduction.

Consider a piece of surface immersed in three-dimensional Euclidean space
Ea. Its normal lines are the common tangent lines of two surfaces, the focal
surfaces. These focal surfaces may have singularities, and a classical
theorem says that if the focal surfaces both degenerate to curves, then the
curves are conics, and the surface is a cyclide of Dupin. (See, for example,
[CR, pp. 151-166].) Equivalently, the cyclides can be characterized as those
surfaces in E3 whose two distinct principal curvatures are both constant along
their corresponding lines of curvature.

The cyclides have been generalized to an interesting class of
hypersurfaces in En, the Dupin hypersurfaces. Initially, a hypersurface M in
E" was said to be Dupin if the number of distinct principaJ curvatures (or
focal points) is constant on M and if each principal curvature is constant
along the leaves of its corresponding principal foliation. (See [CR], [Th],
[GH].) More recently, this has been generalized to include cases where the
number of distinct principal curvatures is not constant. (See [P3], [CC].)

The study of Dupin hypersurfaces in E" is naturally situated in the
context of Lie sphere geometry, developed by Lie [LS] as part of his work on

*
contact transformations. The projectivized cotangent bundle PT En of En has a

contact structure. In fact, if xl,....xn are the coordinates in En. the
contact structure is defined by the linear differential form
dxn—p dxl—...-p dxn_1 Lie proved that the pseudo-group of all contact

1 n-1
transformations carrying (oriented) hyperspheres in the generalized sense
(i.e., including points and oriented hyperplanes) into hyperspheres is a Lie
group, called the Lie sphere group, isomorphic to 0(n+1,2)/+I, where 0(n+1,2)
is the orthogonal group for an indefinite inner product on Rn+3 with signature

(n+1,2). The Lie sphere group contains as a subgroup the Moebius group of

The first author was supported by NSF Grant No. DMS 87-06015, the second
author by NSF Grant No. DMS 87-01609.



conformal transformations of Bh and, of course, the Euclidean group. Lie
exhibited a bijective correspondence between the set of oriented hyperspheres

1
in En and the points on the quadric hypersurface Qn+ in real projective space
2 +3
Pn+ given by the equation <x,x> = 0, where <,> is the inner product on Rn
mentioned above. The manifold Qn+1 contains projective lines but no linear

%
subspaces of Pn * of higher dimension. The 1-parameter family of oriented

spheres corresponding to the points of a projective line lying on Qn+1
consists of all oriented hyperspheres which are in oriented contact at a

certain contact element on En. Thus, Lie constructed a local diffeomorphism
2n-1

An immersed submanifold f:Mk - En naturally induces a Legendre sub-

n=1 i A2n-1
1

*
between PT En and the manifold A of projective lines which lie on Qn+1.

manifold A:B , where Bn_1 is the bundle of unit normal vectors to f

(take Bn~1 = M"' in the case k = n-1). This Legendre map A has similarities
with the familiar Gauss map, and like the Gauss map, it can be a powerful tool
in the study of submanifolds of Euclidean space. In particular, the Dupin
property for hypersurfaces in En is easily formulated in terms of the Legendre
map, and it is immediately seen to be invariant under Lie sphere
transformations.

The study of Dupin submanifolds has both local and global aspects.
Thorbergsson [Th] showed that a Dupin hypersurface M with g distinct principal

curvatures at each point must be taut, i.e., every nondegenerate Euclidean

distance function Lp(x) = Ip—xiz, p € En, must have the minimum number of
critical points on M. Tautness was shown to be invariant under Lie
transformations in our earlier paper [CC]. Using tautness and the work of

Miinzner [Mu], Thorbergsson was then able to conclude that the number g must be
1,2,3,4 or 6, as with an isoparametric hypersurface in the sphere g0 The
case g = 1 is, of course, handled by the well-known classification of umbilic
hypersﬁrfaces. Compact Dupin hypersurfaces with g=2 and g=3 were classified
by Cecil and Ryan (see [CR, p. 168]) and Miyaoka [M1] respectively. In two
recent preprints, Miyaoka [M2], [M3] has made further progress on the
classification of compact Dupin hypersurfaces in the cases g=4 and g=6.
Meanwhile, Grove and Halperin [GH] have determined several imporfant
topological invariants of compact Dupin hypersurfaces in the cases g=4 and
g=6.

In this paper, we study Dupin hypersurfaces in the setting of Lie sphere

geometry using local techniques. In Section 2, we give a brief introduction




i

to Lie sphere geometry. In Section 3, we introduce the basic differential
geometric notions: the Legendre map and the Dupin property. The case of E3 is
handled in Section 4, where we handle the case of g=2 distinct focal points
for E". This was first done for n > 3 by Pinkall [P3]. Our main contribution
lies in Section 5, where we treat the case E4 by the method of moving frames.
This case was also studied by Pinkall [P2], but our treatment seems to be more
direct and differs from his in several essential points. It is our hope that
this method will provide a framework and give some direction for the study of

Dupin hypersurfaces in En for-n->.4:

2. Lie Sphere Geometry.

We first present a brief outline of the main ideas in Lie's geometry of
spheres in R". This is given in more detail in Lie's original treatment [LS],
in the book of Blaschke [B], and in our paper [CC].

The basic construction in Lie sphere geometry associates each oriented
sphere, oriented plane and point sphere in R" U {0} = Sn with a point on the

1 RS g . n+2 : . i
quadric Q in projective space P given in homogeneous coordinates

(xl,...,x ) by the equation

n+3

(2:1) <X,X> = —xf b L O - X = 0.

We will denote real (n+3)-space endowed with the metric (2.1) of signature

(n+1,2) by R:+3.

We can designate the orientation of a sphere in Rn by assigning a plus or
minus sign to its radius. Positive radius corresponds to the orientation
determined by the field of inward normals to the sphere, while a negative
radius corresponds to the orientation determined by the outward normal. (See
Remark 2.1 below). A plane in r" is a sphere which goes through the point e,
The orientation of the plane can be associated with a choice of unit normal N.
The specific correspondence between the points of Qn+] and the set of oriented

spheres, oriented planes and points in R" U {*} is then given as follows:



1 3
+ u-u - u-u
Points: u € r" [( . i u,O)]
e 2
% [(1;-1:0;0)]
(2.2)
3 I 0 —rz 1. =:p» +r2
Spheres: Center p, signed radius r ( PP 3 PP v DRilt)
2 2
Planes: u'N = h, unit normal N [(h,-h,N,1)].

Here the square brackets denote the point in projective space Pn+2 given by
the homogeneous coordinates in the round brackets, and u-u is the standard
Euclidean dot product in r".

From (2.2), we see that the point spheres correspond to the points in the
intersection of Qn+1 with the hyperplane in Pn+2 given by the equation

xn+3 = 0. The manifold of point spheres is called Moebius space.

A fundamental notion in Lie sphere geometry is that of oriented contact
of spheres. Two oriented spheres S1 and S2 are in oriented contact if they

are tangent and their orientations agree at the point of tangency. If Py and
P, are the respective centers of S1 and Sz, and r1 and ra are the respective

signed °‘radii, then the condition of oriented contact can be expressed

analytically by
(2.3) |p1 - p2| = |r1 - r2|.

1 S1 and 82 are represented by [kI] and [kz] as in (2.2), then (2.8) is

equivalent to the condition

(2.4) <k1, k> = 0.

In the case where S1 and/or 32 is a plane or a point in Rn. oriented

contact has the logical meaning. That is, a sphere S and plane @w are in
oriented contact if m is tangent to S and their orientations agree at the
point of contact. Two oriented planes are in oriented contact if their unit
normals are the same. They are in oriented contact at’the point «. A point
sphere is in oriented contact with a sphere or plane S if it lies on S, and o
is in oriented contact with each plane. In each case, the analytic condition
for oriented contact is equivalent to (2.4) when the two "spheres" in question

are represented in Lie coordinates as in (2:2).




Remark 2.1: In the case of a sphere [k1] and a plane [k2] as in (2:2);,

equation (2.4) is equivalent to p:N = h+r. In order to make this correspond
to the geometric definition of oriented contact, one must adopt the convention
that the inward normal orientation of a sphere corresponds to positive signed
radius. To get the outward normal orientation to correspond to positive
radius, one should represent the plane by [(-h,h,-N,1)] instead of
[(h,-h,N,1)]. Then (2.4) becomes p*N = h-r, which is the geometric formula
for oriented contact with the outward normal orientation corresponding to
positive signed radius.

Because of the signature of the metric (2.1), the quadric Qn+1 contains
lines in Pn+2 but no linear subspaces of higher dimension. A line on Qn+1 is
determined by two points [x], [y] in Qn+1 satisfying <x,y> = 0. The lines on

Qn+1 form a manifold of dimension 2n-1, to be denoted by A2n-1_ In Rn, a line

on Qn+1 corresponds to a l1-parameter family of oriented spheres such that any
two of the spheres are in oriented contact, i.e., all the oriented spheres
tangent to an oriented plane at a given point,i.e., an oriented contact
element. Of course, a contact element can also be represented by an element

of Tls". the bundle of unit tangent vectors to the Euclidean sphere s” in En+1

with its wusual metric. This is the starting point for Pinkall's [P3]
considerations of Lie geometry.

A Lie sphere transformation is a projective transformation of Pn+2 which
takes Qn+1 to itself. Since a projective transformation takes lines to lines,
a Lie sphere transformation preserves oriented contact of spheres. The group
G of Lie sphere transformations is isomorphic to 0(n+1,2)/{*I}, where 0(n+1,2)
is the group of orthogonal transformations for the inner product (2.1).
Moebius transformations are those Lie transformations which take point spheres

to point spheres. The group of Moebius transformations is isomorphic to

0(n+1,1)/{xI}.

3. Legendre Submanifolds.

Here we recall the concept of a Legendre submanifold of the contact
manifold A2n—1(= A) using the notation of [CC]. 1In this section, the ranges

of the indices are as follows:

(3.1) x A,B.C Sont+ 8y
¢4, RS0 w1,

A



Instead of using an orthonormal frame for the metric <,> defined by (2.1), it
is useful to consider a Lie frame, that is, an ordered set of vectors YA in

n+3

Rz satisfying
(3.2) <YA.YB> = E,p’
with

J 0 0
(3.3) (EAB) 8 ) In—l 0} ,

0 0 J
where In—l is the identity (n-1) X (n-1) matrix and

cifoy

.0 ye it

The space of all Lie frames can be identified with the orthogonal group
0(n+1,2), of which the Lie sphere group, being isomorphic to 0(n+1,2)/{xI}, is

a quotient group. In this space, we introduce the Maurer-Cartan forms

(3.5) Wi wi Y

Through differentiation of (3.2), we show that the following matrix of 1-forms

is skew-symmetric

[ 2 i i n+3 n+2]
A D S Y 1 1
w2 wl wl wn+3 wn+2
(3.6) o it . . e ¥
AB w2 wl wt n+3 wn+2
J J J J J
w2 wl wi n+3 wn+2
n+2 n+2 n+2 n+2 n+2
92 wl % n+3 w"+2
| n+3 n+3 n+3 n+3 n+3 |

Next, by taking the exterior derivative of (3.5), we get the Maurer-Cartan

equations

B C B
£3.9) de =2z QA A wc g

In [CC], we then show that the form



= >
1 1 Yn+3
gives a contact structure on the manifold A.

Let Bn~1(= B) be an (n-1)-dimensional smooth manifold. A Legendre map is
a smooth map A:B + A which annihilates the contact form on A, i.e.,

*
A w?+2 = 0 on B. All of our calculations are local in nature. We use the

method of moving frames and consider a smooth family of Lie frames YA on an
open subset U of B, with the line A(b) given by [Yl(b). Yn+3(b)] for each
b € U. The Legendre map A is called a Legendre submanifold if for a generic

choice of Y1 the forms w;, 3 < i ¢ n+l1, are linearly independent, i.e.,

(3.8) AwiatOonU.

Here and later we pull back the structure forms to B“_1 and omit the symbols
of such pull-backs for simplicity. Note that the Legendre condition is just
n+2

(3.9) w, =0 .

We now assume that our choice of Y1 satisfies (3.8). By exterior

differentiation of (3.9) and using (3.6), we get

i i
(3.10) z wy A Un+3 = 0

Hence by Cartan's Lemma and (3.8), we have

i o j =
(3.11) wn+3 =2z hijwl , with hij hji
The quadratic differential form
5 i
II(YI) = X hijulwl ;

j"j

defined up to a non-zero factor and depending on the choice of Y is called

1
the second fundamental form.

This form can be related to the well-known Euclidean second fundamental
form in the following way. Let P be any unit timelike vector in R2+3. For



each b € U, let Yl(b) be the point of intersection of the line A(b) with the

hyperplane et+3. Y1 represents the locus of point spheres in the Moebius
+1 1

space Qn en+3, and we call Yl the Moebius projection of A determined by

€h+3" Let e1 and e, be unit timelike, respectively spacelike, vectors

orthogonal to e and to each other, chosen so that Y1 is not the point at

n+3
infinity [el—ez] for any b € U. We can represent Y1 by the vector

(3.13) Vo Lr ol e, + i s 8 e,
2 2

+ f,

as in (2.2), where f(b) lies in the space rR" of vectors orthogonal to el.e2

and en+3. We will call the map f:B - Rn the Euclidean projection of A

determined by the ordered triple €,:€5.8 .o The regularity condition (3.8)

is equivalent to the condition that f be an immersion on U into R™. For each

b € U, let Yn+3(b) be the intersection of A(b) with the orthdgonal complement

of the lightlike vector el - ez. Yn+3 is distinct from Y1 and thus

<Y > # 0. So we can represent Yn+ by a vector of the form

n+3’%n+3 3

(3.14) Y = h(e

n+3 & ez) BN

1 n+3
where §:U - R" has unit length and h is a smooth function on U. Thus,

according to (2.2), Yn+3(b) represents the plane in the pencil of oriented

spheres in Rn corresponding to the line A(b) on Qn+1. Note that the condition

<Y Y > = 0 is equivalent to h = f-¢, while the Legendre condition

<dY1,Yn > = 0 is the same as the Euclidean condition

(3.15) ¢$+df = 0 .,

Thus, ¢ is a field of unit normals to the immersion f on U. Since f is an

immersion, we can choose the Lie frame vectors Y3,...,Y to satisfy

n+1

(3.16) Yi = le(Xi) = (f'df(Xi))(el-ez) + df(Xi), 3 ¢ el



9
for tangent vector fields Xa,...,xn+1 on U. Then, we have
i
(3.17) wl(XJ) = <dY1(Xj)'Y1> = <Yj'Y1> = 61j

Now using (3.14) and (3.16), we compute

(3.18) w (X,) = <dy (Xj)'yi> = d€(Xj)'df(X1)

n+3

= df(AXJ)-df(Xi) = —AiJ v

where A = [Aij] is the Euclidean shape operator (second fundamental form) of

the immersion f. But by (3.11) and (3.17), we have

i k :
W (X,) =2 hiQ”l(xj) = h

n¥3": 3 ij

Hence hlj - _Aij’ and [hij] is just the negative of the Euclidean shape

operator A of f.

1

Remark 3.1: The discussion above demonstrates how an immersion R .

with field of unit normals ¢ induces a Legendre submanifold A:Bn_1 -+ A defined
by A(b) = [Yl(b),Y (b)) - for. Y Yn ag An=(8:18), (3.14). Further, an
immersed submanifold f:Mk - R" of codimension greater than one also gives rise

to a Legendre submanifold :\:Bn_1 - A, where Bn_1 is the bundle of unit normals

n+3 1’ n+3

to f in Rn. As in the case of codimension one, A(b) is defined to be the line

on Qn+1 corresponding to the oriented contact element determined by the unit

vector b normal to f at the point x = m(b), where m is the bundle projection
n-1 k

from B to M.

As one would expect, the eigenvalues of the second fundamental form have

geometric significance. Consider a curve v(t) on B. The set of points in
Qn+1 lying on the lines A(¥(t)) forms a ruled surface in Qn+1. We look for
the conditions that this ruled surface be developable, i.e., consist of
tangent lines to a curve in Qn+1. Let rY1 & Yn+3 be the point of contact. We

have by (3.5) and (3.6)

G i i
(3.19) d(rY1 + Yn+3) = E (n»l + wn+3)Y1, mod Yl’Yn+3 2

Thus, the lines A(7(t)) form a developable if and only if the tangent



10

direction of 7(t) is a common solution to the equations

Foe
(3.20) j (r6ij + hij)w1 =90,7:8¢ 1< n+l

In particular, r must be a root of the equation

(3.21) det(r6ij + hij) i
By (3.11) the roots of (3.21) are all real. Denote them by LR The
points rivl + Yn+3’ 3¢ i ¢ n+1 are called the focal points or curvature

spheres (Pinkall [P3]) on A(b). If Y1 and Yn correspond to an immersion

+3
f:U - rR" as in (3.13) and (3.14), then these focal points on A(b) correspond
by (2.2) to oriented spheres in r" tangent to f at f(b) and centered at the
Euclidean focal points of f. These spheres are called curvature spheres of f

and the ri are just the principal curvatures of f, i.e., eigenvalues of the

shape operator A.
If r is a root of (3.21) of multiplicity m, then the equations (3.20)

define an m-dimensional subspace Tr of T,B, the tangent space to B at the

b
point b. The space Tr is called a principal space of TbB, the latter being
decomposed into a direct sum of its principal spaces. Vectors in Tr are
called principal vectors corresponding to the focal point rYl + Yn+3' of

course, if Y  and Yn+ correspond to an immersion f:U - R" as in (3.13) and

1 3
(3.14), then these principal vectors are the same as the Euclidean principal
vectors for f corresponding to the principal curvature r.

With a change of frame of the form
¥ J
(8.22) Yi =2z 3 ) BN SRS B e vy B
where [ci] is an (n-1) x (n-1) orthogonal matrix, we can diagonalize [hlj] so
that in the new frame, eguation (3.11) has the form

(3.23) @ abalt et et

Note that none of the functions r, is ever infinity on U because of the



