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PREFACE

These volumes deal with a subject, introduced half a century ago, that
has become increasingly important and popular in recent years. While
they cover the fundamental aspects of this subject, they make no attempt
to be encyclopaedic. Their primary goal is to teach the subject and lead
the reader to the point where the vast recent research literature, both in
the subject proper and in its many applications, becomes accessible.

Although we have put major emphasis on making the material pre-
sented clear and understandable, the subject is not easy; no account,
however lucid, can make it so. If it is possible to browse in this subject
and acquire a significant amount of information, we hope that these vol-
umes present that opportunity—but they have been written primarily for
the reader, either starting at the beginning or with enough preparation to
enter at some intermediate stage, who works through the text systemati-
cally. The study of this material is best approached with equal measures
of patience and persistence.

Our starting point in Chapter 1 is finite-dimensional linear algebra.
We assume that the reader is familiar with theresults of that subject and
begin by proving the infinite-dimensional algebraic results that we need
from time to time. These volumes deal almost exclusively with infinite-
dimensional phenomena. Much of the intuition that the reader may have
developed from contact with finite-dimensional algebra and geometry
must be abandoned in this study. It will mislead as often as it guides. In its
place, a new intuition about infinite-dimensional constructs must be culti-
vated. Results that are apparent in finite dimensions may be false, or may
be difficult and important principles whose application yields great re-
wards, in the infinite-dimensional case.

Almost as much as the subject matter of these volumes is infinite di-
mensional, it is non-commutative real analysis. Despite this description,
the reader will find a very large number of references to the ‘‘abelian’” or
‘‘commutative’’ case—an important part of this first volume is an analysis
of the abelian case. This case, parallel to function theory and measure
theory, provides us with a major tool and an important guide to our
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intuition. A good part of what we know comes from extending to the non-
commutative case results that are known in the commutative case. The
“‘extension’’ process is usually difficult. The main techniques include
elaborate interlacing of ‘“‘abelian’’ segments. The reference to ‘‘real anal-
ysis’’ involves the fact that while we consider complex-valued functions
and, non-commutatively, non-self-adjoint operators, the structures we
study make simultaneously available to us the complex conjugates of
those functions and, non-commutatively, the adjoints of those operators.
In essence, we are studying the algebraic interrelations of systems of real
functions and, non-commutatively, systems of self-adjoint operators. At
its most primitive level, the non-commutativity makes itself visible in the
fact that the product of a function and its conjugate is the same in either
order while this is not in general true of the product of an operator and its
adjoint.

In the sense that we consider an operator and its adjoint on the same
footing, the subject matter we treat is referred to as the *‘self-adjoint
theory.”” There is an emerging and important development of non-self-
adjoint operator algebras that serves as a non-commutative analogue of
complex function theory—algebras of holomorphic functions. This area is
not treated in these volumes. Many important developments in the self-
adjoint theory—both past and current—are not treated. The type I C*-
algebras and C*-algebra K-theory are examples of important subjects not
dealt with. The aim of teaching the basics and preparing the reader for
individual work in research areas seems best served by a close adherence
to the “‘classical’’ fundamentals of the subject. For this same reason, we
have not included material on the important application of the subject to
the mathematical foundation of theoretical quantum physics. With one
exception, applications to the theory of representations of topological
groups are omitted. Accounts of these vast research areas, within the
scope of this treatise, would be necessarily superficial. We have preferred
instead to devote space to clear and leisurely expositions of the funda-
mentals. For several important topics, two approaches are included.

Our emphasis on instruction rather than comprehensive coverage has
led us to settle on a very brief bibliography. We cite just three textbooks
(listed as [H], [K], and [R]) for background information on general topol-
ogy and measure theory, and for this first volume, include only 25 items
from the literature of our subject. Several extensive and excellent bibliog-
raphies are available (see, for example, [2,24,25]), and there would be
little purpose in reproducing a modified version of one of the existing lists.
We have included in our references items specifically referred to in the
text and others that might provide profitable additional reading. As a
consequence, we have made no attempt, either in the text or in the exer-
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cises, to credit sources on which we have drawn or to trace the historical
background of the ideas and results that have gone into the development
of the subject.

Each of the chapters of this first volume has a final section devoted to a
substantial list of exercises, arranged roughly in the order of the appear-
ance of topics in the chapter. They were designed to serve two purposes:
to illustrate and extend the results and examples of the earlier sections of
the chapter, and to help the reader to develop working technique and
facility with the subject matter of the chapter. For the reader interested in
acquiring an ability to work with the subject, a certain amount of exercise
solving is indispensable. We do not recommend a rigid adherence to
order—each exercise being solved in sequence and no new material at-
tempted until all the exercises of the preceding chapter are solved. Some-
where between that approach and total disregard of the exercises a line
must be drawn congenial to the individual reader’s needs and circum-
stances. In general, we do recommend that the greater proportion of the
reader’s time be spent on a thorough understanding of the main text than
on the exercises. In any event, all the exercises have been designed to be
solved. Most exercises are separated into several parts with each of the
parts manageable and some of them provided with hints. Some are rou-
tine, requiring nothing more than a clear understanding of a definition or
result for their solutions. Other exercises (and groups of exercises) consti-
tute small (guided) research projects.

On a first reading, as an introduction to the subject, certain sections
may well be left unread and consulted on a few occasions as needed.
Section 2.6, Tensor products and the Hilbert—Schmidt class (this ‘‘sub-
section’’ is the largest part of Section 2.6) will not be needed seriously
until Chapter 11 (in Volume II). All the material on unbounded operators
(and the material related to Stone’s theorem) will not be needed until
Chapter 9 (in Volume II). Thus Section 2.7, Section 3.2, The Banach
algebra L,(R) and Fourier analysis, the last few pages of Chapter 4 (in-
cluding Theorem 4.5.9), and Section 5.6, can be deferred to a later reading.
Some readers, more or less familiar with the elements of functional analy-
sis, may want to enter the text after Chapter 1 with occasional back
references for notation or precise definitions and statements of results.
The reader with a good general knowledge of basic functional analysis
may consider beginning at Section 3.4 or perhaps with Chapter 4.

The various possible styles of reading this volume, related to the levels
of preparation of the reader, suggest several styles and levels of courses
for which it can be used. For all of these, a good working knowledge of
point-set (general) topology, such as may be found in [K], is assumed.
Somewhat less vital, but useful, is a knowledge of general measure the-
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ory, such as may be found in [H] and parts of [R]. Of course, full com-
mand of the fundamentals of real and complex analysis (we refer to [R] for
these) is needed: and, as noted earlier, the elements of finite-dimensional
linear algebra are used. The first three chapters form the basis of a course
in elementary functional analysis with a slant toward operator algebras
and its allied fields of group representations, harmonic analysis, and
mathematical (quantum) physics. These chapters provide material for a
brisk one-semester course at the first- or second-year graduate level or for
a more leisurely one-year course at the advanced undergraduate or begin-
ning graduate level. Chapters 3, 4, and S provide an introduction to the
theory of operator algebras and have material that would serve as a one-
semester graduate course at the second- or third-year level (especially if
Section 5.6 is omitted). In any event, the book has been designed for
individual study as well as for courses, so that the problem of a wide
spread of preparation in a class can be dealt with by encouraging the
better prepared students to proceed at their own paces. Seminar and
reading-course possibilities are also available.

When several (good) terms for a mathematical construct are in common
use, we have made no effort to choose one and then to use that one term
consistently. On the contrary, we have used such terms interchangeably
after introducing them simultaneously. This seems the best preparation
for further reading in the research literature. Some examples of such
terms are weaker, coarser (for topologies on a space), unitary transforma-
tion, and Hilbert space isomorphism (for structure-preserving mappings
between Hilbert spaces). In cases where there is conflicting use of a term
in the research literature (for example, “‘purely infinite’’ in connection
with von Neumann algebras), we have avoided all use of the term and
employed accepted terminology for each of the constructs involved.
Since the symbol * is used to denote the adjoint operations on operators
and on sets of operators, we have preferred to use a different symbol in
the context of Banach dual spaces. We denote the dual space of a Banach
space X by X*. However, we felt compelled by usage to retain the termi-
nology “‘weak *** for the topology induced by elements of X (as linear
functionals on X7).

Results in the body of the text are italicized, titled Theorem, Proposi-
tion, Lemma, and Corollary (in decreasing order of ‘‘importance”—
though, as usual, the ‘*heart of the matter’” may be dealt with in a lemma
and its most usable aspect may appear in a corollary). In addition, there
are Remarks and Examples that extend and illuminate the material of a
section, and of course there are the (formal) Definitions. None of these
items is italicized, though a crucial phrase or word frequently is. Each of
these segments of the text is preceded by a number, the first digit of which
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indicates the chapter, the second the section, and the last one- or two-
digit number the position of the item in the section. Thus, ‘‘Proposition
5.5.18" refers to the eighteenth numbered item in the fifth section of the
fifth chapter. A back or forward reference to such an item will include the
title (**Theorem,’’ “Remark,” etc.), though the number alone would serve
to locate it. Occasionally a displayed equation, formula, inequality, etc.,
is assigned a number in parentheses at the left of the display—for exam-
ple, the *‘convolution formula’ of Fourier transform theory appears as
the display numbered (4) in the proof of Theorem 3.2.26. In its own
section, it is referred to as (4) and elsewhere as 3.2(4).

The lack of illustrative examples in much of Chapter [ results from our
wish to bring the reader more rapidly to the subject of operator algebras
rather than to dwell on the basics of general functional analysis. As com-
pensation for their lack, the exercises supply much of the illustrative
material for this chapter. Although the tensor product development in
Section 2.6 may appear somewhat formal and forbidding at first, it turns
out that the trouble and care taken at that point simplify subsequent
application. The same can be said (perhaps more strongly) about Section
5.6. The material on unbounded operators (their spectral theory and func-
tion calculus) is so vital when needed and so susceptible to incorrect and
incomplete application that it seemed well worth a careful and thorough
treatment. We have chosen a powerful approach that permits such a
treatment, much in the spirit of the theory of operator algebras.

Another (general) aspect of the organization of material in a text is the
way the material of the text proper relates to the exercises. As a matter of
specific policy, we have not relegated to the exercises whole arguments or
parts of arguments. Reference is occasionally made to an exercise as an
illustration of some point—for example, the fact that the statement result-
ing from the omission of some hypothesis from a theorem is false.

During the course of the preparation of these volumes, we have en-
joyed, jointly and separately, the hospitality and facilities of several uni-
versities, aside from our home institutions. Notable among these are the
Mathematics Institutes of the Universities of Aarhus and Copenhagen and
the Theoretical Physics Institute of Marseille-Luminy. The subject mat-
ter of these volumes and its style of development is inextricably interwo-
ven with the individual research of the authors. As a consequence, the
support of that research by the National Science Foundation (U.S.A.) and
the Science Research Council (U.K.) has had an oblique but vital influ-
ence on the formation of these volumes. It is the authors’ pleasure to
express their gratitude for this support and for the hospitality of the host
institutions noted.
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CHAPTER 1

LINEAR SPACES

This chapter contains an account of those basic aspects of linear functional
analysis that are needed, later in the book, in the study of operator algebras.
The main topics — continuous linear operators, continuous linear functionals,
weak topologies, convexity —are studied first in the context of linear topologi-
cal spaces, then in the more restricted setting of normed spaces and Banach
spaces. In preparation for this, some related material is treated in the purely
algebraic situation (that is, without topological considerations).

1.1. Algebraic results

In this section we shall consider linear spaces (that is, vector spaces) over a
field [, and it will be assumed throughout that K is either the real field R or the
complex field C. We sometimes distinguish between these two cases by .
referring to real vector spaces or complex vector spaces. Our main concern is
with linear functionals, convex sets, and the separation of convex sets by
hyperplanes.

Suppose that ¥ is a linear space with scalar field K. If X and Y are non-
empty subsets of ¥, and ae K, we define further subsets aX, X £ Y by

aX = lax:xe X}, X+Y={x+y:xeX,yeY},

and
X—-Y=X+(-1Y.

When X consists of a single element x, we write x = Y in place of X + Y. To
avoid ambiguity in the use of the symbol—, the set theoretic difference
{xeA:x¢B) of two sets A and B will be denoted by A\ B. A vector of the form
a;x; + - + a,x,, where x,,...,x,eXand a,,..., a, €K, is called a ( finite)
linear combination of elements of X. The zero vector is always of this form (in a
trivial way), with {x,,...,x,} an arbitrary finite subset of X, and a; = 0 for
each . If it can be expressed as a non-trivial linear combination of elements of X
(thatis, with x,, ..., x, distinct, and at least one a; non-zero), then Xis said to
be linearly dependent; otherwise X is linearly independent. The set of all

1



2 1. LINEAR SPACES

finite linear combinations of elements of X is a linear subspace of 7, the
smallest containing X; we refer to it as the linear subspace generated by X.

If ¥, is a linear subspace of 7, we denote by 7 /7, the set of all cosets
X+ ¥y (xe¥") in the additive group 7. Of course, 7 /7, 1s a group, with
addition defined by (x+ 7)) + (v + 75) = (x +vy) + 7, If aelk, and
X, + Yo=x, + ¥y, we have ax, —ax, =a(x; — x;)€ ¥, SO ax; + 7,
= ax, + ¥,. From this it follows easily that ¥ /7, becomes a linear space over
K, the quotient of ¥ by ¥;, when multiplication by scalars is defined
(unambiguously) by a(x + 74) = ax + 7. If /4 has finite dimension n, we
say that 7, has finite codimension n in 7.

Suppose that ¥~ and # are linear spaces over K. By a linear operator (or
linear transformation) from ¥~ into #, we mean a mapping 7: 7 — # such
that

T(ax + by) = aTx + bTy

whenever x, ye v and a, be K (the notation 7: ¥ — ¥ indicates that T is
defined on ¥ and takes values in # ; it can be read 7, from ¥ into # ). If
Yo 1s a linear subspace of 7, the equation Qx = x + 7, defines a linear
operator Q from ¥ onto ¥ /7, the quotient mapping. When T: 4" — ¥ is a
linear operator, the null space of T'is the linear subspace {xe ¥ : Tx = 0} of 7,
and the image (or range) 7(# ) = {Tx:xe ¥ | is a linear subspace of #. If
T(7,) = {0}, the condition x + ¥, =y + ¥, entails x — ye ¥,, and hence
Tx — Ty = 0: moreover, if 7 is the null space of 7, Tx = 0 entails xe 7.
From this, the equation 7(x + 7,) = Tx defines (unambiguously) a linear
operator T, from ¥"/4,onto T(¥ ") (< #), when T(7,) = {0}; and T is one-
to-one if ¥, is the null space of 7. Note that 7= 7,0, a fact sometimes
described by saying that T factors through ¥ /4, when T( /) = {0}. Given any
linear operators S, 7: ¥ — ¥ and scalars a, b, the equation (aS + bT)x =
aSx + bTx (xe ¢") defines another such operator aS + A7, and in this
way, the set of all linear operators from 7 into ¥ becomes a linear space
over K.

By a linear functional on ¥~ we mean a linear operator p: ¥ — [ (of course,
[< is a one-dimensional linear space over [K). The set of all linear functionals on
¥ is itself a linear space over K, the algebraic dual space of . When p is a non-
zero linear functional on 7 (that is, p does not vanish identically on 7) the
image p(77) is K.

1.1.1. ProposITiON.  If pisalinear functional on a linear space ¥, then every
linear functional on ¥~ that vanishes on the null space 1 of p is a scalar multiple
of p. If p # 0, ¥y has codimension | in ¥ Conversely each linear subspace of
codimension | in ¥ is the null space of a non-zero linear functional. If p,, .. .. Pn
are linear functionals on ¥ then every linear functional on ¥~ that vanishes on the
intersection of the null spaces of p,, ..., pn is a linear combination of py, . .., Pn-



