Lecture Notes In

Computer Science

Edited by G. Goos and J. Hartmanis

130

Robert Goldblatt

Axiomatising the Logic
of Computer Programming

Springer-Verlag
Berlin Heidelberg New York

} 2| olooxt(g
7 Lecturé Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

1|||l|l||l|4 MR

130 E8053447

Robert Goldblatt

S i S

{ N i [o
f N
/

Axiomatising the Logic
of Computer Programming

Springer-Verlag
Berlin Heidelberg New York 1982

:]

el b

Editorial Board
W. Brauer P. Brinch Hansen D. Gries C. Moler G. Seegmiiller
J. Stoer N. Wirth

Author

Robert Goldblatt

Department of Mathematics
Victoria University, Private Bag
Wellington, New Zealand

CR Subject Classifications (1981): 5.21, 5.24

ISBN 3-540-11210-3 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-11210-3 Springer-Verlag New York Heidelberg Berlin

Library of Congress Cataloging in Publication Data

Goldblatt, Robert. Axiomatising the logic of computer programming. (Lecture
notes in computer science; 130) Bibliography: p. Includes index. 1. Programming
languages (Electronic computers)- Semantics. 2. Proof theory. |. Title. Il. Series.
QA76.7G65 519.4 82-863 ISBN 0-387-11210-3 (U.S.) AACR2

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically those of translation, reprinting, re-use of
illustrations, broadcasting, reproduction by photocopying machine or similar means,
and storage in data banks. Under § 54 of the German Copyright Law where copies
are made for other than private use, a fee is payable to “Verwertungsgesellschaft
Wort", Munich.

© by Springer-Verlag Berlin Heidelberg 1982

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210

and to Jed and Hannah

PREFACE

This is a small step for Computer Science: a step towards a systematic
proof-theory for programming-language semantics. We study a language that is designed
to formalise assertions about how programs behave. In this language each program det-
ermines a modal connective that has the meaning "after the program terminates ...".
Such connectives appear in the "algorithmic logic" of A. Salwicki at Warsaw, but the
explicit use of techniques from modal logic in this area was initiated more recently
by V.R. Pratt at M.I.T., and has become known as "dynamic logic". It is to the latter
that the present work is directly related.

Our approach contains a number of distinctive features. Notably, a contrast
is made between external and internal logic : between the operations performed by the
programmer in reasoning about program behaviour, and those performed by the computer
in evaiuating Boolean expressions. The programmer's external propositional logic is
the classical two-valued one, while the computer may sometimes leave certain express-
ions undefined - e.g. if their evaluation fails to terminate. This leads us to a
three-valued model of computer logic, based on a "sequential" interpretation of Boolean
connectives. (This is not claimed to be the official model, but it is a natural inter-
pretation, and readers interested in others are encouraged to adapt our techniques to
cater for them.) The external language includes the internal one (the programmer can
talk about the machine, but not conversely), and so the presence of undefined express-
ions has implications for the programmer's quantificational logic. The version used
here is a variant of "logic without existence assumptions": it accommodates the poss-
ibility that the value of a quantifiable variable may not exist.

The general purpose of this book is to establish a methodological framework
for proof-theory and axiomatisation. Within that, our central aim is to analyse the
operation of assigning a value to a program variable. This is the most basic of
commands, and - although representable as a dynamic form of logical substitution -
is the fundamental departure that takes computation theory beyond the traditional
province of mathematical logic. In Part I a complete axiomatisation is developed of

the class of valid assertions about programs of the following kinds :

assignments (x := o)

composites (compound statements)
conditionals (L§-then-else)

iterations (while-do)

alternations (non-deterministic choice) .

This would appear to provide an adequate formalisation of the system used by E.W.
Dijkstra in his well-known book A Discipline of Programming. Moreover it is known
that by using all except the last of these concepts a program can be written to com-
pute each partial recursive function. Hence, by Church's Thesis, this language is
in theory as powerful as can be: it contains programs for all possible algorithms.
But of course in comparison to real programming languages it is extremely limited.
Its relationship to the latter is perhaps comparable to the relationship between
Turing machines and actual computers. Just as Turing machines are crucial to a theor-
etical understanding of the nature of algorithms, the above constructs are crucial to
a theoretical understanding of the structure of programs (and structured programming) .
However, an adequate semantical theory must eventually be applicable to
the concepts and devices found in actual programming practise, and so in Part II we
begin to move in this direction. We study function declarations, procedure calls,
and the syntactic and semantic roles of the indexed variables used to denote compon-
ents of arrays. This enables us to investigate the various proof rules that have
been proposed by C.A.R. Hoare for such notions, and to develop an analysis of the
bParameter-passing mechanisms of call-by-value, call-by-name, and call-by-reference.
In the more abstract realms of mathematical thought it is sometimes poss-
ible for a person to single-handedly exhaust the investigation of a particular topic,
and then produce the definitive account of it. Programming-language semantics is not
like that. It is an inherently open-ended subject that depends on the perspectives
and ideas of many contributors for its development. Its character is as much that
of an empirical study as that of an intellectually creative one: it uses mathematics
to mo&el real-world phenomena that are produced in response to practical need as much
as theoretical principle. An appropriate analogy is with the linguistics of natural

languages - no-one would claim to have had the final say about the semantics of English.

vil

In such disciplines it is often necessary to produce an exposition of the
current state-of-the-art in order to stand back, evaluate, and thereby move on to new
understandings. This book should be seen as a stage in such a process. Its object,
as the title is intended to convey, is to pursue the problem of proof-theoretically
generating aqll the valid assertions about programs in a given language. Its major
contributions in this regard can be seen as

(1) the adaptation to quantificational programming logics of the method-
ology of "Henkin-style" completeness proofs via canonical model constructions; and

(2) the analysis of whife-commands in terms of an infinitary rule-schema.
The techniques and ideas used originate in the mathematical studies of intensional
logics that have taken place in the two decades or so since the advent of "Kripke
semantics". Thus the work may well be of interest to logicians who are unfamiliar
with computer science, as well as to computer scientists who have little background
in formal logic. For this reason an initial chapter is provided that gives an in-
formal overview of the necessary conceptual background. But it should be understood
that the text does not purport to provide an exposition of the general study of Prog-
ramming Logics. It is simply an individual contribution to an aspect of that discip-
line, and as such is not unlike a large research paper. In an appendix to Part I, a
survey is given of works by others, but this is little more than an annotated biblio-
graphy: its purpose is to lend perspective and context to the present work, and to
point the reader in some appropriate directions. By pursuing these references s/he
will become aware of the numerous important contributions that have not been cited

here.

This typescript has been prepared by Shelley Carlyle, to whom the
author is indebted once again for her expertise and cooperation. The cost of
preparation was generously subsidised by a grant from the Internal Research

Committee of the Victoria University of Wellington.

’ b A e e AT T i AT AR W acore

8063447

CONTENTS

Preface T fl
PART 1. FOUNDATIONS otalal A
Chapter 1 Conceptual Background sin Serarea
1. Internal and External Logic
2. Correctness and Proof S Eiee .ie 0w

Adequacy of Rules

3. Termination >80 W

4. Correctness by Refinement sid wle s e eee

3. Modal Logic WA, THI{g b

6. Incompleteness S i Siars wie Bimela

¥ Infinitary Rules i Ca biwia Niw 8w
. e

The Status of Infinitary Rules wlieay

8. Extending the Language W e =N

Termination v slaie wieeie s
Assignments ¥ 9 e e 4
Equivalence of Programs wis
Determinism o

The Concept of State e e ole o8 &

9. Undefined Expressions CAT ey & e .
10. The Power of the Language 3 as s 4 e ¥
11. Aims and Objects s we W s
Chapter 2 The Logical Structure of Commands w8 e b
1. Syntax o & @ e EeE
2. Semantics 54w ae &« e
Models csessee .
Satisfaction R

3. Standard Models ceeine e
Iteration as a Fixed Point vl e a Biee

The Analysis of "whifer

4. Proof Theory - %0 Vo wie 8
Axioms o e

Rules of Inference o oioin eie s eie

Theories e ainia e

5. Completeness
Canonical Models

6. Determinism
Weakest Preconditions
Test Commands

7. Non-Determinism
Alternatives

Guarded Commands

A e $E
do od
Chapter 3 Assignments

1. The Concept of Data Type
Many-sorted Operations
Signatures and Algebras
2. The Syntax of a Signature
3. Semantics
Models
Rigid Designators
Satisfaction
Natural Models
4. Proof Theory
Rich Theories
5. Completeness
Strong Completeness
6. Non-Enumerability of PL
7. Axiomatising the Theory of a Data Type
The Concept of Data Type Revisited

8. Freedom and Substitution

Appendix 1 Some Related Studies
Engeler's Use of Infinitary Language
Algorithmic Logic
Constable's Programming Logic
Completeness for Hoare-style Rules
Dynamic Logic
Applications of Temporal Logic
Process Logics

Kroger's Rules for Loops

104

108
108
108
109
113
115
115
116
117
122
137
144
149
163
166
17%
177
178

183
183
186
189
190
193
197
199
203

PART 1I1.
Chapter 4

1. User-Defined Functions

APPLICATIONS

Function Declarations

Call-By-Value
Side Effects
. Environments and Function Calls

Standard Models

Completeness for Simple Calls

A Proof Rule for Functions

Call-By-Name

N 00 L W N
.

. Non-Recursive Functions

Chapter 5

1. Declarations

Procedures

2. Calling a Procedure

3. Hoare's Rule of Substitution

Chapter 6
1. Array Types

Arrays

Index Types
The Values of Indexed Variables
2. Syntax and Semantics of Arrays
Language
Models
Axioms for Arrays

4. Call-By-Reference

Functions
Appendix 2 Syntax in BNF
Appendix 3 Axioms
Appendix 4 Standard-Model Conditions
References

List of Symbols

Index

Xl

205

207

8063447

PART 1 FOUNDATIONS

It is reasonable to hope that the
relationship between computation
and mathematical logic will be as
fruitful in the next century as

that between analysis and physics
in the last. The development of
this relationship demands a con-
cern for both applications and

mathematical elegance.

John McCarthy, 1963.

CHAPTER 1

CONCEPTUAL BACKGROUND

1.1 INTERNAL AND EXTERNAL LOGIC

In the following pages, techniques and ideas from mathematical logic are
applied to an aspect of computer science. Our concern is to analyse and formalise
the patterns of thought that are used in reasoning about the behaviour of computers
and the algorithms that they process. A formal system will be developed on the basis
of a distinction between two kinds of logical activity. On the one hand we have the
logical operations performed by the computer itself when it calculates the truth-value
of certain basic expressions, in order to thereby determine its next action. This
will be called intermal logic. It is, for example, the logic of the expression € in

a command of the form
while € do a.

External logic, on the other hand, is concerned with the structure of
assertions about programs and the effects of their execution. When people write
programs, they have in mind certain tasks that are to be carried out. Such an in-

tention might be expressed by a programmer in a sentence of the form

(1) when program o terminates, ¢ will be true,
or, more generally,
(2) Zf the assertion ¢ is true before initiation of program «,

then the assertion Y will be true on its completion.

For instance, if & is intended to find the remainder r upon division of

x by y (where x and y denote natural numbers), then we might express this by taking

QY as
0 <y
and Y as

g =qgxy+2r Alr<y,

where 3q is the existential quantifier "for some ¢" and A is the logical connective
"and".

Assertions of the type (1) and (2) belong to external logic, which itself
includes, and is intermeshed with, the internal logic. Both aspects are represented
within the formal language that will be the object of our investigations. But in
addition to this we have an informal metalanguage (the language in which this book
is written) that is used to make assertions about the formal language (e.g. that cer-
tain sentences are provable/imply other sentences/have no models etc.), and so there
are all told three levels of logical activity. This is in marked contrast to the
situation in traditional mathematical logic, where generally we emphasise only two
levels - metalanguage and object language, the latter being designed to formally ex-
press the properties of conventional algebraic operations. The reason for the extra
dimension here is that whereas traditional logic attempts to describe the static
properties that these operations have, in the present context we wish to study their
dynamic performance, in time, by some computing agent. In this introductory chapter
we will sketch the historical background to this kind of study, and outline the main

conceptual features of the theory to be developed in the chapters to follow.

%2 CORRECTNESS AND PROOF

How can the programmer be sure that the algorithm he devises actually does
what he wants it to do? This is known as the problem of program correctness. Con-
sider, for example, the flowchart (3), in which z, Y, r are natural-number-valued

variables.

r :=x
false
(3) r>y
true
r = r-y

First of all we may ask "what operation does this flowchart perform?" Given
an answer, we may then ask for a rigorous mathematical proof that it is the correct
answer. But then the interrogation could be pushed even deeper, by demanding an ex-
plication of the meaning of "rigorous proof".

In fact this flowchart computes the remainder upon division of x by y, and
to an experienced computer-scientist this answer may spring off the page almost immed-
iately. We could then inquire as to what aspects of his knowledge and experience
allowed him to make this conclusion.

On the other hand, to people unfamiliar with the graphical notation of. (3)
we would first have to explain what command boxes and decision diamonds are, and per-
haps what the symbol := means in an assignment command. Once this has been grasped,
it is a matter of their understanding that the particular series of operations spec-

ified do indeed lead to the remainder upon division. Of course if they are not sure

what "remainder" and "division" mean then we may still have a long way to go towards
a proof that is convincing for them.

It becomes apparent that the notion of an adequate proof is relative to the
person who is trying to grasp it. At the least we can say that a proof, by its nature,
consists in a demonstration that a certain fact depends upon, or can be reduced to,
certain other facts. The latter may in turn require proving, and so on. But as far
as programmers are concerned, we can reasonably claim that in order to be able to
carry out their function properly they must understand the characteristic properties
of the data types that they write programs for. These structures, initially the
integers, the real numbers, and the two-element Boolean algebra, are just the sort
of thing that traditional mathematical logic has been developed to analyse. Thus
an adequate correctness proof for a program might well consist in the reduction of
an assertion to certain facts about data types, with the standard machinery of logic
being invoked to provide "proofs" of these later facts.

The kind of standard logical machinery for data types that we have in mind
here is called elementary ("of elements") or first-order logic. Its statements ("well-

formed formulae") are built up from an alphabet that comprises

(1) variables x,Y,2,... whose values are the individual
elements of some data type;

(ii) symbols that denote operations on these elements,

e.g. the operations +, X, -, ¥+ on numbers : the sort
of operation that a computer performs;

(iii) symbols for relations between, or properties (predicates)
of, individuals, e.g. the relations =, #, <, >, €, and » :
the sort of relations whose truth-values are tested
by a computer in applying its internal logic;

(iv) the statement-forming connectives A ("and"), v ("or"),

1 ("not"), - ("implies"), <> ("if and only if");

(v) the universal quantifier V ("for all"), and the

existential quantifier 3 ("for some").

The name "first-order" refers to the fact that the variables X, Yyoes that
may be quantified denote basic elements of the data type, and not any "higher-order"
entities such as sets of elements, sets of sets of elements, etc.

A technique for proving correctness of flowcharts was first developed by
R.W. Floyd (1967) . (The essential idea appears to have been suggested by von Neumann
and Goldstine in 1946 (cf. von Neuman (1963)) and Turing (1949), while a similar notion
was independently studied by Naur (1966)) . Floyd's method can be understood as foll-
ows. A flowchart could be a complex diagram, built up from simpler flowcharts by
various constructions, but it will always be assumed to have a unique entry arrow and
a unique exit arrow. An interpretation of such a flowchart is made by attaching asser-

tions to its entry and exit arrows. The interpretation

©

v

V
is called correct if the assertion y is true when the computation process reaches

the exit point of flowchart &, provided that ¢ was true when it reached the entry
point to ®. Thus correctness of this interpretation amounts to the truth of the
statement (2) above. The method then requires the development of rules or conditions
for correctness of interpretations, and the correctness of a particular algorithm is
given by showing that the desired interpretation obeys these rules. We now consider

four such conditions.

I. Rule of Assignment.

The interpretation

9

r :=0
v

YV

is correct if @ is the assertion obtained by replacing all free occurrences of r in
Y by o.

The idea behind this rule is that when the assignment has been completed,
'the variable » has the same value that the expression ¢ had beforehand, so that any
statement that is true of (the value of) » afterwards must have been true of (the
value of) ¢ to begin with. For example, the following is a correct interpretation

of an assignment command.

i

(4) r

i
]

i
3

II. Rule of Consequence.
This is a rule that allows us to form a new correct interpretation from a

given one. It stipulates that if

18 correct, and moreover
(1) @' implies © , and
(ii) v <Zmplies y',

then

