LNCS 3471

Babak Falsafi
T.N. Vijaykumar (Eds.)

Power-Aware
Computer Systems

4th International Workshop, PACS 2004
Portland, OR, USA, December 2004
Revised Selected Papers

) Springer



" Babak Falsafi T.N. Vijaykumar (Eds.)

Power-Aware
Computer Systems

4th International Workshop, PACS 2004
Portland, OR, USA, December 5, 2004
Revised Selected Papers

@ Springer



Volume Editors

Babak Falsafi

Carnegie Mellon University

Electrical and Computer Engineering Dept.

A305 Hamerschlag Hall, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
E-mail: babak @cmu.edu

T.N. Vijaykumar

Purdue University

School of Electrical and Computer Engineering

Department of Computer Science

ECE/EE 465 Northwestern Avenue, West Lafayette, Indiana 47907-1285, USA
E-mail: vijay @ecn.purdue.edu

Library of Congress Control Number: 2005936777

CR Subject Classification (1998): B.7,B.§,C.1,C.2,C.3,C4,D4

ISSN 0302-9743
ISBN-10 3-540-29790-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29790-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services. Chennai, India
Printed on acid-free paper SPIN: 11574859 06/3142 543210



Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar :

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3471



Preface

Welcome to the proceedings of the Power-Aware Computer Systems (PACS
2004) workshop held in conjunction with the 37th Annual International Sympo-
sium on Microarchitecture (MICRO-37). The continued increase of power and
energy dissipation in computer systems has resulted in higher cost, lower reli-
ability, and reduced battery life in portable systems. Consequently, power and
energy have become first-class constraints at all layers of modern computer sys-
tems. PACS 2004 is the fourth workshop in its series to explore techniques to
reduce power and energy at all levels of computer systems and brings together
academic and industry researchers.

The papers in these proceedings span a wide spectrum of areas in power-
aware systems. We have grouped the papers into the following categories: (1)
microarchitecture- and circuit-level techniques, (2) power-aware memory and
interconnect systems, and (3) frequency- and voltage-scaling techniques.

The first paper in the microarchitecture group proposes banking and write-
back filtering to reduce register file power. The second paper in this group op-
timizes both delay and power of the issue queue by packing two instructions
in each issue queue entry and by memorizing upper-order bits of the wake-up
tag. The third paper proposes bit slicing the datapath to exploit narrow width
operations, and the last paper proposes to migrate application threads from one
core to another in a multi-core chip to address thermal problems.

The second group of papers on power-aware memory and interconnects starts
with a contribution which proposes hardware—software co-operation to reduce
main memory power dissipation. The paper suggests combining process-level
information from the software and DRAM-bank-level information from the hard-
ware for significant power reduction. The second paper in this group uses compiler-
assist to make hardware prefetching more energy efficient by filtering out unnec-
essary and ineffective prefetching. The third paper explores modeling of external
bus power dissipation and evaluation of coding techniques for bus power reduc-
tion. The last paper proposes context-independent coding for reducing power
in off-chip interconnects to avoid the disadvantage of context-dependent coding
not being applicable to commodity memories because of requiring collaboration
between the memory controller and SDRAM.

The last group proposes frequency- and voltage-scaling techniques. The first
paper in this group recommends throttling processor clock speed during
low-utilization phases. The second paper scales the processor voltage according
to the CPU-boundedness of the application. The third paper investigates the po-
tential of hardware overprovisioning to increase throughput in data centers while
remaining within a power budget. The last paper shows a detailed breakdown
of power consumption in the various components of a modern laptop.



VI Preface

The success of PACS 2004 has been due to the high quality of the submissions,
the efforts of the Program Committee, and the attendees. We would like to thank
Vivek De for his informative keynote address, which described design challenges
and opportunities for power-limited microprocessors. We would also like to thank
Jose Gonzalez, Glen Reinman, Srikanth Srinivasan and other members of the
MICRO-37 Organizing Committee who helped arrange the local accommodation
and publicize the workshop.

December 2004 Babak Falsafi
T. N. Vijaykumar



PACS 2004 Program Committee

Babak Falsafi, Carnegie Mellon University (Co-chair)
T. N. Vijaykumar, Purdue University (Co-chair)

David Albonesi, Cornell University
Csaba Andras Mortiz, University of Massuchusetts
Krste Asanovic, Massachusetts Institute of Technology
Luca Benini, Universita di Bologna
Frederic Chong, University of California, Davis
Kanad Ghose, State University of New York, Binghamton
Christoforos Kozyrakis, Stanford University
Uli Kremer, Rutgers University
Charles Lefurgy, IBM, Austin Research Lab
Yung-Hsiang Lu, Purdue University
Avi Mendelson, Intel, Israel Microarchitecture Lab
Andreas Moshovos, University of Toronto
Daniel Mosse, Unwversity of Pittsburgh
Vijaykrishnan Narayanan, Pennsylvania State University
Li-Shiuan Peh, Princeton University
Parthasarathy Ranganathan, HP Labs
Eric Rotenberg, North Carolina State University
Mircea Stan, University of Virginia
Se-Hyun Yang, Samsung



Lecture Notes in Computer Science

For information about Vols. 1-3712

please contact your bookseller or Springer

Vol. 3835: G. Sutcliffe, A. Voronkov (Eds.), Logic for Pro-
gramming, Artificial Intelligence, and Reasoning. XIV,
744 pages. 2005. (Subseries LNAI).

Vol. 3821: R. Ramanujam, S. Sen (Eds.), FSTTCS 2005:
Foundations of Software Technology and Theoretical
Computer Science. XIV, 566 pages. 2005.

Vol. 3818: S. Grumbach, L. Sui, V. Vianu (Eds.), Advances
in Computer Science~— ASIAN 2005. XIII, 294 pages.
2005.

Vol. 3814: M. Maybury, O. Stock, W. Wahlster (Eds.), In-
telligent Technologies for Interactive Entertainment. XV,
342 pages. 2005. (Subseries LNAI).

Vol. 3809: S. Zhang, R. Jarvis (Eds.), AI 2005: Advances
in Artificial Intelligence. XX VII, 1344 pages. 2005. (Sub-
series LNAI).

Vol. 3808: C. Bento, A. Cardoso, G. Dias (Eds.), Progress
in Artificial Intelligence. XVIII, 704 pages. 2005. (Sub-
series LNAI).

Vol. 3807: M. Dean, Y. Guo, W. Jun, R. Kaschek, S. Kr-
ishnaswamy, Z. Pan, Q.Z. Sheng (Eds.), Web Information
Systems Engineering — WISE 2005 Workshops. XV, 275
pages. 2005.

Vol. 3806: A.H. H. Ngu, M. Kitsuregawa, E.J. Neuhold,
J.-Y. Chung, Q.Z. Sheng (Eds.), Web Information Systems
Engineering — WISE 2005. XXI, 771 pages. 2005.

Vol. 3805: G. Subsol (Ed.), Virtual Storytelling. XII, 289
pages. 2005.

Vol. 3804: G. Bebis, R. Boyle, D. Koracin, B. Parvin
(Eds.), Advances in Visual Computing. XX, 755 pages.
2005.

Vol. 3803: S. Jajodia, C. Mazumdar (Eds.), Information
Systems Security. XI, 342 pages. 2005.

Vol. 3799: M. A. Rodriguez, L.F. Cruz, S. Levashkin, M.J.
Egenhofer (Eds.), GeoSpatial Semantics. X, 259 pages.
2005.

Vol. 3798: A. Dearle, S. Eisenbach (Eds.), Component
Deployment. X, 197 pages. 2005.

Vol. 3796: N.P. Smart (Ed.), Cryptography and Coding.
X1, 461 pages. 2005.

Vol. 3795: H. Zhuge, G.C. Fox (Eds.), Grid and Coopera-
tive Computing - GCC 2005. XXI, 1203 pages. 2005.

Vol. 3793: T. Conte, N. Navarro, W.-m.W. Hwu, M. Valero,
T. Ungerer (Eds.), High Performance Embedded Architec-
tures and Compilers. XIII, 317 pages. 2005.

Vol. 3792: 1. Richardson, P. Abrahamsson, R. Messnarz
(Eds.), Software Process Improvement. VIII, 215 pages.
2005.

Vol. 3791: A. Adi, S. Stoutenburg, S. Tabet (Eds.), Rules

and Rule Markup Languages for the Semantic Web. X,
225 pages. 2005.

Vol. 3790: G. Alonso (Ed.), Middleware 2005. XIII, 443
pages. 2005.

Vol. 3789: A. Gelbukh, A. de Albornoz, H. Terashima-
Marin (Eds.), MICAI 2005: Advances in Artificial Intel-
ligence. XX VI, 1198 pages. 2005. (Subseries LNAI).

Vol. 3788: B. Roy (Ed.), Advances in Cryptology - ASI-
ACRYPT 2005. XIV, 703 pages. 2005.

Vol. 3785: K.-K. Lau, R. Banach (Eds.), Formal Methods
and Software Engineering. XIV, 496 pages. 2005.

Vol. 3784: J. Tao, T. Tan, R.W. Picard (Eds.), Affective
Computing and Intelligent Interaction. XIX, 1008 pages.
2005

Vol. 3781: S.Z. Li, Z. Sun, T. Tan, S. Pankanti, G. Chollet,
D. Zhang (Eds.), Advances in Biometric Person Authen-
tication. XI, 250 pages. 2005.

Vol. 3780: K. Yi (Ed.), Programming Languages and Sys-
tems. XI, 435 pages. 2005.

Vol. 3779: H. Jin, D. Reed, W. Jiang (Eds.), Network and
Parallel Computing. XV, 513 pages. 2005.

Vol. 3777: O.B. Lupanov, O.M. Kasim-Zade, A.V.
Chaskin, K. Steinhofel (Eds.), Stochastic Algorithms:
Foundations and Applications. VIII, 239 pages. 2005.

Vol. 3775: J. Schonwiilder, J. Serrat (Eds.), Ambient Net-
works. XIII, 281 pages. 2005.

Vol.3773: A. Sanfeliu, M.L. Cortés (Eds.), Progress in Pat-
tern Recognition, Image Analysis and Applications. XX,
1094 pages. 2005.

Vol. 3772: M. Consens, G. Navarro (Eds.), String Process-
ing and Information Retrieval. XIV, 406 pages. 2005.

Vol. 3771: J.M.T. Romijn, G.P. Smith, J. van de Pol (Eds.),
Integrated Formal Methods. X1, 407 pages. 2005.

Vol. 3770: J. Akoka, S.W. Liddle, I.-Y. Song, M.
Bertolotto, I. Comyn-Wattiau, W.-J. van den Heuvel, M.
Kolp, J. Trujillo, C. Kop, H.C. Mayr (Eds.), Perspectives
in Conceptual Modeling. XXII, 476 pages. 2005.

Vol. 3768: Y.-S. Ho, H.J. Kim (Eds.), Advances in Mul-
timedia Information Processing - PCM 2005, Part IL
XXVIII, 1088 pages. 2005.

Vol. 3767: Y.-S. Ho, H.J. Kim (Eds.), Advances in Mul-
timedia Information Processing - PCM 2005, Part I
XXVIIIL, 1022 pages. 2005.

Vol. 3766: N. Sebe, M.S. Lew, T.S. Huang (Eds.), Com-

puter Vision in Human-Computer Interaction. X, 231
pages. 2005.

Vol. 3765: Y. Liu, T. Jiang, C. Zhang (Eds.), Computer
Vision for Biomedical Image Applications. X, 563 pages.
2005.

Vol. 3764: S. Tixeuil, T. Herman (Eds.), Self-Stabilizing
Systems. VIII, 229 pages. 2005.



Vol. 3762: R. Meersman, Z. Tari, P. Herrero (Eds.), On the
Move to Meaningful Internet Systems 2005: OTM 2005
Workshops. XXXI, 1228 pages. 2005.

Vol. 3761: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2005: CooplS, DOA, and
ODBASE, Part II. XX VII, 653 pages. 2005.

Vol. 3760: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2005: CooplS, DOA, and
ODBASE, Part I. XXVII, 921 pages. 2005.

Vol. 3759: G. Chen, Y. Pan, M. Guo, J. Lu (Eds.), Parallel
and Distributed Processing and Applications - ISPA 2005
Workshops. XIII, 669 pages. 2005.

Vol. 3758: Y. Pan, D.-x. Chen, M. Guo, J. Cao, J.J. Don-
garra (Eds.), Parallel and Distributed Processing and Ap-
plications. XXIII, 1162 pages. 2005.

Vol. 3757: A. Rangarajan, B. Vemuri, A.L. Yuille (Eds.),
Energy Minimization Methods in Computer Vision and
Pattern Recognition. XII, 666 pages. 2005.

Vol. 3756: J. Cao, W. Nejdl, M. Xu (Eds.), Advanced Par-
allel Processing Technologies. XIV, 526 pages. 2005.

Vol. 3754: J. Dalmau Royo, G. Hasegawa (Eds.), Man-
agement of Multimedia Networks and Services. XII, 384
pages. 2005.

Vol. 3753: O.F. Olsen, L.M.J. Florack, A. Kuijper (Eds.),
Deep Structure, Singularities, and Computer Vision. X,
259 pages. 2005.

Vol. 3752: N. Paragios, O. Faugeras, T. Chan, C. Schnorr
(Eds.), Variational, Geometric, and Level Set Methods in
Computer Vision. XI, 369 pages. 2005.

Vol. 3751: T. Magedanz, E.R. M. Madeira, P. Dini (Eds.),
Operations and Management in [P-Based Networks. X,
213 pages. 2005.

Vol. 3750: J.S. Duncan, G. Gerig (Eds.), Medical Image
Computing and Computer-Assisted Intervention — MIC-
CAI 2005, Part II. XL, 1018 pages. 2005.

Vol. 3749: J.S. Duncan, G. Gerig (Eds.), Medical Image
Computing and Computer-Assisted Intervention — MIC-
CAI 2005, Part I. XXXIX, 942 pages. 2005.

Vol. 3748: A. Hartman, D. Kreische (Eds.), Model Driven
Architecture — Foundations and Applications. IX, 349
pages. 2005.

Vol. 3747: C.A. Maziero, J.G. Silva, A.M.S. Andrade,
FM.d. Assis Silva (Eds.), Dependable Computing. XV,
267 pages. 2005.

Vol. 3746: P. Bozanis, E.N. Houstis (Eds.), Advances in
Informatics. XIX, 879 pages. 2005.

Vol.3745:J.L. Oliveira, V. Maojo, F. Martin-Sanchez, A.S.
Pereira (Eds.), Biological and Medical Data Analysis. XII,
422 pages. 2005. (Subseries LNBI).

Vol. 3744: T. Magedanz, A. Karmouch, S. Pierre, 1. Ve-
nieris (Eds.), Mobility Aware Technologies and Applica-
tions. XIV, 418 pages. 2005.

Vol. 3742: J. Akiyama, M. Kano, X. Tan (Eds.), Discrete
and Computational Geometry. VIII, 213 pages. 2005.
Vol. 3740: T. Srikanthan, J. Xue, C.-H. Chang (Eds.),

Advances in Computer Systems Architecture. XVII, 833
pages. 2005.

Vol. 3739: W. Fan, Z.-h. Wu, J. Yang (Eds.), Advances
in Web-Age Information Management. XXIV, 930 pages.
2005.

Vol. 3738: V.R. Syrotiuk, E. Chavez (Eds.), Ad-Hoc, Mo-
bile, and Wireless Networks. XI, 360 pages. 2005.

Vol. 3735: A. Hoffmann, H. Motoda, T. Scheffer (Eds.),
Discovery Science. XVI, 400 pages. 2005. (Subseries
LNAI).

Vol. 3734: S. Jain, H.U. Simon, E. Tomita (Eds.), Algo-
rithmic Learning Theory. XII, 490 pages. 2005. (Subseries
LNAI).

Vol. 3733: P. Yolum, T. Giingor, F. Giirgen, C. Ozturan
(Eds.), Computer and Information Sciences - ISCIS 2005.
XXI, 973 pages. 2005.

Vol. 3731: F. Wang (Ed.), Formal Techniques for Net-
worked and Distributed Systems - FORTE 2005. XII, 558
pages. 2005.

Vol. 3729: Y. Gil, E. Motta, V. R. Benjamins, M.A. Musen
(Eds.), The Semantic Web — ISWC 2005. XXIII, 1073
pages. 2005.

Vol. 3728: V. Paliouras, J. Vounckx, D. Verkest (Eds.), In-
tegrated Circuit and System Design. XV, 753 pages. 2005.

Vol. 3727: M. Barni, J. Herrera Joancomarti, S. Katzen-
beisser, F. Pérez-Gonzdlez (Eds.), Information Hiding.
XII, 414 pages. 2005.

Vol. 3726: L.T. Yang, O.F. Rana, B. Di Martino, J.J. Don-
garra (Eds.), High Performance Computing and Commu-
nications. XXVI. 1116 pages. 2005.

Vol. 3725: D. Borrione, W. Paul (Eds.), Correct Hardware
Design and Verification Methods. XII, 412 pages. 2005.

Vol. 3724: P. Fraigniaud (Ed.), Distributed Computing.
X1V, 520 pages. 2005.

Vol. 3723: W. Zhao, S. Gong, X. Tang (Eds.), Analysis and
Modelling of Faces and Gestures. XI, 4234 pages. 2005.

Vol. 3722: D. Van Hung, M. Wirsing (Eds.), Theoretical
Aspects of Computing — ICTAC 2005. XIV, 614 pages.
2005.

Vol. 3721: A.M. Jorge, L. Torgo, P.B. Brazdil, R. Cama-
cho, J. Gama (Eds.), Knowledge Discovery in Databases:
PKDD 2005. XXIII, 719 pages. 2005. (Subseries LNAI).

Vol. 3720: J. Gama, R. Camacho, P.B. Brazdil, A.M. Jorge,
L. Torgo (Eds.), Machine Learning: ECML 2005. XXIII,
769 pages. 2005. (Subseries LNAI).

Vol. 3719: M. Hobbs, A.M. Goscinski, W. Zhou (Eds.),
Distributed and Parallel Computing. XI, 448 pages. 2005.
Vol. 3718: V.G. Ganzha, E.W. Mayr, E.V. Vorozhtsov
(Eds.), Computer Algebra in Scientific Computing. XII,
502 pages. 2005.

Vol. 3717: B. Gramlich (Ed.), Frontiers of Combining Sys-
tems. X, 321 pages. 2005. (Subsertes LNAI).

Vol. 3716: L. Delcambre, C. Kop, H.C. Mayr, J. Mylopou-
los, O. Pastor (Eds.), Conceptual Modeling — ER 2005.
XVI, 498 pages. 2005.

Vol. 3715: E. Dawson, S. Vaudenay (Eds.), Progress in
Cryptology — Mycrypt 2005. XI, 329 pages. 2005.

Vol. 3714: H. Obbink, K. Pohl (Eds.), Software Product
Lines. XIII, 235 pages. 2005.

Vol. 3713: L.C. Briand, C. Williams (Eds.), Model Driven
Engineering Languages and Systems. XV, 722 pages.
200s.



Table of Contents

Microarchitecture- and Circuit-Level Techniques

An Optimized Front-End Physical Register File with Banking and
Writeback Filtering
Miquel Pericas, Ruben Gonzalez, Adrian Cristal, Alex Veidenbaum,
Mateo Valero . ...

Reducing Delay and Power Consumption of the Wakeup Logic Through
Instruction Packing and Tag Memoization
Joseph Sharkey, Dmitry Ponomarev, Kanad Ghose, Oguz Ergin . . . ...

Bit-Sliced Datapath for Energy-Efficient High Performance
Microprocessors
Sumeet Kumar, Prateek Pujara, Aneesh Aggarwal ..................

Low-Overhead Core Swapping for Thermal Management
Eren Kursun, Glenn Reinman, Suleyman Sair, Anahita Shayesteh,
Tim Sherwood . . .. .. ... . e

Power-Aware Memory and Interconnect Systems

Software-Hardware Cooperative Power Management for Main Memory
H. Huang, K.G. Shin, C. Lefurgy, K. Rajamani, T. Keller,
E. Hensbergen, F. RAWSOT ... ...oovuimuii it

Energy-Aware Data Prefetching for General-Purpose Programs
Yao Guo, Saurabh Chheda, Israel Koren, C. Mani Krishna,
Csaba Andras Moritz . ... ..o e

Bus Power Estimation and Power-Efficient Bus Arbitration for
System-on-a-Chip Embedded Systems
Ke Ning, David Kaeli .......... ... ..

Context-Independent Codes for Off-Chip Interconnects
Kartik Mohanram, Scott Rizner ............ 8% BEAND SEAAEENE FEE 66

Frequency-/Voltage-Scaling Techniques

Dynamic Processor Throttling for Power Efficient Computations
Masaaki Kondo, Hiroshi Nakamura ..............c.coiiiiinon..



X Table of Contents

Effective Dynamic Voltage Scaling Through CPU-Boundedness
Detection
Chung-Hsing Hsu, Wu-Chun Feng ......... ... ..o iiiiiianono..

Safe Overprovisioning: Using Power Limits to Increase Aggregate
Throughput
Mark E. Femal, Vincent W. Freeh .............c.0uiiieueniinnnn.

Power Consumption Breakdown on a Modern Laptop
Aqeel Mahesri, Vibhore Vardhan ........... ... ... ... i, .

Author Index . ... ... e



An Optimized Front-End Physical Register File
with Banking and Writeback Filtering

Miquel Pericas®, Ruben Gonzalez!, Adrian Cristal’,
Alex Veidenbaum?, and Mateo Valero!+3

! Computer Architecture Department, Technical University of Catalonia (UPC)
2 Information and Computer Science, University of California at Irvine (UCI)
3 Barcelona Supercomputing Center (BSC)

{mpericas , gonzalez, adrian, mateo}@ac .upc.edu,

< alexv@matrix.ics.uci.edu

Abstract. Register file design is one of the critical issues facing designers of
out-of—order processors. Scaling up its size and number of ports with issue width
and instruction window size is difficult in terms of both performance and power
consumption. Two types of register file architectures have been proposed in the
past: a future logical file and a centralized physical file.

The centralized register file does not scale well but allows fast branch mis—
prediction recovery. The Future File scales well, but requires reservation stations
and has slow mis—prediction recovery. This paper proposes a register file architec-
ture that combines the best features of both approaches. The new register file has
the large size of the centralized file and its ability to quickly recover from branch
misprediction. It has the advantage of the future file in that it is accessed in the
“front end” allowing about 1/3rd of the source operands that are ready when an
instruction enters the window to be read immediately. The remaining operands
come from bypass logic / instruction queues and do not require register file ac-
cess. The new architecture does require reservation stations for operand storage
and it investigates two approaches in terms of power—efficiency.

Another advantage of the new architecture is that banking is much easier to use
in this case as compared to the centralized register file. Banking further improves
the scalability of the new architecture. A technique for early release of short-lived
registers called writeback filtering is used in combination with banking to further
improve the new architecture. The use of a large front—end register file results in
significant power savings and a slight IPC degradation (less than 1%). Overall,
the resulting energy—delay product is lower than in previous proposals.

1 Introduction

Memory-based structures in the core of modern microprocessors have increasing energy
requirements as frequencies grow. One such structure is the register file. Its size and the
number of read/write ports required increases with issue width making it difficult to
implement at high clock frequencies.

Two main approaches to register file design were used in the past, neither of which
solved the above-mentioned problems. One approach was an architecture based on the
Future file, which has a logical register file updated in commit and the future register

B. Falsafi and T.N. Vijaykumar (Eds.): PACS 2004, LNCS 3471, pp. 1-14, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



2 M. Pericas et al.

file in the ”front—end” holding the most recent, uncommitted value for each logical reg-
ister. The advantages of the future file are that it is not very large, has no renaming,
can be read in the front—end and is not written if a more recent instruction assigning
it is in the window. The disadvantages are that on branch mis—prediction, intermedi-
ate register values need to be recovered (typically after the mis—predicted branch com-
mits), it needs reservation stations in the back-end, and its size cannot be increased. The
mis—prediction recovery can lead to a significant IPC loss, especially given increasing
memory latencies.

An alternative approach is a single, large physical register file, without a separate
architectural register file. It is typically accessed after an instruction is scheduled to
execute, even if source operand values were available when the instruction entered the
window. This is the approach in the MIPS R10000 [1] and many later processors. Its
advantages are increased size and fast mis—prediction recovery. Disadvantages are more
complex renaming and longer value lifetime in the file due to lack of logical register
file. Overall, it needs to be both large and heavily multi—ported, making it difficult to
implement and increases its energy consumption significantly.

The new architecture proposed in this paper combines the best features of the two
above—-mentioned approaches: arbitrary size and fast mis—prediction recovery of the
physical register file; and placement in the front—end, early operand read, and potential
lack of write—back of the future file. It can be thought of as a physical register file moved
to the front end and accessed after renaming. This allows a large fraction of operands
to be accessed as an instruction enters the window, which is now the only read access
to the register file. These values are stored in “reservation stations” integrated into the
instruction queue, which can also be thought of as a replicated portion of the register
file. A value coming from writeback may be written to this file if there are instructions
waiting for it. Finally, many registers hold values for mis—prediction recovery, some of
which can be released if they cannot affect recovery.

The approach proposed here uses a single register file containing all physical reg-
isters, the Front-end Physical Register File (FPRF). Thus restarting execution after a
mispredicted branch can be done using a rename map recovery from check-points made
on conditional branches.

As source operand registers are renamed, it can be determined if a register value has
already been computed. The FPREF is read only in this case, significantly reducing its
access frequency. Combined with the higher IPC due to faster branch recovery, it has a
better energy-delay product compared to the two traditional approaches.

A new structure to hold such “early read” values is created in the instruction queue
payload RAM. Its function is similar to that of reservation stations. It is smaller than
the physical register file and thus consumes less energy. It is written into by com-
pleting instructions, if the produced value is a source operand of a waiting
instruction.

This paper also investigate the use of banking in the FPRF architecture. Due to lower
access frequency of the FPRF this is much easier to do than in a standard centralized
physical register file Finally, writeback filtering, a technique to eliminate unnecessary
writebacks into the register file is investigated and shown to be quite effective.



An Optimized Front-End Physical Register File 3
2 Related Work

The body of related work on register file energy optimization is large. Many recent
papers have proposed mechanisms to reduce the number of the ports by means of mod-
ifying the register file architecture, such as [4] [5] [6] [7]. A reduced number of ports
may be more efficient both in terms of energy and access time, which can improve
performance.

A different approach is to reorganize the registers into several files, concentrating
most activity on small files with low power consumption. [8] is an example of this
approach based on the isolation of narrow operands. Hierarchical register files, such as
those presented in [9] [10] [11] and clustering techniques such as [12] [5] are another
example of this te¢chnique, which effectively trades size, speed and power consumption.

Another research direction has focused on changing the register allocation algorithm
to reduce the register requirements of the architecture. Early Release frees registers
before the commit stage of the next instruction that writes to the same logical registers
[13] [14] [15]. Virtual registers [16] try to delay the allocation of the physical register
until the writeback stage of the instruction. Another approach to reduce registers is to
exploit repeated values in the registers [17] [18].

Our approach is somewhat based on the Future File organization which was pro-
posed in 1984 [19]. In the original proposal, operands are provided to instructions via a
logical register file in the front-end which received the name of Future File. The main
difference with our architecture is that we are basing our design around the concept of
physical registers to identify the state of the processor. Thus, while a Future File archi-
tecture can only recover from a mispredicted branch by draining the ROB, our proposed
architecture can recover directly from the physical registers. Future File architectures
are still being used in the form of the AMD K7 and K8 microarchitectures [20].

The future file can be extended with rename buffers to provide access to the full
processor state at once. This has been implemented in the PPC620 [3] and POWER3
processors. However, these two processors still require the architectural state to be
copied from the rename buffers during retirement. Having an architectural register file
in the front-end shortens the pipeline one stage (access can be performed in parallel to
rename stage) but increases the number of on-chip register transfers.

Research by Tseng et al. on banked register files [21] proposed an efficient imple-
mentation of banking for the register file of a MIPS R10000-like architecture. In the
following sections is will be compared to the architecture proposed in this paper.

Finally, the Writeback Filtering technique, based on the release of short-lived val-
ues, is described in [22] and, in the context of VLIW architectures, in [23]. However, as
will be shown here, the specific architectecture presented here allows to support Write-
back Filtering in innovative ways.

3 Front-End Physical Register File

This section describes the Front-End Physical Register File Architecture (FPRF). The
FPRF pipeline provides instructions with their operands as soon as the operands are
available. Further, it implements a central physical register file in the front-end that



4 M. Pericas et al.

........................................................

Gl S e R T |
L oo ] pm
e ] S L

—J FPRF an T
LVRF K

—  INSTRUCTION FLOW

------ = WRITEBACK

“" ’ SELECT LOGIC ..'1
TETITETETRN

o NI~

Fig. 1. The Front-End Physical Register File Architecture

allows for fast recovery with little complexity. It also allows to apply banking with high
efficiency.

The FPRF Architecture, like a Future File, reads available registers in the front end.
However, in this approach the registers are accessed via a mapping into a centralized
register file that contains all registers. This has two implications:

1. Access to computed values in the front-end needs to be delayed until the rename
stage has completed.

2. The number of registers in the front-end, being equal to the total number of regis-
ters, is much larger than it is in a Future File Architecture.

Figure 1 shows the FPRF architecture. Instructions, after going through the decode
stage, enter the rename stage where source and destination registers are mapped to
physical registers. Using this information an instruction may access the FPRF, a two
stage process consisting of arbitration and data access. After available values have been
given to the instruction, it is inserted into the corresponding instruction queue.

The back-end pipeline works as follows: When a functional units generates a result,
the register tag is sent to all instructions in the queue. If there is an irstruction waiting
for it, the value is written into the corresponding entry of the Value Register File (VRF),
which is part of the payload RAM of the instruction queue. The VREF is driven by the
wakeup logic signals and can be implemented as a register file that does not require a
decode stage. The value also gets written into the FPRF, as indicated by its physical
register designator. There is also a possibility that a value is bypassed to a dependent
instruction.

3.1 FPRF Pipeline

The pipeline of the FPRF Microarchitecture is shown in Fig. 2. It adds one stage to
a commonly used 8-stage pipeline consisting of: fetch, decode, rename, queue, issue,



An Optimized Front-End Physical Register File 5

| FETCH ( DECODE I RENAME ARB l FPRF ‘ QUEUE I ISSUE | EXE ' WB T(‘()MMIT

ICACHE ﬂ

— < |l|

L

ROB
FPRF

Fig. 2. The Pipeline of the FPRF Architecture

08 !
= < o
S ¥
E ; i
o ]
S o6 : 1
3 : ' - & &
9 Z & g
£ £ & I -4 g l !
2 5 £ N ™ B | {
2 04 Il ! N bl & i
S i | 1 F | p i {
s ; & = 13 .
2 {4 9 [ 43
8 I a1 !

02

;
RN

vpr [T

ammp |7
applu
apsi
parser
sixtrack
swim |
twolf
vortex
wupwise |

equake

facerec |1 [ BRRFESR,
fma3d

peribmk [T

TTBYPASS mmmmm T WRITEBACK aiesss T TF

Fig. 3. Source of Integer Operands

operand read, execute, writeback and commit. To support FPRF access in the front-end,
two stages are added to the pipeline: arbitration and FPRF Read. In the back-end the
operand read stage disappears. This reduces the length to a single additional stage.

In the first new stage the source registers are analyzed to check for bank conflicts in
the FPRF access. Conflicts stall all prior stages.

During rename, it is checked if the source registers have computed values. This is
implemented via a bit vector with as many entries as logical registers. In the case of
the Alpha ISA, modeled here, this requires maintaining two 32-bit vectors, one for the
integer and another for the floating point registers. Each entry of this bit-vector indicates
whether the corresponding logical register has a computed value. In case the computed
value is available a read to the corresponding FPRF register is started.

During the arbitration cycle, priority is given to “older” instructions to access the
operands. This makes sure that the front-end does not dispatch instructions to the in-
struction queues out-of-order.

The number of read ports for each bank has to be at least two, because some in-
structions must obtain both operands from the same FPRF bank.

Once arbitration has been performed the FPRF read occurs. After the instruction has
read the available values it is inserted in the instruction queues. This happens during the
Queue stage. At the same time, the register values are inserted into the VRF.



6 M. Pericas et al.

It is clear that the access rate to the FPRF is lower than to the centralized back-
end physical register file. Lower access rate means that less conflicts will occur in the
front-end and also that it will consume less energy. It was observed that the number
of integer operands that are obtained from the FPRF is about 40% of the total while
for floating point operands this number decreases to around 20%. Figures 3 and 4 show
the distribution of integer and fp operand sources averaged over 100 million instructions
for each Spec2000 benchmark. The boxes labeled FPRF account for operands that were
read from the FPRF. The boxes labeled WRITEBACK are for operands that were written
directly into the VRF from the writeback stage. Finally, the label BYPASS refers to those
values that are sourced from the bypass network.

08
0.6 (|

04

operand source distribution

02

wupwise |

= ] B © ° = £
s § 8 § & § 8 %8 ¢ ¢
z 5§ E S5 2 E E 8 °
§ 8 2
[T BYPASS wmmmm T WRITEBACK wewee TTTTTRPRE EEEE

Fig. 4. Source of FP Operands

In the event of a branch misprediction the FPRF architecture behaves exactly like
the MIPS R10000. First, the processor immediately aborts all instructions fetched along
the mispredicted path. Next it restores the register mapping from the branch stack and
finally, it starts fetching instructions from the correct path.

3.2 Read Sharing *

Accesses to the same logical registers are often clustered during program execution. For
example, many instructions use the same logical register for both register sources (eg
ADD R2, R2, RA).On the other hand it is also fairly common that the same register
is sourced by several instructions without being written to. Such register accesses have a
high probability of bank conflict. This suggests that conflicts in the access to the FPRF
can be effectively reduced by using the technique known as read sharing [10]. Read
sharing allows multiple reads of a same register to happen using a single local port
which is connected to several global ports. Previous work on banked register files by
Tseng et al. [21] has also used this approach. Read sharing will be evaluated later in the
context of the FPRF architecture.



