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PREFACE

This book is intended to provide assistance in, solving computational
problems associated with the study and application of linear control theory.
A series of thirteen digital computer programs is presented which permit one
to carry out the analysis, design and simulation of a broad class of linear
control problems. Although the book was written primarily to serve as a
supplement to a basic course in linear control, the practicing engineer will
also find it to be of considerable value for realistic design and analysis
problems.

Extensive use has been made of subprograms in the development of the
computer codes so that the material could be easily adapted for use on problems
not treated here. All of the subprograms are described in some detail in two
appendices in order to further facilitate flexibility. It is hoped that this
book and its associated computer codes will not be considered as the final
answer to computational problems of linear control but rather the basic essen-
tials from which further developments may be extracted. In this regard, the
authors would appreciate receiving any reports on uses or modification of the
material contained in this book.

In order to use the codes described in this book, it is necessary to
possess only a rudimentary knowledge of FORTRAN coding and an ability to use a
card punch and to submit a FORTRAN program. For those readers who are more
familiar with FORTRAN, listings of the programs as well as other information
have been provided to assist in the understanding and possible modification
of the codes. The reader is also assumed to be familiar with the basic con-
cepts of linear control theory as might be obtained from any one of a number
of available basic control texts.

The computer codes described in this book have been developed over a
number of years and have been used by the authors and others to solve a wide
variety of both academic and practical problems. Some typical applications
are discussed in Chapter 4. Nevertheless, one can never completely test any
program especially on all available FORTRAN compilers. The authors apologize
for any problems which may arise and would appreciate information on any
special difficulties encountered.

In order to facilitate the use of the computer codes described in this
book, a prepunched deck of cards, which includes all programs, subprograms
and example input, may be obtained by writing to James L. Melsa, Information
and Control Sciences Center, Southern Methodist University, Dallas, Texas
75222, The programs are all written in basic FORTRAN IV language and use the
IBMO29 punch format.

The authors express their appreciation to many students and colleagues
who assisted in this project. The inspiring leadership of Dr. Andrew P. Sage,
Director of the Information and Control Sciences Center, SMU, and Dr. Thomas
L. Martin, Dean of the Institute of Technology, SMU, has been a source of
constant encouragement.
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1 INTRODUCTION

1.1 PURPOSE AND OUTLINE

In the study of linear control theory, one often encounters computations
which, although theoretically simple, can be an impediment to the learning of the
basic concepts. For example after completing a control system design, it may
be very helpful to the educational process to evaluate this design. The labor
involved in the determination of accurate frequency response or root locus plots
or determining the step response of the system may be prohibitive. In additionm,
it is often desirable to study high-order realistic design problems in order to
emphasize the practical usefulness of the theory. Without a method of computa-
tional assistance, such problems are usually avoided because the computational
effort required far exceeds the benefits obtained.

The goal of this book is to provide a set of computer codes which solve
almost all of the computational problems of linear control theory. These codes
allow one to study realistic problems in detail without extensive computation
effort. In addition, the use of these codes give experience with the concepts
of computer aided design and analysis which are so popular in current engineering
practice.

It is assumed that the reader is familiar with the basic concepts of linear
control theory as may be obtained from any one of a number of available texts.
Extensive attention is given to the state variable description of linear control
systems and the use of linear state variable feedback. The interested reader
will find a detailed treatment of this material in the book: Linear Control
Systems. The notation and system formulation used in this book follows closely
that used in Linear Control Systems.

In order to use the material in this book, it is not required that the
reader possess any knowledge of numerical methods. Only the very basic essen-
tials of the FORTRAN language and some simple knowledge of computer card deck
preparation are needed. For the reader who is familiar with FORTRAN, listings
of the programs and subprograms as well as notes on coding are presented for
reference.

The programs are divided into two broad classes: (1) State variable pro-
grams and (2) Transfer function programs. The five state variable programs
described in Chapter 2 allow one to obtain certain matrix functions such as the
inverse, determinant, resolvent matrix and state transition matrix as well as
to analyze and design linear state variable feedback systems. Two programs are
presented which compute the time response of linear state variable feedback
systems. There is a program for studying the sensitivity of closed-loop systems
to parameter variations and six programs for the design of linear systems.

lJ. L. Melsa and D. G. Schultz: Linear Control Systems, McGraw-Hill Book

Co., Inc., 1969,




Three transfer function programs are discussed in Chapter 3. These
programs may be used to determine the frequency response and root locus of a
system. The third transfer function program is used to obtain the partial
fraction expansion of a rational function. Some typical applications of the
computer programs are presented in Chapter 4.

All of the subprograms used are described in Appendix A. These sub-
program descriptions are included to assist the interested reader in under-
standing the operation of the programs and also to permit the reader to generate.
new programs from these subprograms. Extensive use was made of subprograms in
the development of these computer codes in order to facilitate such flexibility.
For example one might wish to combine the sensitivity analysis and time response
programs or the state variable feedback and root locus programs in order to
carry out some particular study.

Appendix Bpresents a set of three graphical display subprograms which are
used in the two preceding chapters. These display programs are quite general
and allow one to obtain a quick graphical representation of the results of the
programs on a line printer. The subprograms discussed are logarithmic plots,
X - Y plot and a X - versus time plot.

Each of the thirteen program write-ups presented in Chapters 2 and 3 follow
the same format. After a brief statement of the purpose of the program, the
theoretical concepts involved in the development of the computer codes are
discussed. The input and output format of the program is explained and then
illustrated by means of an example. The input data deck is shown and the
resulting program output is presented and discussed. In some cases it has
been necessary to slightly modify or condense the computer output in order to
fit it within page-size limitations. The output should however remain indic-
ative of the type of output which will be obtained. Finally, the listing of
each program is presented for reference.

In general, the programs have been limited to tenth-order problems.
Although there is no basic limitation in the algorithms which make this con-
straint necessary, it was felt that almost all academic and most practical
problems satisfy this limitation. If necessary, this limitation may be removed
by extending the appropriate dimension statements. However it is not recom-
mended that problems of excessively high order be treated since no major effort
has been directed to a study of the efficiency of the numerical methods used.
For an excellent discussion of numerical methods, the interested reader is
directed to the book: Numerical Methods for Scientists and Engineers.

1.2 INPUT FORMAT

The input format for each program is described in detail in Chapters 2 and
3; the purpose of this section is to comment on certain general features of the
input formats which applied to all of the programs. A primary consideration
in the selection of the input format was to make the use of the programs as
simple as possible while still retaining sufficient flexibility. A second
consideration was to make the input formats of the various programs as nearly
uniform as possible. Because of these considerations, the input formats
selected often contain more cards than necessary to provide the program with
input data. On the other hand the input formats are easy to remember since a
large majority of the cards have identical forms and the same general format
is used in every program. In addition the input data deck is designed so as
to be closely related to the basic problem statement so that it is easy to
make modifications in the problem if desired.

lR. W. Hamming: Numerical Methods for Scientists and Engineers, McGraw-
Hill Book Co., Inc., 1962.




All of the programs can be used to solve more than one problem in a
single run by simply placing the various input decks one after another. In
other words, an input deck is prepared for each problem and these decks are
then added together to form a composite input deck for the program.

In the description of the input data format, the FORTRAN format type
information is included for the reader who is familiar with the FORTRAN language.
The first card of every input deck contains problem identification information
which may be used for later reference. Any desired alphanumeric characters
may be placed in the first twenty columns of this first card. If appropriate,
the next two columns (21-22) of the first data card will contain information
concerning the problem order in fixed-point format. The reader is reminded
that fixed-point numbers are always right justified in their fields.

The remaining input cards will vary depending on the particular program
under consideration. However there are some general format rules which are
followed for entering information in the form of matrices and in terms of
polynomials. Let us consider each of these types of input separately.

1.2-1 MATRIX DATA Only two types of matrices are considered in the
programs described in this book: square matrices and column vectors. The
elements of a square matrix are always read one row at a time much as they
appear in the original array. The numbers are placed in ten-column fields in
floating-point format. If the dimension N of the matrix is greater than eight,
the elements continue on the next card. The elements of the next row, however,
start on a new card. Therefore if N < 8, N cards are used to represent the
matrix while if 8 < N < 10, 2N cards are necessary. Suppose for example that
we wish to enter the 3 by 3 matrix

then the input cards would take the form shown in Table 1.2-1. Note that the
decimal point should be punched since a floating point format is being used.

Table 1.2-1

Input Card for a 3 by 3 matrix

Card Column No.

No. bl Sy oy 38 20 25 30,
1130 1 000 g O L1
21" |I'lc>l ; | | :al' NDI 1 ; | | ;‘)l'l‘al | 1 L1 11 :
3 ql‘]!)L | : h | ::l'lzﬂ 1 : | | le' NDI | : L1 1 J,J

In the case of column vectors, the elements are read in column form in
order to minimize the number of input cards. In other words the elements are
read as if the vector were a row vector. If the dimension N of the vector is
less than or equal to eight, only one card will be used to input the vector;
if 8 < N < 10, then two cards will be needed. In the input format descriptions
in Chapters 2 and 3, it has been assumed that N < 8 in order to simplify the
discussion. Whenever N > 8, it is simply necessary to double the number of
cards used to describe any vector or square matrix.



1.2-2 POLYNOMIAL DATA  Polynomials may be entered in two different
formats. All programs which accept polynomial inputs allow either format to
be used. The polynomial may be entered as polynomial coefficients or as poly-
nomial factors; these two formats will be referred to as P mode or F mode
respectively.

If the P mode is selected the coefficients of the polynomials are entered
in ten-column, floating-point fields just as if they were elements of a matrix.
The constant term is given first and the coefficient of the highest term is
assumed to be unity. This coefficient is read in although it is set to unity
and not used. Note that if the degree of the polynomial is equal to eight it
is necessary to add a second card which may be blank if desired. In other words,
if an eighth order polynomial is to be read, the first eight coefficientg are
entered in the eight ten-column fields on one card, the coefficient of s® must
then be placed on the next card even though it must be unity.

If it is desired to enter the polynomial in F mode as polynomial factors,
then one factor is placed on each card. The real part of the factor is entered
in the first ten columns and the imaginary part is in the next ten columns.

The real part is positive is the factor is in the left half plane. For complex
conjugate roots only one card is used; the program will supply the complex
conjugate. The imaginary part will always be positive.

In order to indicate which of the two polynomial modes is to be used, a
control card is placed in front of each polynomial input. A P or F is entered
in the first column of this card to indicate which mode is being used and the
degree of the polynomial is entered in fixed-point form in the next two columns.
Let us consider the third-order polynomial P(s) given by

3

P(s) = 5+ 9s + 582 + 8% = (s + 1)[(s + 2)2 + 1]

The input deck for this polynomial in P mode is shown ip Table 1.2-2a and in
F mode in Table 1.2-2b. Note that the coefficient of s~ is assumed to be unity
and need not be entered.

Table 1.2-2

Polynomial Input Deck: (a) P mode, (b) F mode.

(a)
Card Column No.
No. L 0 Ll llq O |1s| L1 gol Ll |25l L1t |301
| I | 1 i ]
1P, B Lot L L Me 0§ 1§ 0§ e b ol |
I I | 1 ] |
219100 1 80 BleO 11
(b)
Card Column No.
No. [ |5| Ll 119 el 115144 Ll |201 L4 1251 Lol Pol
| | I ] 1 |
S | T T A A AR R A AN A A N S A A S A A A A A N I
| ] 1 1 ] I
e g T U N U IO Y N
| | I [ | |
2ei® | i1 MO g I T U N OO Y WO B I




1.3 OUTPUT FORMAT

The output of all of the programs is almost self explanatory. Only a few
comments are indicated here to clarify any particular factors which might cause
confusion. At the beginning of every program output, the problem identification
supplied by the user and the name of the program is printed for reference. The
input data is also listed for reference and finally the actual output of the
program is presented. If the output has several parts, the problem identifi-
cation information is repeated for each part. In the presentation of the actual
program output for the example problems discussed in Chapters 2 and 3, certain
modifications and condensations have been necessitated by the page size limi-
tation. However the basic content and nature of the output should be unchanged.
It is suggested that the reader prepare the input for and run the example prob-
lems for himself.

In the program output, square matrices are always written as they would
normally appear with rows horizontally and columns vertically. Column vectors
are printed in transposed form across the page just as they are read in.

Polynomials are given in both factored and unfactored form independent of
which input form was used. The coefficients are given in ascending order with
the constant term first. The factors are listed in the original form with
negative real part indicating that the root is in the left half plane. The
reader should note that there is a sign change between the input format for a
factor and the way that it is listed.



2 STATE VARIABLE PROGRAMS

2.1 INTRODUCTION

In this chapter we discuss a group of ten programs which may be used for
the analysis and design of linear control systems represented in state variable
forms as

X(8) = Ax(t) + bu(t)
u(t) = K[r(t), - K x(t)]

y(t) = ¢Tx(t)

The BASIC MATRIX (BASMAT) program, discussed in Sec. 2.2, allows one to
compute the determinant, inverse, characteristic polynomial and eigenvalues of
a square matrix A. In addition BASMAT may be used to compute the resolvent
matrix (sI —,Aj and state transition matrix exp(At).

Two programs are provided for determining the time response of the linear
feedback control system above. The RATIONAL TIME RESPONSE (RTRESP) program,
Sec. 2.3, requires that the input function r(t) have a rational time response
and that there be no repeated eigenvalues in the combination of the system and
input. The RTRESP program gives a closed-form expression for the time response.
The GRAPHICAL TIME RESPONSE (GTRESP) program of Sec. 2.4, is used to determine
and graphically display the time response for an arbitrary input. Note that
both of these programs may be used to study open-loop systems by letting K = 0
and unforced systems by setting r(t) = 0.

One of the basic problems of linear system analysis and design is the
question of sensitivity to parameter variations. The SENSITIVITY ANALYSIS
(SENSIT) program may be used to provide some information on sensitivity. The
SENSIT program, which is discussed in Sec. 2.5, permits one to study the effect
on the closed-loop poles of changes in elements of A, b, k or K. A graphical
output is provided to assist in the evaluation.

The next section of this chapter discusses the STATE VARIABLE FEEDBACK
(STVARFDBK) program. This program has been widely used in both academic and
industrial environments for the analysis and particularly the design of linear
state variable feedback control systems. The STVARFDBK program may be used to
find both the open-loop plant and closed-loop system transfer functions and can
in addition design closed-loop system from desired closed-loop transfer function
specifications.

Sections 2.7 to 2.9 present three programs which may be used to design
state variable feedback systems with inaccessible state variables. The program
OBSERV is used to find the observability index of a system/with determines
the order of the compensator needed for either the Luenberger observer program
(LUEN) or the series compensation program (SERCOM). The last two sections
present two programs which may be used for designing state variable feedback
structures for multiple-input, multi-output systems.

\"‘
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2.2 BASIC MATRIX (BASMAT)

Given a matrix A, the g@SIC MATRIX program can compute the determinant of
A,det A, the inverse of 4,A , the characteristic polynomial det(sy - A) and
eigenvalues of A,A, as well as the state transition matrix $(t) = exp(At) and
the resolvent matr}x &(s) = (sL - 4) .

2.2-1 THEORY The BASMAT program reads the elements of the matrix A
row by row and an option card which indicates what functions of 4 are desired.
The main program of BASMAT then calls subprograms to perform the appropriate
calculations, these subprograms are discussed in Appendix A.

2.2-2 INPUT FORMAT The input data for the BASIC MATRIX programs consists
of the usual identification card which also contains the dimension N of the
matrix A in columns 21-22. The elements of 4 are then read row by row from
the next N cards+. The last data card determines which computations are to be
performed by BASMAT. If a column is zero or blank, the related operation is
performed; if the column contains any non-zero integer (1 to 9), then the
related operation is suppressed. If the last card is completely blank, all
operations are performed. The input format is summarized in Table 2.2-1 for
easy reference.

Table 2.2-1
Input Format for BASIC MATRIX
Card Column
Neigb et Number Description Format
1 1-20 Problem identification 5A4, 12
21-22 N = dimension of A < 10
2 1-10 ajy 8E10.5
11-20 a1,
etc. s ol
3 1-10 a 8E10.5
11-20 ay,
etc. cee
N+ 2 1 IDET # 0 suppress determinant 6I1
2 INV # 0 suppress inverse
3 NRM # 0 suppress resolvent
4 ICP # 0 suppress characteristic
polynomial
IEIG # 0 suppress eigenvalues
ISTM # O suppress state transition
matrix

1
N is assumed to be less than or equal to 8 for simplicity. See Sec. 1.2.



2.2-3 OUTPUT FORMAT  After the problem identification, the matrix,é is
printed for reference. Then depending on the options selected det (@),
$(s), the characteristic polynomial, eigenvalues, and @(t) are printed. The
resolvent matrix is written as $(s) = adj(s]-A)/det(s]-A) and the matrix
numerator polynomial adj(s]-A) is expressed as matrix coefficients of powers
of s so that it takes the form
N-1
adj (sI-A) =_§ +£s + e +§Ns
The state transition matrix is expressed in a form similar to the adj(sI—A) as
matrix coefficients times the natural modes exp (A t); complex eigenvalues are
written as damped sine and cosine terms.

2.2-4 EXAMPLE 1In order to illustrate the use of the BASMAT program,
let us consider the following matrix

0o 1 o
A=10 0 1
e

-2 -3 ~3

We will use all of the options available for this example so the last card is
left blank. The form of the input data cards for this example is shown in
Table 2.2-2.

Table 2.2-2
Input Data Deck for BASMAT Example
Card Column No.
No. L4 S e 3520 |25| [ PO
1|BASMAT € XAMPLE, 3, - T
21000000 v v a0 1000000
IO A - O I I S UTT R
b= R0 1 i e O by =131 O
sl B ANK CRARDD gy

The program output for this example problem is shown in Table 2.2-3.
From this output, we see that 9,,(s) is

3+ 38 + 82
$,,(s) =

2+ 3s + 382 + 88
and the corresponding element of the state transition matrix is

-0. B
9,,(t) = 0.667¢™°% cos 0.866t + 1.15¢™*5¢ gin 0.866¢ + 0.333¢~2¢



Table 2.2-3
Program Output for BASMAT Example

BASIC MATRIX PROGRAM
PROBLEM IDENTIFICATION: BASMAT EXAMPLE 3

% 3 2 o o o e 2 e ok e e e ok e e ko ok ko ook o e Ak e o g ok ok ok kR kR ok ok ok

THE A MATRIX

0.0 1.6000000E 00 0.0
0.0 0.0 1.0000000E 00
-2.0000000€ 00 -3.0000000E 0C -3.0000000E 00

THE DETERMINANT OF THE MATRIX
-2.0000000E 00

THE INVERSE OF THE MATRIX

-1.5000000€ 00 -1.5000000E 00 -=5.00C0000E-01
1.0000000€ 00 0.0 0.0
0.0 1.0000000E 00 0.0

G2 o e o e ok e o e e ok ok s e o o e o e e e o o ook o ok oK o ok ok o ok o ke

THE MATRIX COEFFICIENTS OF THE NUMERATOR OF THE RESOLVENT MATRIX
THE MATRIX COEFFICIENT OF S*%2
1.0000000€ 00 0.0 0.0
0.0 1.0006000E 00 0.0
0.0 0.0 1.0000000E 00

THE MATRIX COEFFICIENT OF S*x*]

3.0000000E 00 1.0000000E 00 0.0
0.0 3.0000000E 00 1. 0000000E 00
-2.0000000E 00 -3.0000000€ 00 0.0

THE MATRIX COEFFICIENT OF S**0

3.0000000E 0O 3.0000000E 00 1.0000000E 00
-2.0000000E 00 0.0 0.0
0.0 =2.0000000E 00 0.0

e ook ok koRok ok ook ROk KRRk Rk Rk o ok Rk ok
THE CHARACTERISTIC POLYNOMIAL — IN ASCENDING POWERS OF S
1. 9999990E 00 3.C000000E 0O 3.0000000E 00 1.0
Ao ok ook ok ook ok ook Kook ok ko Kok ok ok ok &

THE EIGENVALUES OF THE A MATRIX

REAL PART IMAGINARY PART
-5.0000048E-01 -8.6602509E-01
=5.,0000048E-01 8.6602509E-01
=1.9999990E 00 0.0



Table 2.2-3 (cont.)

Ak oo R R KK o o ol ol o ook o o ol ok Kok K R K
THE ELEMENTS OF THE STATE TRANSITION MATRIX

THE MATRIX COEFFICIENT OF EXP(-5.000005E-0L)T#COS( 8.660251E-01)

6.6666591E-01 —3.3333445E-01 -3.3333409E-01
6.6666842E-01 1.6666679E 00 6.6666794E-01
-1.3333349E 00 -1.3333359€ 0OC =3.3333492€-01

THE MATRIX COEFFICIENT OF EXP(-5.000005E-OL)T*SIN{ 8.660251E-01)

1.1547022E 00 1.7320518E 00 5.7735133E-01
-1.1547022E 00 =5.7735050€-01 -3.5762787€E-07
0.0 -=1.1547031E 0C -5.7735038E-01

THE MATRIX COEFFICIENT OF EXP(-1.999999E 00)T

3.3333433E-01 3.3333457E-01 3.3333439E-01
=6.6666853E-C1 —6.6666758E-01 —6.6666794E-01
1.3333340E 00 1.3333340E 00 1.3333340E 00

2.2-5  SUBPROGRAMS USED  The following subprograms are used by this
program:

(1) DET

(2) CHREQ
(3) PROOT
(4) SIMEQ
(5) STMST

Please see Appendix A for a description of each of these subprograms.

2.2-6 PROGRAM LISTING
C BASIC MATRIX PROGRAM
C SUBPROGRAMS USED: CHREQ, SIMEQ, STMST, PRUOT, DET.
DIMENSION A(10410)yEIGR(10),EIGI(10),C{11),AINV{(10,10),
* NAME(5)
2001 FORMAT (5A4,12)
2002 FORMAT (8E10.5)
2003 FORMAT (1P6E20.7)
2004 FORMAT (1HO35X,16HTHE A MATRIX /)
2005 FORMAT (1HO¢5X¢32HTHE CHARACTERISTIC POLYNOMIAL -
* 24HIN ASCENDING POWERS OF S /)
2006 FORMAT (1HO 45X ,31HTHE EIGENVALUES OF THE A MATRIX)
2007 FORMAT (9X,9HREAL PART$8Xs14HIMAGINARY PART,/)
2008 FORMAT {(1H1y5X,20HBASIC MATRIX PROGRAM)
2009 FORMAT (6Xy23HPROBLEM IDENTIFICATION:,5X,5A4)
2010 FORMAT (1HO,5X329HTHE DETERMINANT OF THE MATRIX/)
2011 FORMAT (1HOy5X+25HTHE INVERSE OF THE MATRIX/)
2012 FORMAT (1HO,45(1H%*))
2013 FURMAT (611)
4 READ (5,2001,END=10) (NAME(I),I=195)4N
DO 1 I=1,N
1 READ 2002, (A(I+K)sK=14N)
READ 2013, IDET,INV,NRMyICP,IEIG,ISTM
PRINT 2008

10



20
15

30

35

25
10

PRINT 2009, (NAME(I)sI=1,5)
PRINT 2012

PRINT 2004

DO 2 I=14N

PRINT 2003, (A{I4K),K=1,N)
IF (IDET.NE.O) GO TO 5
D=DET(A,N)

PRINT 2010

PRINT 2003, D

IF (INV.NE.O) GO TO 15

PRINT 2011

CALL SIMEQ(A,C¢N,AINV,C, IERR)
If (IERR.EQ.0) GO TO 15

DO 20 I=1,N

PRINT 2003, (AINV(IsJ)sJ=14N)
CALL CHREQ(A,Ny,CyNRM)

CALL PROOT(N+CoEIGRyEIGIy+1)
IF (ICP.NE.O) GO TO 30

PRINT 2012

PRINT 2005

NN=N+1

PRINT 2003, {(C{I),I=1,NN)

If (IEIG.NE.O) GO TO 35
PRINT 2012

PRINT 2006

PRINT 2007

00 3 I=1,N

PRINT 2003, EIGR(I),EIGI(I)
IF (ISTM.NE.O) GO TO 25

CALL STMSTINyASEIGR,EIGI,ISTM)

GO TO 4
stTop
END

11



2.3 RATIONAL TIME RESPONSE (RTRESP)

The RTRESP program determines the time response in closed form of the
closed-loop system

E(E) = Ax(£) + bu(t)
u(t) = K[r(e) - kx(¢)]
(&) = gTx(t)

due to any initial conditions x(0) and input r(t), t > O which has a rational
Laplace transform R(s) with a pole-zero excess of at least one.

2.3-1 THEORY Let the Laplace transform of r(t) be given by
- - g Ns)
L{x(®)} = R(s) =K, Dis}

where
_ k-1 k
N(s) = n, + n,s + wes ¥ ns + s
_ m-1 m
D(s) = dl + d 8+ wee dms + s

2

and m > k > 0. The approach which we shall use will be to form an mth—order
dynamic system whose initial condition response (for a specific set of initial
conditions) is equal to r(t). Then we may combine this new system with the
original system and find the complete response in closed form by the use of
STMST (See Appendix A). Let us use phase variables to represent this new
system in the form

X, (6) = A x ()

T
v () =g ' x (t)
where
0 0 P 0
0 1 g 0
Ar - B RERGE s DR B
0 0 o0 vie n
-dl —d2 -d3 e -dm
and

&, = co](Krnl, Krnz, e 5 Kr, 05 sis 5 0)

If we let the initial condition of the system be (0) = col(0, 0, ... , 0, 1),
then the time response of the output yr(t) will be identical to r(t).

Our original closed-loop system can be represented as
x(t) =Ax(t) + Kpr(t)

where =A - KkkT. Since yr(t) is equal to r(t) if the initial condition
31(0) is properly chosen, the closed-loop system can also be written as

E(®) = 4x(0) + Koe, %, (©)

Now we form the n + mth order augmented system which is unforced
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