Sven A. Brueckner
Giovanna Di Marzo Serugendo
David Hales

Franco Zambonelli (Eds.)

Engineering
Self-Organising Systems

Third International Workshop, ESOA 2005
Utrecht, The Netherlands, July 2005
Revised Selected Papers

o
o
g
<C
=
=

@ Springer

_ | Sven A. Brueckner
K’jﬁ Giovanna Di Marzo Serugendo David Hales
-,>" Franco Zambonelli (Eds.)

Engineering
Selt-Organising Systems

Third International Workshop, ESOA 2005
Utrecht, The Netherlands, July 25, 2005
Revised Selected Papers

I

&) Springer E200603521

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saarbriicken, Germany

Volume Editors

Sven A. Brueckner

Altarum Institute

3520 Green Court, Suite 300, Ann Arbor, MI 48105-1579, USA
E-mail: sven.brueckner @altarum.org

Giovanna Di Marzo Serugendo

Birkback (University of London), Computer Science and Information Systems
Malet Street, London WCIE 7HX, UK

E-mail: dimarzo@dcs.bbk.ac.uk

David Hales

University of Bologna, Department of Computer Science
Mura Anteo Zamboni 7, 40127 Bologna, Italy

E-mail: hales @cs.unibo.it

Franco Zambonelli

Universita di Modena e Reggio Emilia, Dipartimento di Scienze e Metodi dell’ Ingegneria
Via Allegri 13, 42100 Reggio Emilia, Italy

E-mail: franco.zambonelli@unimore.it

Library of Congress Control Number: 2006923000

CR Subject Classification (1998): 1.2.11, C.2.4,C.2,D.2.12,D.1.3, H.3, H4
LNCS Sublibrary: SL 7 — Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-33342-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33342-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the Gerthan Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11734697 06/3142 543210

Lecture Notes in Artificial Intelligence ~ 3910
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Preface

The idea that self-organisation and emergence can be harnessed for the purpose
of solving tricky engineering problems is becoming increasingly accepted. Re-
searchers working in many diverse fields (such as networks, distributed systems,
operating systems and agent systems) are beginning to apply this new approach.
This book contains recent work from a broad range of areas with the common
theme of utilising self-organisation productively.

As distributed information infrastructures continue to spread (such as the
Internet, wireless and mobile systems), new challenges have arisen demanding
robust and scalable solutions. In these new challenging environments the de-
signers and engineers of global applications and services can seldom rely on
centralised control or management, high reliability of devices, or secure envi-
ronments. At the other end of the scale, ad-hoc sensor networks and ubiquitous
computing devices are making it possible to embed millions of smart computing
agents into the local environment. Here too systems need to adapt to constant
failures and replacement of agents and changes in the environment, without
human intervention or centralised management.

Self-organising applications (SOAs) are able to dynamically change their
functionality and structure without direct user intervention to meet changes
in requirements and their environment. The overall functionality delivered by
SOAs typically changes progressively, mainly in a non-linear fashion, until it
reaches (emerges to) a state where it satisfies the current system requirements
and therefore it is termed self-organising or emergent behaviour. Self-organising
behaviour is often the result of the execution of a number of individual appli-
cation components that locally interact with each other aiming to achieve their
local goals, for example, systems that are based on agents or distributed ob-
jects. The main characteristic of such systems is their ability to achieve complex
collective tasks with relatively simple individual behaviours, without central or
hierarchical control.

However, in artificial systems, environmental pressures and local interactions
and control may lead to unpredicted or undesirable behaviour. A major open
issue is therefore how to engineer desirable emergent behaviour in SOAs and how
to avoid undesirable ones given the requirements and the application environ-
ment. To address this issue, approaches originating from diverse areas such as
non-linear optimisation, knowledge-based programming and constraint problem
solving are currently been explored. Furthermore, SOA engineers often take in-
spiration from the real world, for example from biology, chemistry, sociology and
the physical world. Typical examples of SOAs are systems that reproduce so-
cially based insect behaviour, such as ants-based systems, artificial life, or robots.
Although the results achieved so far are promising, further work is required until
the problem is sufficiently addressed.

VI Preface

More specific fundamental questions that need an answer are: How do we
structure the application components and their interactions, so that the self-
organisation process results in the desired functionality? How do we validate
that the application performs to the requirements within the range of scenarios
expected during deployment? What means of influencing the dynamics of the
application do we have available and how effective are they? On the one hand,
multi-agent simulations and analytic modelling can be used to study emergent
behaviour in real systems. On the other hand, results from complexity theory
can be applied in engineering of both multi-agent systems and self-organising
systems.

To address these issues the ESOA series of workshops was established. The
aim is to open a dialog among practitioners from diverse fields, including: agent-
based systems, software engineering, information systems, distributed systems,
complex systems, optimisation theory and non-linear systems, neural networks,
and evolutionary computation. Although backgrounds are diverse, the focus is
always clear — to harness self-organising principles to solve difficult engineering
problems.

This book includes revised and extended papers presented at the Third ESOA
workshop held during the 4th International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS) conference held in Utrecht, The
Netherlands in July 2005. The workshop received 25 submissions, out of which 12
papers were selected for a long presentation and 6 papers for short presentation.

The first workshop (ESOA 2003) followed a theme of applying nature-inspired
models to fields as diverse as network security, manufacturing control, and elec-
tronic markets. The second workshop (ESOA 2004) included papers on self-
assembly of software, robots task allocations, design methods, and stigmergy-
based applications. Both workshops were held during the AAMAS conferences
in 2003 and 2004 respectively and post-proceedings are published by Springer,
(volumes LNAT 2977 and 3464).

ESOA 2005 included a number of papers related to methodologies and engi-
neering practices. This shows that research in the field of self-organising appli-
cations is maturing from novel techniques that work in specific contexts to more
general engineering proposals. This book is structured into three parts reflecting
the workshop session themes.

Part I presents novel self-organising mechanisms. Jelasity et al.
present a self-organising mechanism for maintaining and controlling topology
in overlay networks based on gossiping. Georgé et al. describe “emergent pro-
gramming” through self-organisation of a program’s instructions. Picard et al.
show how cooperation among agents serves as a self-organisation mechanism in
the framework of a distributed timetabling problem. Nowostaswski et al. present
the concept of “evolvable virtual machines” architecture for independent pro-
grams to evolve into higher levels of hierarchical complexity; Hales presents a
P2P re-wiring protocol that allows peers with different skills to spontaneously
self-organise into cooperative groups. Dimuro et al. present a self-regulation algo-
rithm for multi-agent systems based on a sociological model of social exchanges.

Preface VII

Armetta et al. discuss a protocol for sharing critical resources based on a two-
level self-organised coordination schema.

In Part II methodologies, models and tools for self-organising ap-
plications are presented. Brueckner et al. present an agent-based graph
colouring model favouring distributed coordination among agents with limited
resources in a real-world environment. Marrow et al. describe applications us-
ing self-organisation based upon the DIET multi-agent platform. Saenchai et
al. present a multi-agent-based algorithm solving the dynamic distributed con-
straint satisfaction problem. De Wolf et al. present an approach combining sim-
ulation and numerical analysis for engineering self-organising systems with some
guaranteed macroscopic behaviour. Gardelli et al. discuss self-organising security
mechanisms based on the human immune system, and their verification through
simulation. Renz et al. discuss the need of using mesoscopic modeling to provide
descriptions of emergent behaviour.

Part III presents specific applications of self-organising mecha-
nisms. Ando et al. apply the stigmergy paradigm to automated road traffic
management. Fabregas et al. discuss a model inspired from bee behaviour and
apply this model to an example of cultural heritage. Van Parunak et al. discuss
a sift and sort algorithm for information processing inspired by ants sorting and
foraging. Tatara et al. present an agent-based adaptive control approach where
local control objectives can be changed in order to obtain global control objec-
tives. Hadeli et al. discuss measures of reactivity of agents in a multi-agent and
control approach based on stigmergy.

Finally, we wish to thank all members of the Programme Committee for
returning their reviews on time (all papers submitted to the workshop were
reviewed by two to three members of the Programme Committee) and for offering
useful suggestions on improving the workshop event. Also we thank all those who
attended the workshop and contributed to the lively discussions and question
and answer sessions.

January 2006 Sven Brueckner
Giovanna Di Marzo Serugendo

David Hales

Franco Zambonelli

Organising Committee

ESOA 2005

Organization

Programme Committee

Yaneer Bar-Yam, New England Complex Systems Institute, USA
Sergio Camorlinga, University of Manitoba, Canada

Vincent Cicirello, Drexel University, USA

Marco Dorigo, IRIDIA, Université Libre de Bruxelles, Belgium
Noria Foukia, University of Southern California, USA

Maria Gini, University of Minnesota, USA

Marie-Pierre Gleizes, IRIT Toulouse, France

Salima Hassas, University of Lyon, France

Manfred Hauswirth, Swiss Federal Institute of Technology, Switzerland
Mark Jelasity, University of Bologna, Italy

Margaret Jefferies, The University of Waikato, New Zealand
Manolis Koubarakis, Technical University of Crete, Greece
Mark Klein, MIT Sloan School of Management, USA

Ghita Kouadri Mostefaoui, University of Fribourg, Switzerland
Soraya Kouadri Mostefaoui, University of Fribourg, Switzerland
Marco Mamei, University of Modena and Reggio Emilia, Italy
Paul Marrow, BT, UK

Philippe Massonet, CETIC, Belgium

Alberto Montresor, University of Bologna, Italy

Andrea Omicini, University of Bologna, Italy

Daniel Polani, University of Hertfordshire, UK

Martin Purvis, University of Otago, New Zealand

Mikhail Smirnov, Fraunhofer Fokus, Berlin, Germany

Paul Valckenaers, Katholieke Universiteit Leuven, Belgium

Lecture Notes in Artificial Intelligence (LNAI)

Vol. 3910: S.A. Brueckner, G. Di Marzo Serugendo, D.
Hales, F. Zambonelli (Eds.), Engineering Self-Organising
Systems. XII, 245 pages. 2006.

Vol. 3904: M. Baldoni, U. Endriss, A. Omicini, P. Tor-
roni (Eds.), Declarative Agent Languages and Technolo-
gies III. XII, 245 pages. 2006.

Vol. 3899: S. Frintrop, VOCUS: A Visual Attention System
for Object Detection and Goal-Directed Search. XIV, 216
pages. 2006.

Vol. 3890: S.G. Thompson, R. Ghanea-Hercock (Eds.),
Defence Applications of Multi-Agent Systems. XII, 141
pages. 2006.

Vol. 3885: V. Torra, Y. Narukawa, A. Valls, J. Domingo-
Ferrer (Eds.), Modeling Decisions for Artificial Intelli-
gence. XII, 374 pages. 2006.

Vol. 3881: S. Gibet, N. Courty, J.-F. Kamp (Eds.), Gesture
in Human-Computer Interaction and Simulation. XIII,
344 pages. 2006.

Vol. 3874: R. Missaoui, J. Schmidt (Eds.), Formal Concept
Analysis. X, 309 pages. 2006.

Vol. 3873: L. Maicher, J. Park (Eds.), Charting the Topic
Maps Research and Applications Landscape. VIII, 281
pages. 2006.

Vol. 3863: M. Kohlhase (Ed.), Mathematical Knowledge
Management. XI, 405 pages. 2006.

Vol. 3862: R.H. Bordini, M. Dastani, J. Dix, A.E.F.
Seghrouchni (Eds.), Programming Multi-Agent Systems.
X1V, 267 pages. 2006.

Vol. 3849: 1. Bloch, A. Petrosino, A.G.B. Tettamanzi
(Eds.), Fuzzy Logic and Applications. XIV, 438 pages.
2006.

Vol. 3848: J.-F. Boulicaut, L. De Raedt, H. Mannila (Eds.),
Constraint-Based Mining and Inductive Databases. X, 401
pages. 2006.

Vol. 3847: K.P. Jantke, A. Lunzer, N. Spyratos, Y. Tanaka
(Eds.), Federation over the Web. X, 215 pages. 2006.

Vol. 3835: G. Sutcliffe, A. Voronkov (Eds.), Logic for Pro-
gramming, Artificial Intelligence, and Reasoning. X1V,
744 pages. 2005.

Vol. 3830: D. Weyns, H. V.D. Parunak, F. Michel (Eds.),
Environments for Multi-Agent Systems II. VIII, 291
pages. 2006.

Vol. 3817: M. Faundez-Zanuy, L. Janer, A. Esposito, A.
Satue-Villar, J. Roure, V. Espinosa-Duro (Eds.), Nonlinear
Analyses and Algorithms for Speech Processing. XII, 380
pages. 2006.

Vol. 3814: M. Maybury, O. Stock, W. Wahlster (Eds.), In-
telligent Technologies for Interactive Entertainment. XV,
342 pages. 2005.

Vol. 3809: S. Zhang, R. Jarvis (Eds.), Al 2005: Advances
in Artificial Intelligence. XXVII, 1344 pages. 2005.

Vol. 3808: C. Bento, A. Cardoso, G. Dias (Eds.), Progress
in Artificial Intelligence. XVIII, 704 pages. 2005.

Vol. 3802: Y. Hao, J. Liu, Y.-P. Wang, Y.-m. Cheung, H.
Yin, L. Jiao, J. Ma, Y.-C. Jiao (Eds.), Computational In-
telligence and Security, Part II. XLII, 1166 pages. 2005.

Vol. 3801: Y. Hao, J. Liu, Y.-P. Wang, Y.-m. Cheung, H.
Yin, L. Jiao, J. Ma, Y.-C. Jiao (Eds.), Computational In-
telligence and Security, Part I. XLI, 1122 pages. 2005.

Vol. 3789: A. Gelbukh, A. de Albornoz, H. Terashima-
Marin (Eds.), MICAI 2005: Advances in Artificial Intel-
ligence. XX VI, 1198 pages. 2005.

Vol. 3782: K.-D. Althoff, A. Dengel, R. Bergmann, M.
Nick, T.R. Roth-Berghofer (Eds.), Professional Knowl-
edge Management. XXIII, 739 pages. 2005.

Vol. 3763: H. Hong, D. Wang (Eds.), Automated Deduc-
tion in Geometry. X, 213 pages. 2006.

Vol. 3755: G.J. Williams, S.J. Simoff (Eds.), Data Mining.
XI, 331 pages. 2006.

Vol. 3735: A. Hoffmann, H. Motoda, T. Scheffer (Eds.),
Discovery Science. XVI, 400 pages. 2005.

Vol. 3734: S. Jain, H.U. Simon, E. Tomita (Eds.), Algo-
rithmic Learning Theory. XII, 490 pages. 2005.

Vol. 3721: A M. Jorge, L. Torgo, P.B. Brazdil, R. Cama-
cho, J. Gama (Eds.), Knowledge Discovery in Databases:
PKDD 2005. XXIII, 719 pages. 2005.

Vol. 3720: J. Gama, R. Camacho, P.B. Brazdil, A.M. Jorge,
L. Torgo (Eds.), Machine Learning: ECML 2005. XXIII,
769 pages. 2005.

Vol. 3717: B. Gramlich (Ed.), Frontiers of Combining Sys-
tems. X, 321 pages. 2005.

Vol. 3702: B. Beckert (Ed.), Automated Reasoning with
Analytic Tableaux and Related Methods. XIII, 343 pages.
2005.

Vol. 3698: U. Furbach (Ed.), KI 2005: Advances in Arti-
ficial Intelligence. XIII, 409 pages. 2005.

Vol. 3690: M. Péchoucek, P. Petta, L.Z. Varga (Eds.),
Multi-Agent Systems and Applications IV. XVII, 667
pages. 2005.

Vol. 3684: R. Khosla, RJ. Howlett, L.C. Jain (Eds.),

Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part IV. LXXIX, 933 pages. 2005.

Vol. 3683: R. Khosla, R.J. Howlett, LC. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part III. LXXX, 1397 pages. 2005.

Vol. 3682: R. Khosla, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part II. LXXIX, 1371 pages. 2005.

Vol. 3681: R. Khosla, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part I. LXXX, 1319 pages. 2005.

Vol. 3673: S. Bandini, S. Manzoni (Eds.), AI*IA 2005:
Advances in Artificial Intelligence. X1V, 614 pages. 2005.

Vol. 3662: C. Baral, G. Greco, N. Leone, G. Terracina
(Eds.), Logic Programming and Nonmonotonic Reason-
ing. XIII, 454 pages. 2005.

Vol. 3661: T. Panayiotopoulos, J. Gratch, R.S. Aylett, D.
Ballin, P. Olivier, T. Rist (Eds.), Intelligent Virtual Agents.
XIII, 506 pages. 2005.

Vol. 3658: V. Matousek, P. Mautner, T. Pavelka (Eds.),
Text, Speech and Dialogue. XV, 460 pages. 2005.

Vol. 3651: R. Dale, K.-F. Wong, J. Su, O.Y. Kwong (Eds.),
Natural Language Processing — IJCNLP 2005. XXI, 1031
pages. 2005.

Vol. 3642: D. Slezak, J. Yao, J.E. Peters, W. Ziarko, X. Hu
(Eds.), Rough Sets, Fuzzy Sets, Data Mining, and Granu-
lar Computing, Part IT. XXIII, 738 pages. 2005.

Vol. 3641: D. Slezak, G. Wang, M. Szczuka, L. Diintsch,
Y. Yao (Eds.), Rough Sets, Fuzzy Sets, Data Mining, and
Granular Computing, Part I. XXIV, 742 pages. 2005.

Vol. 3635: J.R. Winkler, M. Niranjan, N.D. Lawrence
(Eds.), Deterministic and Statistical Methods in Machine
Learning. VIII, 341 pages. 2005.

Vol. 3632: R. Nieuwenhuis (Ed.), Automated Deduction
— CADE-20. XIII, 459 pages. 2005.

Vol. 3630: M.S. Capcarrere, A.A. Freitas, PJ. Bentley,
C.G. Johnson, J. Timmis (Eds.), Advances in Artificial
Life. XIX, 949 pages. 2005.

Vol. 3626: B. Ganter, G. Stumme, R. Wille (Eds.), Formal
Concept Analysis. X, 349 pages. 2005.

Vol. 3625: S. Kramer, B. Pfahringer (Eds.), Inductive
Logic Programming. XIII, 427 pages. 2005.

Vol. 3620: H. Mufioz-Avila, F. Ricci (Eds.), Case-Based

Reasoning Research and Development. XV, 654 pages.
2005.

Vol. 3614: L. Wang, Y. Jin (Eds.), Fuzzy Systems and
Knowledge Discovery, Part II. XLI, 1314 pages. 2005.
Vol. 3613: L. Wang, Y. Jin (Eds.), Fuzzy Systems and
Knowledge Discovery, Part I. XLI, 1334 pages. 2005.
Vol. 3607: J.-D. Zucker, L. Saitta (Eds.), Abstraction, Re-
formulation and Approximation. XII, 376 pages. 2005.
Vol. 3601: G. Moro, S. Bergamaschi, K. Aberer (Eds.),
Agents and Peer-to-Peer Computing. XII, 245 pages.
2005.

Vol. 3600: F. Wiedijk (Ed.), The Seventeen Provers of the
World. XVI, 159 pages. 2006.

Vol. 3596: E. Dau, M.-L. Mugnier, G. Stumme (Eds.),

Conceptual Structures: Common Semantics for Sharing
Knowledge. X1, 467 pages. 2005.

Vol. 3593: V. Mafik, R. W. Brennan, M. Pé€choucek (Eds.),
Holonic and Multi-Agent Systems for Manufacturing. XI,
269 pages. 2005.

Vol. 3587: P. Perner, A. Imiya (Eds.), Machine Learning
and Data Mining in Pattern Recognition. XVII, 695 pages.
2005.

Vol. 3584: X. Li, S. Wang, Z.Y. Dong (Eds.), Advanced
Data Mining and Applications. XIX, 835 pages. 2005.

Vol. 3581: S. Miksch, J. Hunter, E.T. Keravnou (Eds.),
Artificial Intelligence in Medicine. X VII, 547 pages. 2005.

Vol. 3577: R. Falcone, S. Barber,). Sabater-Mir, M.P.
Singh (Eds.), Trusting Agents for Trusting Electronic So-
cieties. VIII, 235 pages. 2005.

Vol. 3575: S. Wermter, G. Palm, M. Elshaw (Eds.),
Biomimetic Neural Learning for Intelligent Robots. IX,
383 pages. 2005.

Vol. 3571: L. Godo (Ed.), Symbolic and Quantitative
Approaches to Reasoning with Uncertainty. XVI, 1028
pages. 2005.

Vol. 3559: P. Auer, R. Meir (Eds.), Learning Theory. XI,
692 pages. 2005.

Vol. 3558: V. Torra, Y. Narukawa, S. Miyamoto (Eds.),
Modeling Decisions for. Artificial Intelligence. XII, 470
pages. 2005.

Vol. 3554: A K. Dey, B. Kokinov, D.B. Leake, R. Turner
(Eds.), Modeling and Using Context. XIV, 572 pages.
2005.

Vol. 3550: T. Eymann, F. Kliigl, W. Lamersdorf, M.
Klusch, M.N. Huhns (Eds.), Multiagent System Technolo-
gies. XI, 246 pages. 2005.

Vol. 3539: K. Morik, J.-F. Boulicaut, A. Siebes (Eds.),
Local Pattern Detection. XI, 233 pages. 2005.

Vol. 3538: L. Ardissono, P. Brna, A. Mitrovi¢ (Eds.), User
Modeling 2005. XVI, 533 pages. 2005.

Vol. 3533: M. Ali, F. Esposito (Eds.), Innovations in Ap-
plied Artificial Intelligence. XX, 858 pages. 2005.

Vol. 3528: P.S. Szczepaniak, J. Kacprzyk, A. Niewiadom-
ski (Eds.), Advances in Web Intelligence. X VII, 513 pages.
2005.

Vol.3518: T.-B. Ho, D. Cheung, H. Liu (Eds.), Advances in
Knowledge Discovery and Data Mining. XXI, 864 pages.
2005.

Vol. 3508: P. Bresciani, P. Giorgini, B. Henderson-Sellers,
G. Low, M. Winikoff (Eds.), Agent-Oriented Information
Systems II. X, 227 pages. 2005.

Vol. 3505: V. Gorodetsky, J. Liu, V.A. Skormin (Eds.), Au-
tonomous Intelligent Systems: Agents and Data Mining.
X111, 303 pages. 2005.

Vol. 3501: B. Kégl, G. Lapalme (Eds.), Advances in Arti-
ficial Intelligence. XV, 458 pages. 2005.

Vol. 3492: P. Blache, E.P. Stabler, J.V. Busquets, R. Moot
(Eds.), Logical Aspects of Computational Linguistics. X,
363 pages. 2005.

Vol. 3490: L. Bolc, Z. Michalewicz, T. Nishida (Eds.),

Intelligent Media Technology for Communicative Intelli-
gence. X, 259 pages. 2005.

Vol. 3488: M.-S. Hacid, N.V. Murray, Z.W. Ras, S.
Tsumoto (Eds.), Foundations of Intelligent Systems. XIII,
700 pages. 2005.

Vol. 3487: J.A. Leite, P. Torroni (Eds.), Computational
Logic in Multi-Agent Systems. XII, 281 pages. 2005.
Vol. 3476: J.A. Leite, A. Omicini, P. Torroni, P. Yolum

(Eds.), Declarative Agent Languages and Technologies II.
XII, 289 pages. 2005.

F386 22

Table of Contents

Part I: Self-organising Mechanisms

T-Man: Gossip-Based Overlay Topology Management
Mark Jelasity, Ozalp Babaogluc..c.....

Basic Approach to Emergent Programming: Feasibility Study for
Engineering Adaptive Systems Using Self-organizing Instruction-Agents
Jean-Pierre Georgé, Marie-Pierre Gleizes, Pierre Glize

ETTO: Emergent Timetabling by Cooperative Self-organization
Gauthier Picard, Carole Bernon, Marie-Pierre Gleizes

Self-adaptation and Dynamic Environment Experiments with Evolvable
Virtual Machines
Mariusz Nowostawski, Lucien Epiney, Martin Purvis

Choose Your Tribe! - Evolution at the Next Level in a Peer-to-Peer
Network
David Hales

Exchange Values and Self-regulation of Exchanges in Multi-agent
Systems: The Provisory, Centralized Model
Gragaliz Pereira Dimuro, Anténio Carlos da Rocha Costa

A New Protocol to Share Critical Resources by Self-organized
Coordination
Frederic Armetta, Salima Hassas, Simone Pimont.................

Part II: Methodologies, Models and Tools

Information-Driven Phase Changes in Multi-agent Coordination
Sven A. Brueckner, H.V.D. Parunak

Self-organising Applications Using Lightweight Agents
Paul Marrow, Manolis Koubarakis c.c.cccuuiu...

Solving Dynamic Distributed Constraint Satisfaction Problems with a
Modified Weak-Commitment Search Algorithm
Koragod Saenchai, Luigi Benedicenti, Raman Paranjape

16

31

46

61

75

90

XII Table of Contents

Development of Self-organising Emergent Applications with
Simulation-Based Numerical Analysis
Tom De Wolf, Tom Holvoet, Giovanni Samaey

On the Role of Simulations in Engineering Self-organising MAS: The
Case of an Intrusion Detection System in TuCSoN
Luca Gardelli, Mirko Viroli, Andrea Omicini

Mesoscopic Modeling of Emergent Behavior — A Self-organizing
Deliberative Minority Game
Wolfgang Renz, Jan Sudeikat coiiiiiiiiiian

Part II1: Applications

Pheromone Model: Application to Traffic Congestion Prediction
Yasushi Ando, Osamu Masutani, Hiroshi Sasaki, Hirotoshi Iwasaksi,
Yoshiaki Fukazawa, Shinichi Honiden

How Bee-Like Agents Support Cultural Heritage
Marti{ Fabregas, Beatriz Lopez, Josep Masana

Sift and Sort: Climbing the Semantic Pyramid
H.V.D. Parunak, Peter Weinstein, Paul Chiusano,
Sven BrueCkner

Agent-Based Control of Spatially Distributed Chemical Reactor
Networks

Eric Tatara, Michael North, Cindy Hood, Fouad Teymour,

Al CImar . . oo e

A Study of System Nervousness in Multi-agent Manufacturing Control
System
Hadeli, Paul Valckenaers, Paul Verstraete, Bart Saint Germain,
Hendrik Viar Brussel s : cuiviswinssmsmsmrsmens sssmpimemn emswe s

Author IndexX e

T-Man: Gossip-Based Overlay
Topology Management*

Maérk Jelasity™ and Ozalp Babaoglu

University of Bologna,
Dipartimento di Scienze dell’Informazione,
Mura Anteo Zamboni 7, 40126 Bologna, Italy
{jelasity, babaoglu}@cs.unibo.it

Abstract. Overlay topology plays an important role in P2P systems.
Topology serves as a basis for achieving functions such as routing, search-
ing and information dissemination, and it has a major impact on their ef-
ficiency, cost and robustness. Furthermore, the solution to problems such
as sorting and clustering of nodes can also be interpreted as a topology.
In this paper we propose a generic protocol, T-MAN, for constructing
and maintaining a large class of topologies. In the proposed framework,
a topology is defined with the help of a ranking function. The nodes par-
ticipating in the protocol can use this ranking function to order any set
of other nodes according to preference for choosing them as a neighbor.
This simple abstraction makes it possible to control the self-organization
process of topologies in a straightforward, intuitive and flexible manner.
At the same time, the T-MAN protocol involves only local communication
to increase the quality of the current set of neighbors of each node. We
show that this bottom-up approach results in fast convergence and high
robustness in dynamic environments. The protocol can be applied as a
standalone solution as well as a component for recovery or bootstrapping
of other protocols.

1 Introduction

In large, dynamic, fully distributed systems, such as peer-to-peer (P2P) net-
works, nodes (peers) must be organized in a connected network to be able to
communicate with each other and to implement functions and services. The
neighbors of the nodes—the “who is connected to whom”, or “who knows whom”
relation—define the overlay topology of the distributed system in question. This
topology can dynamically change in time, and in every time point, it defines the
possible interactions between the nodes.

Although it would be desirable, it is typically very difficult to ensure that all
nodes are aware of every other participating node in the system. The reason is

* This work was partially supported by the Future and Emerging Technologies unit
of the European Commission through Project BISON (IST-2001-38923) and DELIS
(IST-2002-001907).

** Also with MTA RGAI, SZTE, Szeged, Hungary.

S.A. Brueckner et al. (Eds.): ESOA 2005, LNAI 3910, pp. 1-15, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 M. Jelasity and O. Babaoglu

that the set of participating nodes changes quickly, and (due to the large number
of nodes) it is not feasible to maintain a complete list of the nodes. This means
that all nodes are aware of only a limited subset of other nodes, so efficient and
robust algorithms are necessary to create, maintain and optimize the topology.

Overlay topology forms the basis for, or has a major impact on many functions.
It is well known that functions such as searching, routing, information dissemina-
tion, data aggregation, etc, need special topologies for good performance and high
efficiency. Furthermore, solutions to other problems including sorting and cluster-
ing can be readily expressed as topologies. For example, in the case of sorting, we
are looking for a linear structure that represents some total ordering relation. For
all these functions, numerous topologies have been suggested and even more pro-
tocols to construct and repair them have been proposed.

Motivated by these observations, we consider topology management as a gen-
eral purpose function that is desirable in distributed systems. In this paper we
specifically target very large scale and highly dynamic systems. Key requirements
of topology management in such environments include robustness, scalability,
flexibility and simplicity. Besides, it is a great advantage if a topology manager
is flexible enough to allow for changing the managed topology at run time on de-
mand, without having to develop a new protocol for each possible topology from
scratch. Since topology is a very general abstraction, that can be used to express
solutions to problems and to enhance and support other functions, such func-
tionality would allow us to increase the efficiency of deploying fully distributed
application dramatically. We would need only one running topology component
and the application area of the system could be changed at run time whenever
necessary. With a protocol that supports quickly changing topologies, it even
becomes possible to automatically evolve topologies through, for example, an
evolutionary process.

In this paper we propose a generic protocol, T-MaN, with the aim of fulfilling
the requirements outlined above. The desired topology is described using a single
ranking function that all nodes can apply to order any subset of potential neigh-
bors according to preference for actually being selected as a neighbor. Using only
local gossip messages, T-MAN gradually evolves the current topology towards the
desired target structure with the help of the ranking function. We show experi-
mentally that the protocol is scalable and fast, with convergence times that grow
only as the logarithm of the network size. These properties allow T-MAN to be
practical even when several different topologies have to be created on demand,
and also in dynamic systems where the set of nodes or their properties change
rapidly. Additionally, the general formulation of the ranking function allows us
to deal with a wide range of different topologies.

Although this work is concerned mainly with exploring the basic properties of T-
Man by examining simple topologies like ring, mesh and binary tree, it is possible to
illustrate its practicality with more realistic applications. We briefly outline three
such applications: sorting, clustering and a distributed hash table (DHT).

Related work includes gossip-based protocols, that have gained notable pop-
ularity in various contexts [1, 2, 14]. In this paper we suggest a novel application

T-Man: Gossip-Based Overlay Topology Management 3

of the gossip communication model to solve the topology management problem.
Issues related to topology management itself have also received considerable at-
tention. Examples from the vast literature include DHTs [7, 11, 13], unstructured
overlays [9,3], and superpeer topologies [16]. As for topology construction, Mas-
soulié and Kermarrec [6] propose a protocol to evolve a topology that reflects
proximity, Voulgaris and van Steen [15] propose a method to jump-start Pastry.
Unlike these specific solutions, T-MAN is a generic framework and can be used
to construct and maintain a large class of different topologies quickly in a simple
and scalable manner.

2 The Problem

We assume that we are given a (perhaps random) overlay network, and we
are interested in constructing some desirable topology by connecting all nodes
in the network to the right neighbors. The topology can be defined in many
different ways and it will typically depend on some properties of the nodes like
geographical location, semantic description of stored content, storage capacity,
etc. We need a formal framework that is simple yet powerful enough to be able to
capture most of the interesting structures. Our proposal is the ranking function
that defines the target topology through allowing all nodes to sort any subset
of nodes (potential neighbors) according to preference to be selected as their
neighbor.

For a more formal definition, let us first define some basic concepts. We con-
sider a set of nodes connected through a routed network. Each node has an
address that is necessary and sufficient for sending it a message. Nodes maintain
addresses of other nodes through partial views (views for short), which are sets
of ¢ node descriptors. In addition to an address, a node descriptor contains a
profile, which contains those properties of the nodes that are relevant for defin-
ing the topology, such as ID, geographical location, etc. The addresses contained
in views at nodes define the links of the overlay network topology, or simply the
topology. Note that parameter ¢ defines the node degree of the overlay network
and is uniform for all nodes.

We can now define the topology construction problem. The input of the prob-
lem is a set of N nodes, the view size ¢ and a ranking function R that can
order a list of nodes according to preference from a given node. The ranking
function R takes as parameters a base node z and a set of nodes {¥55 5 s U}
and outputs a set of orderings of these m nodes. The task is to construct the
views of the nodes such that the view of node z, denoted view,, contains ex-
actly the first ¢ elements of a “good” ranking of the entire node set, that is,
R(z, {all nodes except z}) contains a ranking that starts with the elements of
view,. We will call this topology the target topology.

In the presence of churn (ie, when nodes constantly join and leave the overlay
network) we talk about maintenance of the target topology instead of construc-
tion. Instead of a formal definition, we define the problem as staying “as close
as possible” to the target topology. The actual figures of merit to characterize
maintenance can be largely application dependent in this case.

4 M. Jelasity and O. Babaoglu

One (but not the only) way of obtaining ranking functions is through a dis-
tance function that defines a metric space over the set of nodes. The ranking
function can simply order the given set according to increasing distance from
the base node. Let us define some example distance-based topologies of different
characteristics. From now on, to simplify our language and notation, we use the
nodes and their profiles interchangeably.

Line and ring. The profile of a node is a real number. The distance function
for the line is d(a,b) = |a — b|. In the case of a ring, profiles are from an
interval [0, N] and distance is defined by d(a,b) = min(N — |a — b|,|a — b|)
Ranking is defined through this distance function as described above.

Mesh, tube and torus. The 1-dimensional topology defined above can be eas-
ily generalized to arbitrary dimensions to get for example a mesh or a torus.
The profiles are two-dimensional real vectors. The distance for the mesh is
the Manhattan distance. It is given by calculating the 1-dimensional dis-
tance described above along the two coordinates and returning the sum of
these distances. Applying the periodic boundary condition (as for the ring)
results in a tube for one coordinate and a three dimensional torus for both
coordinates.

Binary tree. A low diameter topology can be constructed from a binary tree:
the profiles are binary strings of length m, excluding the all zero string.
Distance is defined as the shortest path length between the two nodes in the
following undirected rooted binary tree. The string 0...01 is the root. Any
string Oas . . . a;, has two children as . ..a,0 and a3 . .. ap 1. Strings starting
with 1 are leafs. This topology is of interest because (unlike the previous
ones) it has a very short (logarithmic) diameter of 2m.

There are very important ranking functions that cannot be defined by a global
distance function, therefore the ranking function is a more general concept than
distance. The ranking functions that define sorting or proximity topologies be-
long to this category. Examples will be given in Section 6.1.

3 The Proposed Solution

The topology construction problem becomes interesting when c is small and the
number of nodes is very large. Randomized, gossip-based approaches in simi-
lar settings, but for other problem domains like information dissemination or
data aggregation, have proven to be successful [2,4]. Our solution to topology
construction is also based on a gossip communication scheme.

3.1 The Protocol

Each node executes the same protocol shown in Figure 1. The protocol consists
of two threads: an active thread initiating communication with other nodes, and
a passive thread waiting for incoming messages.

Each nodes maintains a view. The view is a set of node descriptors. A call to
MERGE(view,views) returns the union of view; and views.

T-Man: Gossip-Based Overlay Topology Management 5

do at a random time once in each

consecutive interval of T time units do forever
p « selectPeer() receive buffer, from ¢
myDescriptor «+— (myAddress,myProfile) myDescriptor < (myAddress,myprofile)
buffer «— merge(view,{myDescriptor}) buffer «— merge(view,{myDescriptor})
buffer « merge(buffer,rnd.view) buffer «— merge(buffer,rnd.view)
send buffer to p send buffer to ¢
receive buffer, from p buffer — merge(buffer,,view)
buffer «— merge(buffer,,view) view « selectView (buffer)

view « selectView(buffer)
(b) passive thread
(a) active thread

Fig. 1. The T-MAN protocol

The two key methods are SELECTPEER and SELECTVIEW. Method SELECTPEER
uses the current view to return an address. First, it applies the ranking function
to order the elements in the view. Next, it returns the first descriptor (according
to this ordering) that belongs to a live node. Method SELECTVIEW(BUFFER) also
applies the ranking function to order the elements in the buffer. Subsequently,
it returns the first ¢ elements of the buffer according to ranking order.

The underlying idea is that in this manner nodes improve their views using
the views of their current neighbors, so that their new neighbors will be “closer”
according to the target topology. Since all nodes do the same concurrently, neigh-
bors in the subsequent topologies will be gradually closer and closer. This also
means that the views of the neighbors will keep serving as a useful source of
additional, even better links for the next iteration.

Last but not least, we need to explain the origin and role of the buffer
RND.VIEW. This buffer contains a random sample of the nodes from the entire
network. It is provided by a peer sampling service [3]. The peer sampling service
described in [3] is implemented in a very similar fashion: nodes periodically ex-
change their random views and update their local views thereby creating a new
random sample. These random views define an approximately random overlay
network. The buffer RND.VIEW is the current set of neighbors in this random
overlay network. The peer sampling service is extremely robust to failure and
maintains a connected network with a very high probability.

The role of the random buffer is most important in large diameter topologies.
In this case, if a node has a low quality neighbor set and if most of the rest of
the nodes have a high quality neighbor set (forming a large diameter topology,
e.g., a ring), then this node needs to perform many exchanges until it can reach
the optimal set of neighbors, because the speed of “finding its neighborhood”
is related to the diameter of the topology. The random buffer adds long range
links that help speeding up convergence.

Although the protocol is not synchronous, it is often convenient to refer to
cycles of the protocol. We define a cycle to be a time interval of T/2 time units
where T is the parameter of the protocol in Figure 1. Note that during a cycle,
each node is updated once on the average.

