

o/
v

J Sa
£

(I ' |
E9261760

Software Reliability Models:
Theoretical Developments,
Evaluation and Applications

IEEE Computer Society Press Technology Series

Edited by

Yashwant K. Malaiya Pradip K. Srimani

IEEE Computer Society Press
Los Alamitos, California

Washington ® Brussels ® Tokyo

Library of Congress Cataloging—in-Publication Data

Software reliability models : theoretical development, evaluation, and
applications / edited by Yashwant K. Malaiya, Pradip K. Srimani.

p. cm.
Includes bibliographical references.
ISBN 0-8186-9110-7. -- ISBN 0-8186-2110-9 (paper). -- ISBN
0--8186-6110-0 (microfiche)
i. Computer software-—-Reliability. I. Malaiya, Yashwant K.

II. Srimani, Pradip K.

QA76.76.R44S662 1991

005--dc20 90-27247
CIP

Published by

IEEE Computer Society Press
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1264

Copyright © 1990 by the Institute of Electrical and Electronics Engineers, Inc.
Cover designed by Alex Torres

Printed in United States of America

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyond the limits of U.S. copyright law for private
use of patrons those articles in this volume that carry a code at the bottom of the first
page, provided the per-copy fee indicated in the code is paid through the Copyright
Clearance Center, 29 Congress Street, Salem, MA 01970. Instructors are permitted to
photocopy isolated articles for noncommercial classroom use without fee. For other
copying, reprint or republication permission, write to Director, Publishing Services, IEEE,
345 East 47th Street, New York, NY 10017. All rights reserved.

IEEE Computer Society Press Order Number 2110
Library of Congress Number 90-56332
IEEE Catalog Number EH0329-3
ISBN 0-8186-2110-9 (paper)
ISBN 0-8186-6110-0 (microfiche)
ISBN 0-8186-9110-7 (case)
SAN 264-620X

Additional copies can be ordered from:

IEEE Computer Society Press IEEE Computer Society IEEE Computer Society IEEE Service Center
Customer Service Center 13, Avenue de I'Aquilon Qoshima Building 445 Hoes Lane
10662 Los Vaqueros Circle B-1200 Brussels 2-19-1 Minami-Aoyama, P.O. Box 1331
P.O. Box 3014 BELGIUM Minato-Ku Piscataway, NJ 08855-1331
Los Alamitos, CA 90720-1264 Tokyo 107, JAPAN

@E@ THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

Software Reliability Models:
Theoretical Developments,
Evaluation and Applications

IEEE Computer Society Press Technology Series

1951-1991
iEEE PUTER v @ The Institute of Electrical and Electronics Engineers, Inc.

Introduction

Software often constitutes the more expensive part of the computer solution of any problem, and
the demand for more and better software is ever increasing. Applications are becoming more
sophisticated, demanding high quality reliable and cost effective software. The software designer
has to ensure an acceptable level of quality and reliability before a product is released. So it
is essential for the designers and the users to have an effective tool to evaluate the reliability of
software. Software reliability is defined as the probability of a failure free operation of a computer
program for a specified time in a given environment [Mus87]. A failure is simply any deviation in
the program behavior from its requirements. The best approach to evaluate software reliability or
failure intensity in any program quantitatively is to use some software reliability growth model.
A software reliability model (SRM) is a mathematical model that represents failures as a random
process that is characterized by either times of failures or numbers of failures at fixed times.

These reliability models can be used to evaluate development status during testing of a software
project as well as to evaluate the software engineering technology (tools) quantitatively. These mod-
els are also used to monitor operational performance of software and to control addition /alteration
of features during maintenance of a product. A quantitative understanding of software quality and
the factors affecting it also increase insight into the entire software development process. In recent
years, the use of software reliability models has become widely accepted and they are being used
at AT&T, HP, IBM, Cray and other companies.

1 Software Reliability Models

Modeling of software reliability is conceptually done in three broad stages. First, some assumptions
are made to include the environmental conditions where the software will run. Second, mathemati-
cal formulas are developed to estimate and /or predict useful system parameters like failure intensity,
number of failures in an interval, probability distribution of failure intervals and so on. These pa-
rameters are estimated from real-life data using some statistical methods like maximum likelihood
estimation, least square estimation, or some Bayesian methods. Finally, these parameters are used
in predicting future behavior of the software which helps in further planning, maintenance and
upgrading of the software.

The specification of an SRM usually involves specification of the failure process as a function
of time. For example the failure can be modeled as a birth/death Markov process or as a Poisson
process which must be nonhomogeneous if software faults are corrected during the data collection
process. In almost all models the failures are assumed to be independent of each other; this
assumption is generally found to be reasonable in real life [Mus79, Mus84]. The time component
can be specified in two ways: the execution time or the CPU time and the calender time that has
elapsed. These two can vary significantly on multiprogrammed or multiprocessor environments.
Execution time describes the software behavior more accurately while the calender time is more

understandable and hence more acceptable to a system manager.

vii

A large number of such growth models have been proposed, studied, and compared over the
last fifteen or so years. Any model must make some assumptions about the development and test
environment and potentially there can be infinitely many environments. The environment can
change depending on the software system, the design phase as well as the practices and capabilities
of the design team. There can also be large variations in data collection and parameter estimation
procedures. No one model has been found to be superior to all the others in all possible situations.
Some SRMs have good predictability in some situations but work poorly in others. The effectiveness
of the models may depend on specific circumstances as well as the validity of the assumptions.
Hence it is essential for software designers and users to be reasonably familiar with all the relevant
major models to make informed decisions about the quality of any software product. It is equally
important for system managers as well as for people engaged in research in software quality and

software engineering in general.

2 The Selected Papers

The present volume is a collection of a few representative papers from the rapidly growing literature
dealing with the different aspects of software reliability analysis. All the papers included in this book
are from the decade of eighties. Early well known classical models [Mus75, Lit73, Goe79, JM75]
have been amply studied and compared in the two articles by Goel and by Yamada and Osaki.
Our primary objective in making the selection was to give the reader an overview of the current
approaches and flavor of the recent directions of research in modeling. It is also to be noted that
almost all the recent models are in some way or other based upon some of the early basic models.
The papers included here present the major aspects of the theoretical framework; some of the
papers also show how the models are being used in actual practice.

Thirteen papers have been included in the present volume. The first eight of them discuss
various aspects of SRMs, which can be used with dynamic test data (time between failures or
the number of failures is consecutive test periods). Major models are discussed, computational
approaches are given, and models are compared. In addition some essential (perhaps questionable)
assumptions are examined in detail. The rest of the papers use some different approaches for
reliability analysis. Static analysis, which uses static metrics like program size, is sometimes used
to supplement SRMs in early phases. The paper by Scott, Gault and McAllister examines evaluation
of software fault-tolerance. Two of the papers by Singpurwalla and Soyer and by Weiss and Weyuker
present intriguing alternatives to SRMs. What follows is a brief introduction to each of the selected

papers.

2.1 Dynamic SRMs

The first paper by Goel presents an excellent comparative overview of all the major earlier models
of software reliability. A critical assessment of the applicability and limitations of the underlying
assumptions during the software life cycle are also presented. It explains how to fit a given model in

viii

a given application via an appropriate sized real life example. It includes an extensive bibliography
of early papers. The second paper by Littlewood challenges a common assumption in reliability
modeling that failure rate of a program is a constant multiple of the remaining bugs. It proposes an
alternative Baysian approach that results in significant improvement of the model performance and
develops compact mathematical expressions for time required and number of bug-fixes required
for a given target reliability. In the third paper, Musa and Okumoto present a new variation
of nonhomogeneous Poisson type failure process and compare it by using actual data with other
models. The paper by Yamada and Osaki is another excellent critical summary of existing models.
It also illustrates application examples of the exponential and delayed-S-shaped models by using
actual software error data observed during testing.

Although it is assumed that errors are completely removed from software when they are detected,
Ohba and Chou show in their paper that this assumption is neither realistic nor needed for the
validity of most of the exponential type growth models.

In the next paper, Brocklehurst, Chan, Littlewood, and Snell address the issue of non applicabil-
ity of any model universally in all situations and propose a new mechanism called recalibration that
attempts to help the user choose the right model for the application at hand. Malaiya, Karunanithi,
and Verma, in their paper, present experimental results on predictive powers of different reliability
models. They have shown that some models tend to work better in several cases. In the eighth
paper, Kruger describes his two years’ experience with a reliability model in a real-life industrial
situation. The paper reinforces the belief that reliability models will be increasingly important and

useful in deciding project schedules and in estimating final product quality.

2.2 Alternative Approaches

The ninth paper, by Takahashi and Kamayachi, describes a different model based on factors like
frequency of program specification change, programmers’ skill and volume of design documentation
and shows that the model predicts future errors better than those based on program size alone.
In the next paper, Singpurwalla and Soyer take a different approach. They introduce a random
coefficient autoregressive process of order 1 to describe reliability growth. By varying the structure
of dependence between stages of modification, they consider different models and develop interesting
mathematical results about likelihood of the models’ predictive distributions. Ehrlich and Emerson,
in the next paper, investigate the relationship between applicability of any Poisson type growth
model and the nature of the system test process and raise some theoretical questions about validity
of assuming certain statistical properties of failure occurrence during testing irrespective of the
testing process.

Weiss and Weyuker, in the next paper, redefine reliability as a generalization of the probability
of the correctness of the software. They introduce a tolerance function and show that, by varying
the tolerance function, many natural good reliability models can be designed.. In the last paper
Scott et al. discuss the reliability of fault-tolerant software. They present models for three different

mechanisms of writing fault tolerant programs, present experimental results to validate the models,

X

and introduce a simple model to evaluate relative costs for increasing reliability in the three types

of fault-tolerant programming.
We hope that the present volume will prove to be a handy reference to software engineers,
serious users, and researchers in the area of software reliability modeling. For additional reading,

one can look into [Mus87, Lit87, SE-11, SE-12] and the references contained therein.

3 Acknowledgement

The work of Y. K. Malaiya was partly supported by an SDIO/IST contract monitored by ONR.

4 References

[Goe79] A.L. Goel and K. Okumoto, “Time Dependent Error Detection Rate Model for Software
Reliability and Other Performance Measures,” IEEE Trans. Reliability, Vol. R-28, pp.
206-211, 1979.

[JM75] Z. Jelinski and P.B. Moranda, “Software Reliability Research,” (W. Frieberger, editor),
Statistical Computer Performance Evaluation, Academic Press, Orlando, FL., pp. 465-
484, 1972.

[Lit73] B. Littlewood and J.L. Verrall, “A Bayesian Reliability Growth Model for Computer
Software,” Applied Statistics, Vol. 22, pp. 332-346, 1973.

[Lit87] B. Littlewood (editor), Software Reliability : Achievement and Assessment, Blackwell
Scientific Publication, Oxford, England, 1987.

[Mus75] J.D. Musa, “A Theory of Software Reliability and Its Application,” IEEE Trans. Software
FEngineering, Vol. SE-1, pp. 312-327, 1975.

[Mus79] J.D. Musa, “Validity of Execution Time Theory of Software Reliability,” IEEE Trans.
Reliability, Vol. R-28, pp. 239-249, 1979.

[Mus84] J.D. Musa and K. Okumoto, “A Comparison of Time Domains for Software Reliability
Models,” Journal of Systems and Software, Vol. 4, pp. 277-287, 1984.

[Mus87] J.D. Musa, A. Iannino and K. Okumoto, Software Reliability: Measurement, Prediction,
Application, McGraw-Hill, New York, 1987.

[SE-11] Special Issue on Sofware Reliability — Part I, IEEE Trans. Software Engineering, Vol.
SE-11, December 1985.

[SE-12] Special Issue on Sofware Reliability — Part II, IEEE Trans. Software Engineering, Vol.
SE-12, January 1986.

Table of Contents

Introduction , . , ., . . Qb s e e e TR E LT R T .

Software Reliability Models: Assumptions, Limitations, and Applicability ,

A.L. Goel (IEEE Transactions on Software Engineering, Volume SE-11,
Number 12, December 1985, pages 1411-1423)

A Bayesian Differential Debugging Model for Software Reliability

B. Littlewood (Proceedings of IEEE COMPSAC, pages 511-517, October 1980)

A Logarithmic Poisson Execution Time Model for Software Reliability Measurement , , .,

J.D. Musa and K. Okumoto (Proceedings of the 7th IEEE International Conference on
Software Engineering, pages 230-238, 1984)

Software Reliability Growth Modeling: Models and Applications,

S. Yamada and S. Osaki (IEEE Transactions on Software Engineering, Volume SE-11,
Number 12, December 1985, pages 1431-1437)

Does Imperfect Debugging Affect Software Reliability Growth? . . ,

M. Ohba and X-.M. Chou (Proceedings of the IEEE Conference on Software Engineering,
pages 237-244, 1989)

Recalibrating Software Reliability Models . . , oo ow R R

S. Brocklehurst, P.Y. Chan, B. Littlewood, and J. Snell (IEEE Transactions on
Software Engineering, Volume 16, Number 4, April 1990, pages 458-470

Predictability Measures for Software Reliability Models

Y.K. Malaiya, N. Karunanithi, and P. Verma (Technical Report, Colorado State
University, 1990)

Validation and Further Application of Software Reliability Growth Models ,

G.A. Kruger (Hewlett-Packard Journal, pages 75-79, April 1990)

An Empirical Study of a Model for Program Error Prediction . . T

N. Takahashi and Y. Kamayachi (Proceedings of IEEE International Conference on
Software Engineering, pages 330-336, 1985)

Assessing (Software) Reliability Growth Using a Random Coefficient Autoregressive

Processand Its Ramifications

N.D. Singpurwalla and R. Soyer (IEEE Transactions on Software Engineering,
Volume SE-11, Number 12, December 1985, pages 1456-1464)

Modeling Software Failures and Reliability Growth During System Testing,

WK. Ehrlich and T.J. Emerson (Proceedings of IEEE International Conference on
Software Engineering, pages 72-77, 1987)

An Extended Domain-Based Model of Software Reliability

S.N. Weiss and E.J. Weyuker (IEEE Transactions on Software Engineering, Volume 14,
Number 10, October 1988, pages 1512-1524)

s wakl

. .78

Fault-Tolerant Software Reliability Modeling

R.K. Scott, J.W. Gault, and D.F. McAllister (IEEE Transactions on Software
Engineering, Volume SE-13, Number 5, May 1987, pages 582-592)

Aboutthe Authors.

Vi

Reprinted from IEEE Transactions on Software Engineering, Volume SE-11,
Number 12, December 1985, pages 1411-1423. Copyright © 1985 by The
Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Software Reliability Models:

Assumptions,

Limitations, and Applicability

AMRIT L. GOEL, MEMBER, IEEE

Abstract—A number of analytical models have been proposed during
the past 15 years for assessing the reliability of a software system. In
this paper we present an overview of the key modeling approaches,
provide a critical analysis of the underlying assumptions, and assess
the limitations and applicability of these models during the software
development cycle. We also propose a step-by-step procedure for fitting
a model and illustrate it via an analysis of failure data from a medium-
sized real-time command and control software system.

Index Terms—Estimation, failure count models, fault seeding, input
domain models, model fitting, NHPP, software reliability, times be-
tween failures.

INTRODUCTION AND BACKGROUND

N important quality attribute of a computer system is
the degree to which it can be relied upon to perform
its intended function. Evaluation, prediction, and im-
provement of this attribute have been of concern to de-
signers and users of computers from the early days of their
evolution. Until the late 1960’s, attention was almost solely
on the hardware related performance of the system. In the
early 1970’s, software also became a matter of concern,
primarily due to a continuing increase in the cost of soft-
ware relative to hardware, in both the development and the
operational phases of the system.
Software is essentially an instrument for transforming
a discrete set of inputs into a discrete set of outputs. It
comprises of a set of coded statements whose function may
be to evaluate an expression and store the result in a tem-
porary or permanent location, decide which statement to
execute next, or to perform input/output operations.
Since, to a large extent, software is produced by hu-
mans, the finished product is often imperfect. It is imper-
fect in the sense that a discrepancy exists between what
the software can do versus what the user or the computing
environment wants it to do. The computing environment
refers to the physical machine, operating system, compiler
and translator, utilities, etc. These discrepancies are what
we call software faults. Basically, software faults can be
attributed to an ignorance of the user requirements, ig-
norance of the rules of the computing environment, and

Manuscript received February 4, 1985; revised July 31, 1985 and Sep-
tember 30, 1985. This work was supported in part by Rome Air Develop-
ment Center, GAFB, and by the Computer Applications and Software En-
gineering (CASE) Center at Syracuse University.

The author is with the Department of Electrical and Computer Engi-
neering and the School of Computer and Information Science, Syracuse
University, Syracuse, NY 13244,

EH0329-3/90/0000/0001/$01.00 © 1985 IEEE

1

to poor communication of software requirements between
the user and the programmer or poor documentation of the
software by the programmer. Even if we know that soft-
ware contains faults, we generally do not know their exact
identity.

Currently, there are two approaches available for indi-
cating the existence of software faults, viz. program prov-
ing, and program testing. Program proving is formal and
mathematical while program testing is more practical and
heuristic. The approach taken in program proving is to
construct a finite sequence of logical statements ending in
the statement, usually the output specification statement,
to be proved. Each of the logical statements is an axiom
or is a statement derived from earlier statements by the
application of an inference rule. Program proving by using
inference rules is known as the inductive assertion method.
This method was mainly advocated by Floyd, Hoare,
Dijkstra, and recently Reynolds [39]. Other work on pro-
gram proving is on the symbolic execution method. This
method is the basis of some automatic program verifiers.
Despite the formalism and mathematical exactness of pro-
gram proving, it is still an imperfect tool for verifying
program correctness. Gerhart and Yelowitz [10] showed
several programs which were proved to be correct but still
contained faults. However, the faults were due to failures
in defining what exactly to prove and were not failures of
the machanics of the proof itself.

Program testing is the symbolic or physical execution of
a set of test cases with the intent of exposing embedded
faults in the program. Like program proving, program
testing remains an imperfect tool for assuring program
correctness. A given testing strategy may be good for ex-
posing certain kinds of faults but not for all possible kinds
of faults in a program. An advantage of testing is that it
can provide useful information about a program’s actual
behavior in its intended computing environment, while
proving is limited to conclusions about the program’s be-
havior in a postulated environment.

In practice neither proving nor testing can guarantee
complete confidence in the correctness of a program. Each
has its advantages and limitations and should not be
viewed as competing tools. They are, in fact, complemen-
tary methods for decreasing the likelihood of program
failure.

Due to the imperfectness of these approaches in assur-
ing a correct program, a metric is needed which reflects
the degree of program correctness and which can be used

in planning and controlling additional resources needed
for enhancing software quality. One such quantifiable met-
ric of quality that is commonly used in software engineer-
ing practice is software reliability. This measure has at-
tracted considerable attention during the last 15 years and
continues to be employed as a useful metric. A commonly
used approach for measuring software reliability is via an
analytical model whose parameters are generally esti-
mated from available data on software failures. Reliability
and other relevant measures are then computed from the
fitted model.

Even though such models have been in use for some
time, the realism of many of the underlying assumptions
and the applicability of these models for assessing soft-
ware reliability continue to be questioned. It is the purpose
of this paper to evaluate the current state-of-the-art related
to this issue. Specifically, the key modeling approaches
are briefly discussed and a critical analysis of their under-
lying assumptions, limitations, and applicability during the
software development cycle is presented.

It should be pointed out that the emphasis of this paper
is on software reliability modeling approaches and several
related but important issues are only briefly mentioned.
Examples of such issues are the practical and theoretical
difficulties of parametric estimation, statistical properties
of estimators, unification of models via generalized for-
mulations or via, say, a Bayesian interpretation, validation
and comparison of models, and determination of optimum
release time. For a discussion of these issues, the reader
is referred to Goel [19].

The term software reliability is discussed in Section II
along with a classification of the various modeling ap-
proaches. The key models are briefly described in Sec-
tions III, IV, and V. An assessment of the main assump-
tions underlying the models is presented in Section VI and
the applicability of these models during the software de-
velopment cycle is discussed in Section VII. A step-by-
step procedure for fitting a model is given in Section VIII
and is illustrated via an analysis of software failure data
from a medium-sized command and control system. A
summary of some related work and concluding remarks
are presented in Section IX.

II. MEANING AND MEASUREMENT OF SOFTWARE
RELIABILITY

There are a number of views as to what software relia-
bility is and how it should be quantified. Some people be-
lieve that this measure should be binary in nature so that
an imperfect program would have zero reliability while a
perfect one would have a reliability value of one. This view
parallels that of program proving whereby the program is
either correct or incorrect. Others, however, feel that soft-
ware reliability should be defined as the relative frequency
of the times that the program works as intended by the
user. This view is similar to that taken in testing where a
percentage of the successful cases is used as a measure of
program quality.

According to the latter viewpoint, software reliability is

a probabilistic measure and can be defined as the proba-
bility that software faults do not cause a failure during a
specified exposure period in a specified use environment.
The probabilistic nature of this measure is due to the un-
certainty in the usage of the various software functions
and the specified exposure period here may mean a single
run, a number of runs, or time expressed in calendar or
execution time units. To illustrate this view of software
reliability, suppose that a user executes a software product
several times according to its usage profile and finds that
the results are acceptable 95 percent of the time. Then the
software is said to be 95 percent reliable for that user.

A more precise definition of software reliability which
captures the points mentioned above is as follows [30]. Let
F be a class of faults, defined arbitrarily, and 7 be a mea-
sure of relevant time, the units of which are dictated by
the application at hand. Then the reliability of the software
package with respect to the class of faults F and with re-
spect to the metric 7, is the probability that no fault of the
class occurs during the execution of the program for a pre-
specified period of relevant time.

Assuming that software reliability can somehow be
measured, a logical question is what purpose does it serve.
Software reliability is a useful measure in planning and
controlling resources during the development process so
that high quality software can be developed. It is also a
useful measure for giving the user confidence about soft-
ware correctness. Planning and controlling the testing re-
sources via the software reliability measure can be done
by balancing the additional cost of testing and the corre-
sponding improvement in software reliability. As more and
more faults are exposed by the testing and verification
process, the additional cost of exposing the remaining
faults generally rises very quickly. Thus, there is a point
beyond which continuation of testing to further improve
the quality of software can be justified only if such im-
provement is cost effective. An objective measure like
software reliability can be used to study such a tradeoff.

Current approaches for measuring software reliability
basically parallel those used for hardware reliability as-
sessment with appropriate modifications to account for the
inherent differences between software and hardware. For
example, hardware exhibits mixtures of decreasing and in-
creasing failure rates. The decreasing failure rate is seen
due to the fact that, as test or use time on the hardware
system accumulates, failures, most likely due to design
errors, are encountered and their causes are fixed. The

‘increasing failure rate is primarily due to hardware com-

ponent wearout or aging. There is no such thing as wear-
out in software. It is true that software may become ob-
solete because of changes in the user and computing
environment, but once we modify the software to reflect
these changes, we no longer talk of the same software but
of an enhanced or a modified version. Like hardware,
software exhibits a decreasing failure rate (improvement
in quality) as the usage time on the system accumulates
and faults, say, due to design and coding, are fixed. It
should also be noted that an assessed value of the software

reliability measure is always relative to a given use envi-
ronment. Two users exercising two different sets of paths
in the same software are likely to have different values of
software reliability.

A number of analytical models have been proposed to
address the problem of software reliability measurement.
These approaches are based mainly on the failure history
of software and can be classified according to the nature
of the failure process studied as indicated below.

Times Between Failures Models: In this class of models
the process under study is the time between failures. The
most common approach is to assume that the time be-
tween, say, the (i — 1)st and the ith failures, follows a
distribution whose parameters depend on the number of
faults remaining in the program during this interval. Es-
timates of the prarameters are obtained from the observed
values of times between failures and estimates of software
reliability, mean time to next failure, etc., are then ob-
tained from the fitted model. Another approach is to treat
the failure times as realizations of a stochastic process and
use an appropriate time-series model to describe the un-
derlying failure process.

Failure Count Models: The interest of this class of
models is in the number of faults or failures in specified
time intervals rather than in times between failures. The
failure counts are assumed to follow a known stochastic
process with a time dependent discrete or continuous fail-
ure rate. Parameters of the failure rate can be estimated
from the observed values of failure counts or from failure
times. Estimates of software reliability, mean tme to next
failure, etc., can again be obtained from the relevant equa-
tions.

Fault Seeding Models: The basic approach in this class
of models is to “seed”” a known number of faults in a
program which is assumed to have an unknown number of
indigenous faults. The program is tested and the observed
number of seeded and indigenous faults are counted. From
these, an estimate of the fault content of the program prior
to seeding is obtained and used to assess software relia-
bility and other relevant measures.

Input Domain Based Models: The basic approach taken
here is to generate a set of test cases from an input dis-
tribution which is assumed to be representative of the op-
erational usage of the program. Because of the difficulty
in obtaining this distribution, the input domain is parti-
tioned into a set of equivalence classes, each of which is
usually associated with a program path. An estimate of
program reliability is obtained from the failures observed
during physical or symbolic execution of the test cases
sampled from the input domain.

III. Times BETWEEN FAILURES MODELS

This is one of the earliest classes of models proposed
for software reliability assessment. When interest is in
modeling times between failures, it is expected that the
successive failure times will get longer as faults are re-
moved from the software system. For a given set of ob-
served values, this may not be exactly so due to the fact

1.00 =
o 1, —
099}
f—t — eus-o0 [100-2]

oss |-
. =1t —
* o97|-

fta
096 |- L
e
.95 | 1 1 | | =1
0935 s 10 15 20 25 30

CUMULATIVE TIME

Fig. 1. A typical plot of Z(¢;) for the JM model (N = 100, ¢ = 0.01).

that failure times are random variables and observed val-
ues are subject to statistical fluctuations.

A number of models have been proposed to describe
such failures. Let a random variable T, denote the time
between the (i — 1)st and the ith failures. Basically, the
models assume that 7 follows a known distribution whose
parameters depend on the number of faults remaining in
the system after the (i — 1)st failure. The assumed dis-
tribution is supposed to reflect the improvement in soft-
ware quality as faults are detected and removed from the
system. The key models in this class are described below.

Jelinski and Moranda (JM) De-Eutrophication Model

This is one of the earliest and probably the most com-
monly used model for assessing software reliability [20].
It assumes that there are N software faults at the start of
testing, each is independent of others and is equally likely
to cause a failure during testing. A detected fault is re-
moved with certainty in a negligible time and no new faults
are introduced during the debugging process. The soft-
ware failure rate, or the hazard function, at any time is
assumed to be proportional to the current fault content of
the program. In other words, the hazard function during
t;, the time between the (i — I)st and ith failures, is given
by

Zt) = ¢IN — (= D],

where ¢ is a proportionality constant. Note that this haz-
ard function is constant between failures but decreases in
steps of size ¢ following the removal of each fault. A typ-
ical plot of the hazard function for N = 100 and ¢ = 0.01
is shown in Fig. 1.

A variation of the above model was proposed by Mor-
anda [29] to describe testing situations where faults are
not removed until the occurrence of a fatal one at which
time the accumulated group of faults is removed. In such
a situation, the hazard function after a restart can be as-
sumed to be a fraction of the rate which attained when the
system crashed. For this model, called the geometric de-
eutrophication model, the hazard function during the ith
testing interval is given by

75
r» £ (t3) -.OZ[B)-Z]?;
50|
* 25k
0 _.1" l'. 1
0 20 40 60 80

CUMULATIVE TIME

Fig. 2. A typical plot of the hazard function for the SW model (N = 150,
¢ = 0.02).

Z(t) = DK,

where D is the fault detection rate during the first interval
and k is a constant (0 < k < 1).

Schick and Wolverton (SW) Model

This model is based on the same assumptions as the JM
model except that the hazard function is assumed to be
proportional to the current fault content of the program as
well as to the time elapsed since the last failure [40] is
given by

Z@t) = ¢{N — (G — D} 1,

where the various quantities are as defined above. Note
that in some papers #; has been taken to be the cumulative
time from the beginning of testing. That interpretation of
t; seems to be inconsistent with the interpretation in the
original paper, see, e.g., Goel [15].

We note that the above hazard rate is linear with time
within each failure interval, returns to zero at the occur-
rence of a failure and increases linearly again but at a re-
duced slope, the decrease in slope being proportional to
¢. A typical behavior of Z(z;) for N = 150 and ¢ = 0.02
is shown in Fig. 2.

A modification of the above model was proposed in [41]
whereby the hazard function is assumed to be parabolic in
test time and is given by

Z(t) = ¢IN — (i —)] (—ar? + bt; + ¢)

where a, b, c are constants and the other quantities are as
defined above. This function consists of two components.
The first is basically the hazard function of the JM model
and the superimposition of the second term indicates that
the likelihood of a failure occurring increases rapidly as
the test time accumulates within a testing interval. At
failure times (¢; = 0), the hazard function is proportional
to that of the JM model.

Goel and Okumoto Imperfect Debugging Model

The above models assume that the faults are removed
with certainty when detected. However, in practice [47]
that is not always the case. To overcome this limita-
tion, Goel and Okumoto [11], [13] proposed an imperfect
debugging model which is basically an extension of the JM
model. In this model, the number of faults in the system
at time 7, X(1), is treated as a Markov process whose tran-

sition probabilities are governed by the probability of im-
perfect debugging. Times between the transitions of X(r)
are taken to be exponentially distributed with rates depen-
dent on the current fault content of the system. The hazard
function during the interval between the (i — 1)st and the
ith failures is given by

Z(t) =[N — p(i — DI\
where N is the initial fault content of the system, p is the

probability of imperfect debugging, and \ is the failure
rate per fault.

Littlewood-Verrall Bayesian Model

Littlewood and Verall [25], [26] took a different ap-
proach to the development of a model for times between
failures. They argued that software reliability should not
be specified in terms of the number of errors in the pro-
gram. Specifically, in their model, the times between fail-
ures are assumed to follow an exponential distribution but
the parameter of this distribution is treated as a random
variable with a gamma distribution, viz.

fIN) = N e
and
@I N~ e ¥ON
lNa

SfNile, Y(i)) =

In the above, (i) describes the quality of the programmer
and the difficulty of the programming task. It is claimed
that the failure phenomena in different environments can
be explained by this model by taking different forms for
the parameter (i).

IV. FauLt CouNnT MODELS

This class of models is concerned with modeling the
number of failures seen or faults detected in given testing
intervals. As faults are removed from the system, it is
expected that the observed number of failures per unit time
will decrease. If this is so, then the cumulative number of
failures versus time curve will eventually level off. Note
that time here can be calander time, CPU time, number
of test cases run or some other relevant metric. In this
setup, the time intervals may be fixed a priori and the
observed number of failures in each interval is treated as
a random variable.

Several models have been suggested to describe such
failure phenomena. The basic idea behind most of these
models is that of a Poisson distribution whose parameter
takes different forms for different models. It should be
noted that Poisson distribution has been found to be an
excellent model in many fields of application where inter-
est is in the number of occurrences.

une of the earliest models in this category was proposed
by Shooman [43]. Taking a somewhat similar approach,
Musa [31] later proposed another failure count model
based on execution time. Schneidewind [42] took a differ-

125 i —~90

m(t)=atl-e ")

100 |- 4 —~75
~ 50 ~60~
= Pt
E =

A(t)=abe =l
SO 445
25_/ 430
o 1 L ! 1 1 L n 15
c.0 75 150 225 300
TIME t

Fig. 3. A typical plot of the m(r) and \(¢) functions for the Goel-Okumoto
NHPP model (a = 175, b = 0.05).

ent approach and studied the fault counts over a series of
time intervals. Goel and Okumoto [11] introduced a time
dependent failure rate of the underlying Poisson process
and developed the necessary analytical details of the
models. A generalization of this model was proposed by
Goel [16]. These and some other models in this class are
described below.

Goel-Okumoto Nonhomogeneous Poission Process
Model

In this model Goel and Okumoto [12] assumed that a
software system is subject to failures at random times
caused by faults present in the system. Letting N(z) be the
cumulative number of failures observed by time ¢, they
proposed that N(#) can be modeled as a nonhomogeneous
Poisson process, i.e., as a Poisson process with a time
dependent failure rate. Based on their study of actual fail-
ure data from many systems, they proposed the following
form of the model

Y.
P{N(t) — y} = (”;ﬁe—m(l), y = O’ 1, 2’ . o ve

where
m() = a(l — e™"),
and
NO) = m'(t) = abe ™.

Here m(z) is the expected number of failures observed by
time 7 and A(?) is the failure rate. Typical plots of the m(t)
and A(?) functions are shown in Fig. 3.

In this model a is the expected number of failures to be
observed eventually and b is the fault detection rate per
fault. It should be noted that here the number of faults to
be detected is treated as a random variable whose ob-
served value depends on the test and other environmental
factors. This is a fundamental departure from the other
models which treat the number of faults to be a fixed un-
known constant.

500 25

20

<
At)zabce 1<

A1)

200 c -0
m(1)za(i-e)
100 5
0 1 L 1 i; 1 1 i 0]
00 75 150 225 300
TIME,

Fig. 4. A typical plot of the m(r) and N(¢) functions for the Goel generalized
NHPP model (¢ = 500, b = 0.015, ¢ = 1.5).

In some environments a different form of the m(¢) func-
tion might be more suitable than the one given above, see,
e.g., Ohba [36] and Yamada er al. [48].

Using a somewhat different approach than described
above, Schneidewind [42] had earlier studied the number
of faults detected during a time interval and failure counts
over a series of time intervals. He assumed that the failure
process is a nonhomogeneous Poisson process with an ex-
ponentially decaying intensity function given by

di) =ae™ a,3>0,i=1,2, ---

where o and 8 are the parameters of the model.

Goel Generalized Nonhomogeneous Poisson Process
Model

Most of the times between failures and failure count
models assume that a software system exhibits a decreas-
ing failure rate pattern during testing. In other words, they
assume that software quality continues to improve as test-
ing progresses. In practice, it has been observed that in
many testing situations, the failure rate first increases and
then decreases. In order to model this increasing/decreas-
ing failure rate process, Goel [16], [17] proposed the fol-
lowing generalization of the Goel-Okumoto NHPP model.

Y
P{N@®) =y} = (my& & e =0,1,2, -+,

m@) = a(l — ™",

where a is expected number of faults to be eventually de-
tected, and b and c are constants that reflect the quality
of testing. The failure rate for the model is given by

N = m'(t) = abc e 171,
Typical plots of the m(r) and \(¢) functions are shown in
Fig. 4.
Musa Execution Time Model

In this model Musa [31] makes assumptions that are
similar to those of the JM model except that the process

modelled is the number of failures in specified execution
time intervals. The hazard function for this model is given
by

(1) = of(N — n)

where 7 is the execution time utilized in executing the pro-
gram up to the present, fis the linear execution frequency
(average instruction execution rate divided by the number
of instructions in the program), ¢ is a proportionality con-
stant, which is a fault exposure ratio that relates fault ex-
posure frequency to the linear execution frequency, and n,
is the number of faults corrected during (0, 7).

One of the main features of this model is that it explic-

itly emphasizes the dependence of the hazard function on
execution time. Musa also provides a systematic approach
for converting the model so that it can be applicable for
calendar time as well.

Shooman Exponential Model

This model is essentially similar to the JM model. For
this model the hazard function [43], [44] is of the follow-
ing form

2D = k{; - nc(T)j|
where ¢ is the operating time of the system measured from
its initial activation, I is the total number of instructions
in the program, 7 is the debugging time since the start of
system integration, n.(7) is the total number of faults cor-
rected during 7, normalized with respect to /, and k is a
proportionality constant.

Generalized Poisson Model

This is a variation of the NHPP model of Goel and Oku-
moto and assumes a mean value function [1] of the follow-
ing form.

m(t) = ¢(N — M;_)) tf

where M;_, is the total number of faults removed up to
the end of the (i — 1)st debugging interval, ¢ is a constant
of proportionality, and « is a constant used to rescale time
I

i

IBM Binomial and Poisson Models

In these models Brooks and Motley [6] consider the fault
detection process during software testing to be a discrete
process, following a binomial or a Poisson distribution.
The software system is assumed to be developed and tested
incrementally. They claim that both models can be applied
at the module or the system level.

Musa-Okumoto Logarithmic Poisson Execution Time
Model

In this model [33] the observed number of failures by
some time 7 is assumed to be a NHPP, similar to the Goel-
Okumoto model, but with a mean value function which is
a function of 7, viz.

pu(r) = % < In (N7 + 1),
where A, and 0 represent the initial failure intensity and
the rate of reduction in the normalized failure intensity per
failure, respectively. This model is also closely related to
Moranda’s geometric de-eutrophication model [29] and
can be viewed as a continuous version of this model.

V. FauLT SEEDING AND INPUT DOMAIN BASED MODELS

In this section we give a brief description of a few time-
independent models that have been proposed for assessing
software reliability. As mentioned earlier, the two ap-
proaches proposed for this class of models are fault seed-
ing and input domain analysis.

In fault seeding models, a known number of faults is
seeded (planted) in the program. After testing, the num-
bers of exposed seeded and indigenous faults are counted.
Using combinatorics and maximum likelihood estimation,
the number of indigenous faults in the program and the
reliability of the software can be estimated.

The basic approach in the input domain based models
is to generate a set of test cases from an input (opera-
tional) distribution. Because of the difficulty in estimating
the input distribution, the various models in this group
partition the input domain into a set of equivalence classes.
An equivalence class is usually associated with a program
path. The reliability measure is calculated from the num-
ber of failures observed during symbolic or physical exe-
cution of the sampled test cases.

Mills Seeding Model

The most popular and most basic fault seeding model is
Mills’ Hypergeometric model [27]. This model requires
that a number of known faults be randomly seeded in the
program to be tested. The program is then tested for some
amount of time. The number of original indigenous faults
can be estimated from the numbers of indigenous and
seeded faults uncovered during the test by using the hy-
pergeometric distribution. The procedure adopted in this
model is similar to the one used for estimating population
of fish in a pond or for estimating wildlife. These models
are also referred to as tagging models since a given fault
is tagged as seeded or indigenous.

Lipow [23] modified this problem by taking into con-
sideration the probability of finding a fault, of either kind,
in any test of the software. Then, for statistically indepen-
dent tests, the probability of finding given numbers of in-
digenous and seeded faults can be calculated. In another
modification, Basin [2] suggested a two stage procedure
with the use of two programmers which can be used to
estimate the number of indigenous faults in the program.

Nelson Model

In this input domain based model [35], the reliability of
the software is measured by running the software for a
sample of n inputs. The n inputs are randomly chosen from

