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Preface

This book is intended as a textbook for an introductory course in numer-
ical analysis. The level is suitable for the advanced undergraduate. We
believe that the book is acgé@s%le to a rather wide audience, since most of
the mathematics prerequisite should be covered in first-year calculus and
algebra courses. .

The aim of this book is to give an introduction to some of the basic
ideas in numerical analysis. We have chosen to cover a comparatively wide
range of material, including classical algorithms for the solution of nonlinear
equations and for linear systems, methods for interpolation, integration
and approximation. We have also tried to give an introduction to some
areas, which we think are important in the applications that a science or
engineering student will meet. These areas include computer arithmetic
(floating point) and standard functions, splines and finite elements. In a
few areas (approximation and linear systems of equations) we have chosen
to give a somewhat more comprehensive presentation.

In our opinion a broad introductory course should emphasize the un-
derstanding of methods and algorithms. In order to really grasp what is
involved in numerical computations, the student must first perform compu-
tations using a simple calculator. We supply a number of exercises intended
for this. To further help the student in the learning process we recommend
the use of high level programming systems (like Matlab or Mathematica)
for more ¥éa1’istic computer assignments than we have given in this book.

This book is a revision of a corresponding book earlier published in
Swedish. We are grateful to many of our colleagues at the Department of
Mathematics, Linkoping University, for suggesting several improvements,

ix



Preface

and for correcting errors. In particular we would like to mention Tommy
Elfving, Jan Eriksson, and Ulla Quchterlony. Ingegerd Skoglund has con-
structed most of the TEX macros we have used.

Linkoping, January 1990

Lars Eldén
Linde Wittmeyer-Koch
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1  Introduction

1.1 Mathematical Models and Numerical
Approximations

Mathematical models are basic tools in scientific problem solving. Typ-
ically, some fundamental natural laws are used to derive one or several
equations, which model the process that is being studied. Through the
mathematical treatment of the equations, answers can be found to ques-
tions that are posed in connection with the problem area. This is illustrated
schematically in Figure 1.1.1.

“reality ”

restricted uesti .
questions mathematical
problem )
model
area answers

Figure 1.1.1

It is important to remember that in many cases the problem area de-
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2 1 Introduction

scribed by a mathematical model is very narrow. Further, there are often
simplifications in the assumptions. Therefore, the mathematical model is
not an exact description of reality, and the answers that it produces must
be checked and compared with experimental results.

We shall illustrate the concept of a mathematical model using an ex-
ample from structural mechanics. It is not our aim to give a description
that is comprehensive from the point of view of mechanics. Nor will the
mathematical aspects be treated in detail. Rather, we shall use a relatively
simple example to show that mathematical analysis is not enough to answer
the questions that are relevant from the viewpoint of an application.

Consider a beam of length 1, rigidly built-in at both ends.

NN\

INNNNAV NN

NN\

-+~

[
Y

Figure 1.1.2

The following question is interesting: How much will the beam deflect
under a certain load?

It is also important to know bending moments, shear forces, etc. Infor-
mation about these can be found as byproducts when the question about
the deflection is answered.

We introduce a coordinate system according to the figure, and let y(x)
denote the deflection of the beam under a certain load. If the load is g(z),
not necessarily constant over the length of the beam, then (under certain
assumptions) y(z) satisfies the differential equation

2 2
%(El(z) ;%{) = q(z), 0<z<l, (1.1.3a)

with boundary conditions

y(0) =y'(0) =y(1) =y’ (1) = 0; (1.1.3b)



1.1 Mathematical Models and Numerical Approximations 3

I is a material constant (Young’s modulus of elasticity) and I(z) is the mo-
ment of inertia of the cross-section of the beam. Note how the boundary
conditions describe the fact that the beam is rigidly built-in at both ends.

(1.1.3a) is called the beam equation and (1.1.3) is an example of a
boundary value problem for a fourth-order differential equation. If
we can solve (1.1.3), i.e., determine the function y(z) that satisfies (1.1.3),
then we have answered the question about the deflection of the beam.

In some cases, it is easy to solve the boundary value problem analytically.
Assume, e.g., that the coefficients and the load are constant

I(z) =1y, q(z) = qo,

and put

_ 90
Q_EIO'

We immediately see that
_Q 4 3 2 v
y(z)—ﬁz + Az° + Bz +Cz+ D,

satisfies the differential equation (1.1.3a) for arbitrary A, B,C and D. From
the boundary conditions we can determine A, B, C and D and get

_Q 4 3, .2y_ 490 4 3 2
y(z) = 542" — 22 +x)—24EIO(z 2z° + 22). (1.1.4)

With the analytical solution (1.1.4). we can determine the deflection of the
beam for any value of z and for any value of the load ¢q.

The problem is slightly more complicated if the load ¢(z) is not con-
stant, but it can still be solved analytically, if we can determine successive
primitive functions of primitive functions of q.

The problem becomes considerably more complicated if we assume that
the beam rests on an elastic foundation.

7/

Figure 1.1.5




4 1 Introduction

The deflection of the beam now satisfies the equation

® (E1(z) LYY + k() = 1

5 (EI(x) 4) + K2y = a(z), (1.1.6)
with boundary values (1.1.3b). k(z) is the foundation spring function and
is assumed to be a continuous function of z.

Using mathematical analysis, one can prove theorems about the exis-
tence and uniqueness of solutions of (1.1.6), but in general no explicit so-
lution can be found. An explicit solution is a formula, where for each set
of values of the relevant parameters and for each = we can easily compute
the corresponding function value y(z).

Thus, we have a mathematical model which is a good description of the
problem under study, but it does not give us a direct answer to our question.
Now there are essentially two alternatives: either we can make simplifica-
tions in the model (e.g., assume that the coefficients are constant) so that
an analytical solution can be determined, or we can introduce numeri-
cal approximations in the equation. In many cases, the first alternative
is inadequate, as the model may become so bad that the answers are no
longer reliable. Errors are introduced in the second alternative also, but
here the answers are more reliable since it is possible to estimate how the
approximations affect the accuracy of the solution. The two alternatives
are illustrated in Figure 1.1.7.

questions ma:,ihtlarilat]cal questions | mathematical
- & mode » | model 2
mathematical mathematical
problem problem
answers | | -~~~ --------
< analytic approxilmations
solution
numerical
problem
answers | [ - ---------
< numerical
solution
Figure 1.1.7

We will now sketch how numerical approximations can be made in the
differential equation (1.1.6). For a detailed description, see Chapter 10.
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For many purposes it is sufficient to compute approximations of the so-
lution at a finite number of points (2;)™_, in the interval [0, 1]. We approx-
imate the derivatives in the differential equation (1.1.6) and the boundary
conditions (1.1.3b) by difference quotients, ¢.g.,

" y(ip1) — 2y(z) + y(@i-1) .
y'(x;) =~ 52 ;
here we have assumed that the partitioning of the interval is equidistant,
i.c., ;41 — x; = h. In this way, the differential equation (1.1.6) is replaced
by a system of linear equations

Ay =q; {1.1.8)
the components of the vector y are approximations of the function values
yi ~ y(z;), 1=1,2,...,n;
the elements of the matrix A depend on the coefficients in (1.1.6) (the
material properties), and the right hand side g is a vector of values of the

function g(z) (the load).

The linear system of equations (1.1.8) is called a discretization of the
differential equation (1.1.6) with boundary conditions (1.1.3b). The system
of equations can be solved using Gaussian elimination.

Thus, we have replaced the mathematical problem of solving a differ-
ential equation by the numerical problem of solving a linear system of
cquations. We will now make the notion of a numerical problem somewhat
more precise:

A numerical problem is a clear and unambiguous description of
the functional connection between input data, i.e., the “indepen-
dent variables” of the problem, and output data, i.e., the desired
results. Input data and output data consist of a finite number of real
quantities.

It is obvious that the problem of solving (1.1.8) can be considered as a
numerical problem. Input data are the coefficients of the matrix A and the
right hand side ¢; output data are the components of the vector y.

We stated that (1.1.8) can be solved using Gaussian elimination. That
is an example of an algorithm.

An algorithm for a numerical problem is a complete description of
a finite number of well-defined operations, through which each per-
missible input data vector is transformed into an output data vector.




(3 1 Introduction

By operations, here we mean arithmetic and logical operations and pre-
viously defined algorithms. An algorithm can be described loosely or in
great detail. A comprehensive description is obtained when an algorithm
is formulated using a programming language.

The objective of numerical analysis is to construct and analyze nu-
merical methods and algorithms for the solution of problems in science and
technology. In connection with the above discussion, we give here a few
examples of interesting questions in numerical analysis:

e How large is the discretization error when the boundary value problem
is approximated by (1.1.8), i.e., how large are the errors y; — y(z;)?

e How long does it take to solve (1.1.8) using a certain computer?

e How do the rounding errors of the computer arithmetic influence the
accuracy of the solution?

Exercises

1. Derive (1.1.4) and sketch the curve for some value of ). What is the
maximal deflection of the beam?

2. Find the chapter on beams in a textbook in structural mechanics and
write the beam equation using the notation of that book.

3. What are the boundary conditions for (1.1.3a) if the beam is freely sup-
ported at both ends. Determine an analytical solution for this case
(assume constant coefficients).

References

The definitions of a numerical problem and algorithm are taken from

G. Dahlquist and A. Bjorck, Numerical Methods, Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1974.

This textbook is recommended for a more extensive course in numerical
analysis.



2  Error Analysis and Computer
Arithmetic

In Chapter 1, we illustrated how approximations are introduced in the
solution of mathematical problems that caunot be solved exactly. One of
the most important tasks in numerical analysis is to estimate the accu-
racy of the result of a numerical computation. In this chapter. we discuss
different sources of error that affect the computed result and we derive
methods for error estimation. In particular, we describe some properties of
computer arithmetic. A standard for floating point arithmetic was adopted
by IEEL in 1985. We give a brief presentation of the standard and its
implementation in a floating point processor.

2.1 Sources of Error

There are essentially three types of errors that affect the result of a numer-
ical computation:

1. Errors in the input data arc often incvitable. The input data can
be the result of measurements with a limited accuracy, or real numbers,
which must be represented with a fixed number of digits.

2. Rounding errors arise when computations are performed using a fixed
number of digits in the operands.

3. Truncation errors arise when “an infinite process is replaced by a finite
one”, ¢.g., when an infinite series is approximated by a partial sum, or
a function is approximated by a polynomiial.

Truncation errors will be discussed in connection with the different numer-
ical methods. In this chapter, we study the other two sources of error.
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The different types of errors are illustrated in Figure 2.1.1, which relates
to the discussion in Chapter 1.

Experiment

Construction

Mathematical Model
Mathematical Problem

®

Numerical Problem

Numerical Algorithm Input Data

®

Output Data

Figure 2.1.1 Sources of error.

The following notation will be used:

Rx error in the result coming from input data errors,

Rxp error in the result coming from errors in the
function values used,

Ry rounding error,

Ry truncation error.

Rxr is a special case of Rx.



