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Preface

The rapid rate at which the field of digital picture processing has grown
in the past five years has necessitated extensive revisions and the intro-
duction of topics not found in the original edition.

Two new chapters have been added: Chapter 8 (by A. C. K.) on recon-
struction from projections and Chapter 9 (by A. R.) on matching. The
latter includes material from Chapters 6 and 8 of the first edition on geo-
metric transformations and matching, but it consists primarily of new ma-
terial on imaging geometry, rectification, and stereomapping, as well as an
appendix on the analysis of time-varying imagery.

Chapter 2 incorporates a new section on vector space representation of
images. Chapter 5 on compression has undergone a major expansion. It
includes a new section on interpolative representation of images and fast
implementation of the Karhunen—Loeve transform based thereon. Also
included in this chapter is image compression using discrete cosine trans-
forms—a technique that has attracted considerable attention in recent
years. New sections on block quantization, the recently discovered tech-
nique of block truncation compression, and error-free compression have
also been added to Chapter 5. New material has been added to Chapter 6
on gray level and histogram transformation and on smoothing. Chapter 7
has also been considerably expanded and includes many new restoration
techniques. This chapter incorporates a new frequency domain derivation

ix



x Preface

of the constrained least squares filter. The treatment of Markov represen-
tation has been expanded with a section on vector—matrix formulation of
such representations. Chapters 10, 11, and 12 are major expansions of the
first edition’s Chapters 8—10, dealing with segmentation of pictures into
parts, representations of the parts (formerly ‘‘geometry’’), and descrip-
tion of pictures in terms of parts. Chapter 10 incorporates much new ma-
terial on pixel classification, edge detection, Hough transforms, and pic-
ture partitioning, reflecting recent developments in these areas; it also
contains an entirely new section (10.5) on iterative ‘‘relaxation’’ methods
for fuzzy or probabilistic segmentation. Chapter 11 is now organized ac-
cording to types of representations (runs, maximal blocks, quadtrees,
border codes), and discusses how to convert between these representa-
tions and how to use them to compute geometrical properties of picture
subsets. Chapter 12 treats picture properties as well as descriptions of pic-
tures at various levels (numerical arrays, region representations, rela-
tional structures). It also discusses models for classes of pictures, as de-
fined, in particular, by constraints that must be satisfied at a given level of
description (‘‘declarative models’’) or by grammars that generate or ac-
cept the classes. It considers how to construct a model consistent with a
given set of descriptions and how to extract a description that matches a
given model; it also contains an appendix on the extraction of three-
dimensional information about a scene from pictures.

The size of this second edition has made it necessary to publish this
book in two volumes. However, a single chapter numbering has been
maintained. Volume 1 contains Chapters 1-8, covering digitization, com-
pression, enhancement, restoration, and reconstruction; and Volume 2
contains Chapters 9-12, covering matching, segmentation, representa-
tion, and description. The material in Volume 2 is not strongly dependent
on that in Volume 1; and to make it even more self-contained, the Preface
and Introduction (called Chapter 1 in Volume 1) are reproduced at the be-
ginning of Volume 2.

The authors of the chapters are as follows: Chapters 2, 4, 5, 7, and 8
are by A. C. K, whereas Chapters 1, 3, 6, and 9 through 12 are by A. R.
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Chapter 1

Introduction

1.1 PICTURE PROCESSING

Picture processing or image processing is concerned with the manipulation
and analysis of pictures by computer. Its major subareas include

(a) Digitization and compression: Converting pictures to discrete (digital)
form; efficient coding or approximation of pictures so as to save storage
space or channel capacity.

(b) Enhancement, restoration, and reconstruction: Improving degraded
(low-contrast, blurred, noisy) pictures; reconstructing pictures from sets of
projections.

(c) Matching, description, and recognition: Comparing and registering
pictures to one another; segmenting pictures into parts, measuring proper-
ties of and relationships among the parts, and comparing the resulting
descriptions to models that define classes of pictures.

In this chapter we introduce some basic concepts about pictures and
digital pictures, and also give a bibliography of general references on picture
processing and recognition. (References on specific topics are given at the
end of each chapter.) Chapter 2 reviews some of the mathematical tools
used in later chapters, including linear systems, transforms, and random
fields, while Chapter 3 briefly discusses the psychology of visual perception.

1



2 1 Introduction

The remaining chapters deal with the theory of digitization (4); coding and
compression (5); enhancement (6); restoration and estimation (7); recon-
struction from projections (8); registration and matching (9); segmentation
into parts (10); representation of parts and geometric property measurement
(11); and nongeometric properties, picture descriptions, and models for
classes of pictures (12).

The level of treatment emphasizes concepts, algorithms, and (when
necessary) the underlying theory. We do not cover hardware devices for
picture input (scanners), processing, or output (displays); nondigital (e.g.,
optical) processing; or picture processing software.

1.2 SCENES, IMAGES, AND DIGITAL PICTURES

1.2.1 Scenes and Images

When a scene is viewed from a given point, the light received by the
observer varies in brightness and color as a function of direction. Thus the
information received from the scene can be expressed as a function of two
variables, i.e., of two angular coordinates that determine a direction. (The
scene brightness and color themselves are resultants of the illumination,
reflectivity, and geometry of the scene; see Section 6.2.2.)

In an optical image of the scene, say produced by a lens, light rays from
each scene point in the field of view are collected by the lens and brought
together at the corresponding point of the image. Scene points at different
distances from the lens give rise to image points at different distances; the
basic equation is

1 1 1

u * v f
where u, v are the distances of the object and image points from the lens (on
opposite sides), and fis a constant called the focal length of the lens. If u is
large, i.e., the scene points are all relatively far from the lens, 1/u is negligible,
and we have v & f, so that the image points all lie at approximately the same
distance from the lens, near its “focal plane.” Thus the imaging process con-
verts the scene information into an illumination pattern in the image plane;
this is still a function of two variables, but they are now coordinates in the |
plane. (Image formation by optical systems will not be further discussed
here. On the geometry of the mapping from three-dimensional scene coor-
dinates to two-dimensional image coordinates, see Section 9.1.2.)
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We can now record or measure the pattern of light from the scene by
placing some type of sensor in the image plane. (Some commonly used
sensors will be mentioned in the next paragraph.) Any given sensor has a
characteristic spectral sensitivity, i.e., its response varies with the color of
the light; thus its total response to the light at a given point can be expressed
by an integral of the form | S(A)I(4) dA, where I(2) is light intensity and S(4)
is sensitivity as functions of wavelength. This means that if we use only a
single sensor, we can only measure (weighted) light intensity. If we want to
measure color, we must use several sensors having different spectral re-
sponses; or we must split the light into a set of spectral bands, using color
filters, and measure the light intensity in each band. (Knowing the inten-
sities in three suitably chosen bands, e.g., in the red, green, and blue regions
of the spectrum, is enough to characterize any color; see Section 3.3.) In
other words, when we use only one sensor, we are representing the scene
information by a scalar-valued function of position in the image, representing
scene brightness. To represent color, we use a k-tuple (usually a triple) of
such functions, or equivalently, a vector-valued function, representing the
brightness in a set of spectral bands. We will usually assume in this book
that we are dealing with a single scalar-valued brightness function. Photo-
metric concepts and terminology will not be further discussed here; we use
terms such as “brightness” and “intensity” in an informal sense.

Image sensors will not be discussed in detail in this book, but we briefly
mention here some of the most common types.

(a) We can put an array of photosensitive devices in the image plane;
each of them measures the scene brightness at a particular point (or rather,
the total scene brightness in a small patch).

(b) We need only a single photosensor in the image plane if we can
illuminate the scene one point (or small patch) at a time; this is the principle
of the flying-spot scanner. Similarly, we need only one photosensor if we
can view the scene through a moving aperture so that, at any given time, the
light from only one point of the scene can reach the sensor.?

(¢) In a TV camera, the pattern of brightness in the scene is converted
into an electrical charge pattern on a grid; this pattern can then be scanned
by an electron beam, yielding a video signal whose value at any given time
corresponds to the brightness at a given image point.

In all of these schemes, the image brightness is converted into a pattern of
electrical signals, or into a time-varying signal corresponding to a sequential

§ As a compromise between (a) and (b), we can use a one-dimensional array of sensors in
the image plane, say in the horizontal direction, and scan in the vertical direction, so that light
from only one “row” of the scene reaches the sensors at any given time.
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scan of the image or scene. Thus the sensor provides an electrical or electronic
analog of the scene brightness function, which is proportional to it, if the
sensors are linear. More precisely, an array sensor provides a discrete
array of samples of this function; while scanning sensors provide a set of
cross sections of the function along the lines of the scanning pattern.

If, instead of using a sensor, we put a piece of photographic film (or some
other light-sensitive recording medium) in the image plane, the brightness
pattern gives rise to a pattern of variations in the optical properties of the
film. (Color film is composed of layers having different spectral sensitivities;
we will discuss here only the black-and-white case.) In a film transparency,
the optical transmittance ¢ (i.e., the fraction of the light transmitted by the
film) varies from point to point; in an opaque print, the reflectance r (= the
fraction of light reflected) varies. Evidently we have 0 <t < land0 <r < 1.
The quantity —log t or —log r is called optical density; thus a density close
to zero corresponds to almost perfect transmission or reflection, while a
very high density, say 3 or 4, corresponds to almost perfect opaqueness or
dullness (i.e., only 10~ 3 or 10~ * of the incident light is transmitted or reflec-
ted). For ordinary photographic processes, the density is roughly a linear
function of the log of the amount of incident light (the log of the “exposure™)
over a range of exposures; the slope of this line is called photographic gamma.
Photographic processes will not be discussed further in this book. A photo-
graph of a scene can be converted into signal form by optically imaging it
onto a sensor.

1.2.2 Pictures and Digital Pictures

We saw in the preceding paragraphs that the light received from a scene
by an optical system produces a two-dimensional image. This image can be
directly converted into electrical signal form by a sensor, or it can be recorded
photographically as a picture and subsequently converted. Mathematically,
a picture is defined by a function f(x, y) of two variables (coordinates in the
image plane, corresponding to spatial directions). The function values are
brightnesses, or k-tuples of brightness values in several spectral bands. In
the black-and-white case, the values will be called gray levels. These values
are real, nonnegative (brightness cannot be negative), and bounded (bright-
ness cannot be arbitrarily great). They are zero outside a finite region, since
an optical system has a bounded field of view, so that the image is of finite
size; without loss of generality, we can assume that this region is rectangular.
Whenever necessary, we will assume that picture functions are analytically
well-behaved, e.g., that they are integrable, have invertible Fourier trans-
forms, etc.
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When a picture is digitized (see Chapter 4), a sampling process is used to
extract from the picture a discrete set of real numbers. These samples are
usually the gray levels at a regularly spaced array of points, or, more realis-
tically, average gray levels taken over small neighborhoods of such points.
(On other methods of sampling see Section 4.1.) The array is almost always
taken to be Cartesian or rectangular, i.e., it is a set of points of the form
(md, nd), where m and n are integers and d is some unit distance. (Other types
of regular arrays, e.g., hexagonal or triangular, could also be used; see
Section 11.1.7, Exercise 4, on a method of defining a hexagonal array by
regarding alternate rows of a rectangular array as shifted d/2 to the right.)
Thus the samples can be regarded as having integer coordinates, e.g., 0 <
m<M,0<n<N.

The picture samples are usually quantized to a set of discrete gray level
values, which are often taken to be equally spaced (but see Section 4.3). In
other words, the gray scale is divided into equal intervals, say I, ..., I,
and the gray level f (x, y) of each sample is changed into the level of the mid-
point of the interval I; in which f(x, y) falls. The resulting quantized gray
levels can be represented by their interval numbers O, . .., K, i.e., they can be
regarded as integers.

The result of sampling and quantizing is a digital picture. As just seen, we
can assume that a digital picture is a rectangular array of integer values. An
element of a digital picture is called a picture element (often abbreviated
pixel or pel); we shall usually just call it a point. The value of a pixel will
still be called its gray level. If there are just two values, e.g., “black” and
“white,” we will usually represent them by 0 and 1; such pictures are called
two-valued or binary-valued.

Digital pictures are often very large. For example, suppose we want to
sample and quantize an ordinary (500-line) television picture finely enough
so that it can be redisplayed without noticeable degradation. Then we must
use an array of about 500 by 500 samples, and we should quantize each
sample to about 50 discrete gray levels, i.e., to about a 6-bit number. This
gives us an array of 250,000 6-bit numbers, for a total of 14 million bits. In
many cases, even finer sampling is necessary; and it has become standard to
use 8-bit quantization, i.e., 256 gray levels.

Except on the borders of the array, any point (x, y) of a digital picture has
four horizontal and vertical neighbors and four diagonal neighbors, i.e.,

x—1Ly+1) (x,y+1) x+Ly+1D

(x— 1) (x, ) (x+ 1,

x—1Ly-=1) x,y—1 x+1Ly-=1
In this illustration of the 3 x 3 neighborhood of a point we have used Car-
tesian coordinates (x, y), with x increasing to the right and y increasing
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upward. There are other possibilities; for example, one could use matrix co-
ordinates (m, n), in which m increases downward and n to the right. Note

that the diagonal neighbors are \/5 units away from (x, y), while the horizon-
tal and vertical neighbors are only one unit away. If we think of a pixel
as a unit square, the horizontal and vertical neighbors of (x, y) share a side
with (x, y), while its diagonal neighbors only touch it at a corner. Some of the
complications introduced by the existence of these two types of neighbors
will be discussed in Chapter 11. Neighborhoods larger than 3 x 3 are
sometimes used; in this case, a point may have many types of neighbors.

If (x, y) is on the picture border, i.e, x=00or M — 1, y=00r N — 1,
some of its neighbors do not exist, or rather are not in the picture. When we
perform operations on the picture, the new value of (x, y) often depends on
the old values of (x, y) and its neighbors. To handle cases where (x, y) is
on the border, we have several possible approaches:

(a) We might give the operation a complex definition that covers these
special cases. However, this may not be easy, and in any case it is computa-
tionally costly.

(b) We can regard the picture as cyclically closed, i.e., assume that
column M — 1 is adjacent to column 0 and row N — 1 to row 0; in other
words, we take the coordinates (x, y) modulo (M, N). This is equivalent
to regarding the picture as an infinite periodic array with an M x N period.
We will sometimes use this approach, but it is usually not natural, since the
opposite rows and columns represent parts of the scene that are not close
together.

(c) We can assume that all values outside the picture are zero. This is a
realistic way of representing the image (see the first paragraph of this section),
but not the scene.

(d) The simplest approach is to apply the operation only to a sub-
picture, chosen so that for all (x, y) in the subpicture, the required neighbors
exist in the picture. This yields results all of which are meaningful; but note
that the output picture produced by the operation is smaller than the input
picture.

1.2.3 Operations on Pictures

In this book we shall study many different types of operations that can be
performed on digital pictures to produce new pictures. The following are
some of the important types of picture operations:

(a) Point operations: The output gray level at a point depends only on
the input gray level at the same point. Such operations are extensively used
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for gray scale manipulation (Section 6.2) and for segmentation by pixel
classification (Section 10.1). There may be more than one input picture; for
example, we may want to take the difference or product of two pictures,
point by point. In this case, the output level at a point depends only on the
set of input levels at the same point.

(b) Local operations: The output level at a point depends only on the
input levels in a neighborhood of that point. Such operations are used for
deblurring (Section 6.3), noise cleaning (Section 6.4), and edge and local
feature detection (Sections 10.2 and 10.3), among other applications.

(c) Geometric operations: The output level at a point depends only on
the input levels at some other point, defined by a geometrical transformation
(e.g., translation, rotation, scale change, etc.) or in a neighborhood of that
point. On such operations see Section 9.3.

An operation 0O is called linear if we get the same output whether we apply
O to a linear combination of pictures (i.e., we take O(af + bg)) or we apply
O to each of the pictures and then form the same linear combination of the
results (i.e., aO(f) + b((g)). Linear operations on pictures will be discussed
further in Section 2.1.1. Point and local operations may or may not be linear.
For example, simple stretching of the gray scale (O(f) = ¢f) is linear, but
thresholding (O(f) = 1 if f = t, =0 otherwise) is not; local averaging is
linear, but local absolute differencing is not. Geometric operations are
linear, if we ignore the need to redigitize the picture after they are performed
(Section 9.3).

0O is called shift invariant if we get the same output whether we apply ¢
to a picture and then shift the result, or first shift the picture and then apply
0. Such operations will be discussed further in Section 2.1.2. The examples of
point and local operations given in the preceding paragraph are all shift
invariant, but we can also define shift variant operations of these types, e.g.,
modifying the gray level of a point differently, or taking a different weighted
average, as a function of position in the picture. The only shift-invariant
geometric operations are the shifts, ie., the translations. It is shown in
Section 2.1.2 that an operation is linear and shift invariant iff it is a convolu-
tion; this is an operation in which the output gray level at a point is a linear
combination of the input gray levels, with coefficients that depend only on
their positions relative to the given point, but not on their absolute positions.

In Chapters 11 and 12 we will discuss picture properties, i.e., operations
that can be performed on pictures to produce numerical values. In particular,
we will deal with point and local properties (whose values depend only on
one point, or on a small part, of the picture); geometric properties of picture
subsets (whose values depend only on the set of points belonging to the
given subset, but not on their gray levels); and linear properties (which give



