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Preface

This book is intended to be used as the text for a course in combinatorics at the level
of beginning upper division students. It has been shaped by two goals: to make
some fairly deep mathematics accessible to students with a wide range of abilities,
interests, and motivations and to create a pedagogical tool useful to the broad spec-
trum of instructors who bring a variety of perspectives and expectations to such a
course.

The author’s approach to the second goal has been to maximize flexibility.
Following a basic foundation in Chapters 1 and 2, each instructor is free to pick
and choose the most appropriate topics from the remaining four chapters. As sum-
marized in the chart below, Chapters 3 -6 are completely independent of each other.
Flexibility is further enhanced by optional sections and appendices, by weaving
some topics into the exercise sets of multiple sections, and by identifying various
points of departure from each of the final four chapters. (The price of this flexibility
is some redundancy, e.g., several definitions can be found in more than one place.)

I Chapter 1 |
Chapter 2 |

LChapterS | L Chapter 3 I I Chapter 4 ] I Chapter 6 I

Turning to the first goal, students using this book are expected to have been
exposed to, even if they cannot recall them, such notions as equivalence relations,
partial fractions, the Maclaurin series expansion for ¢, elementary row operations,
determinants, and matrix inverses. A course designed around this book should have
as specific prerequisites those portions of calculus and linear algebra commonly
found among the lower division requirements for majors in the mathematical and
computer sciences. Beyond these general prerequisites, the last two sections of
Chapter 5 presume the reader to be familiar with the definitions of classical adjoint

ix



X Preface

(adjugate) and characteristic roots (eigenvalues) of real matrices, and the first two
sections of Chapter 6 make use of reduced row-echelon form, bases, dimension,
rank, nullity, and orthogonality. (All of these topics are reviewed in Appendix A3.)

Strategies that promote student engagement are a lively writing style, timely and
appropriate examples, interesting historical anecdotes, a variety of exercises (tem-
pered and enlivened by suitable hints and answers), and judicious use of footnotes
and appendices to touch on topics better suited to more advanced students. These
are things about which there is general agreement, at least in principle.

There is less agreement about how to focus student energies on attainable objec-
tives, in part because focusing on some things inevitably means neglecting others. If
the course is approached as a last chance to expose students to this marvelous sub-
ject, it probably will be. If approached more invitingly, as a first course in combi-
natorics, it may be. To give some specific examples, highlighted in this book are
binomial coefficients, Stirling numbers, Bell numbers, and partition numbers. These
topics appear and reappear throughout the text. Beyond reinforcement in the service
of retention, the tactic of overarching themes helps foster an image of combinato-
rics as a unified mathematical discipline. While other celebrated examples, e.g.,
Bernoulli numbers, Catalan numbers, and Fibonacci numbers, are generously repre-
sented, they appear almost entirely in the exercises. For the sake of argument, let us
stipulate that these roles could just as well have been reversed. The issue is that
beginning upper division students cannot be expected to absorb, much less appreci-
ate, all of these special arrays and sequences in a single semester. On the other
hand, the flexibility is there for willing admirers to rescue one or more of these
justly famous combinatorial sequences from the relative obscurity of the exercises.

While the overall framework of the first edition has been retained, everything
else has been revised, corrected, smoothed, or polished. The focus of many sections
has been clarified, e.g., by eliminating peripheral topics or moving them to the exer-
cises. Material new to the second edition includes an optional section on algo-
rithms, several new examples, and many new exercises, some designed to guide
students to discover and prove nontrivial results for themselves. Finally, the section
of hints and answers has been expanded by an order of magnitude.

The material in Chapter 3, Pélya’s theory of enumeration, is typically found clo-
ser to the end of comparable books, perhaps reflecting the notion that it is the last
thing that should be taught in a junior-level course. The author has aspired, not only
to make this theory accessible to students taking a first upper division mathematics
course, but to make it possible for the subject to be addressed right after Chapter 2.
Its placement in the middle of the book is intended to signal that it can be fitted in
there, not that it must be. If it seems desirable to cover some but not all of Chapter 3,
there are many natural places to exit in favor of something else, e.g., after the appli-
cation of Bell numbers to transitivity in Section 3.3, after enumerating the overall
number of color patterns in Section 3.5, after stating Pélya’s theorem in Section 3.6,
or after proving the theorem at the end of Section 3.6.

Optional Sections 1.3 and 1.10 can be omitted with the understanding that exer-
cises in subsequent sections involving probability or algorithms should be assigned
with discretion. With the same caveat, Section 1.4 can be omitted by those not
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intending to go on to Sections 6.1, 6.2, or 6.4. The material in Section 6.3, touching
on mutually orthogonal Latin squares and their connection to finite projective
planes, can be covered independently of Sections 1.4, 6.1, and 6.2.

The book contains much more material then can be covered in a single semester.
Among the possible syllabi for a one semester course are the following:

e Chapters 1, 2, and 4 and Sections 3.1-3.3

o Chapters 1 (omitting Sections 1.3, 1.4, & 1.10), 2, and 3, and Sections 5.1
& 5.2

e Chapters 1 (omitting Sections 1.3 & 1.10), 2, and 6 and Sections 4.1 -4.4

e Chapters | (omitting Sections 1.4 & 1.10) and 2 and Sections 3.1-3.3,
41-43, & 6.3

e Chapters | (omitting Sections 1.3 & 1.4) and 2 and Sections 4.1-4.3, 5.1, &
5.3-5.7

e Chapters 1 (omitting Sections 1.3, 1.4, & 1.10) and 2 and Sections 4.1 —4.3,
5.1, 5.3-5.5, & 6.3

Many people have contributed observations, suggestions, corrections, and con-
structive criticisms at various stages of this project. Among those deserving special
mention are former students David Abad, Darryl Allen, Steve Baldzikowski, Dale
Baxley, Stanley Cheuk, Marla Dresch, Dane Franchi, Philip Horowitz, Rhian
Merris, Todd Mullanix, Cedide Olcay, Glenn Orr, Hitesh Patel, Margaret Slack,
Rob Smedfjeld, and Masahiro Yamaguchi; sometime collaborators Bob Grone,
Tom Roby, and Bill Watkins; correspondents Mark Hunacek and Gerhard Ringel;
reviewers Rob Beezer, John Emert, Myron Hood, Herbert Kasube, André Kézdy,
Charles Landraitis, John Lawlor, and Wiley editors Heather Bergman, Christine
Punzo, and Steve Quigley. 1 am especially grateful for the tireless assistance of
Cynthia Johnson and Ken Rebman.

Despite everyone’s best intentions, no book seems complete without some errors.
An up-to-date errata, accessible from the Internet, will be maintained at URL

http://www.sci.csuhayward.edu/~rmerris

Appropriate acknowledgment will be extended to the first person who communi-
cates the specifics of a previously unlisted error to the author, preferably by
e-mail addressed to

merris @csuhayward.edu

Hayward California RUSSELL MERRIS
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1

The Mathematics of Choice

It seems that mathematical ideas are arranged somehow in strata, the ideas in each
stratum being linked by a complex of relations both among themselves and with those
above and below. The lower the stratum, the deeper (and in general the more difficult)
the idea. Thus, the idea of an irrational is deeper than the idea of an integer.

— G. H. Hardy (A Mathematician’s Apology)

Roughly speaking, the first chapter of this book is the top stratum, the surface layer
of combinatorics. Even so, it is far from superficial. While the first main result, the
so-called fundamental counting principle, is nearly self-evident, it has enormous
implications throughout combinatorial enumeration. In the version presented here,
one is faced with a sequence of decisions, each of which involves some number of
choices. It is from situations like this that the chapter derives its name.

To the uninitiated, mathematics may appear to be “just so many numbers and
formulas.” In fact, the numbers and formulas should be regarded as shorthand
notes, summarizing ideas. Some ideas from the first section are summarized by
an algebraic formula for multinomial coefficients. Special cases of these numbers
are addressed from a combinatorial perspective in Section 1.2.

Section 1.3 is an optional discussion of probability theory which can be omitted
if probabilistic exercises in subsequent sections are approached with caution.
Section 1.4 is an optional excursion into the theory of binary codes which can be
omitted by those not planning to visit Chapter 6. Sections 1.3 and 1.4 are partly
motivational, illustrating that even the most basic combinatorial ideas have real-
life applications.

In Section 1.5, ideas behind the formulas for sums of powers of positive integers
motivate the study of relations among binomial coefficients. Choice is again the
topic in Section 1.6, this time with or without replacement, where order does or
doesn’t matter.

To better organize and understand the multinomial theorem from Section 1.7,
one is led to symmetric polynomials and, in Section 1.8, to partitions of n.
Elementary symmetric functions and their association with power sums lie at the

Combinatorics, Second Edition, by Russell Merris.
ISBN 0-471-26296-X @ 2003 John Wiley & Sons, Inc.



2 The Mathematics of Choice

heart of Section 1.9. The final section of the chapter is an optional introduction to
algorithms, the flavor of which can be sampled by venturing only as far as
Algorithm 1.10.3. Those desiring not less but more attention to algorithms can
find it in Appendix A2.

1.1. THE FUNDAMENTAL COUNTING PRINCIPLE

C

How many different four-letter words, including nonsense words, can be produced
by rearranging the letters in LUCK? In the absence of a more inspired approach,
there is always the brute-force strategy: Make a systematic list.

Once we become convinced that Fig. 1.1.1 accounts for every possible rearran-
gement and that no “word” is listed twice, the solution is obtained by counting the
24 words on the list.

While finding the brute-force strategy was effortless, implementing it required
some work. Such an approach may be fine for an isolated problem, the like of which
one does not expect to see again. But, just for the sake of argument, imagine your-
self in the situation of having to solve a great many thinly disguised variations of
this same problem. In that case, it would make sense to invest some effort in finding
a strategy that requires less work to implement. Among the most powerful tools in
this regard is the following commonsense principle. ’

1.1.1 Fundamental Counting Principle. Consider a (finite) sequence of deci-
sions. Suppose the number of choices for each individual decision is independent
of decisions made previously in the sequence. Then the number of ways to make the
whole sequence of decisions is the product of these numbers of choices.

To state the principle symbolically, suppose ¢; is the number of choices for deci-
sion i. If, for 1 <i < n, ¢;1; does not depend on which choices are made in

LUCK LUKC LCUK LCKU LKUC LKCU
ULCK ULKC UCLK UCKL UKLC UKCL
CLUK CLKU CULK CUKL CKLU CKUL
KLUC KLCU KULC KUCL KCLU KCUL

Figure 1.1.1. The rearrangements of LUCK.



1.1. The Fundamental Counting Principle 3

decisions 1,..., i, then the number of different ways to make the sequence of
decisions 1s ¢ X ¢z X -+ X Cy.

Let’s apply this principle to the word problem we just solved. Imagine yourself
in the midst of making the brute-force list. Writing down one of the words involves
a sequence of four decisions. Decision 1 is which of the four letters to write first, so
c; = 4. (It is no accident that Fig. 1.1.1 consists of four rows!) For each way of
making decision 1, there are ¢, = 3 choices for decision 2, namely which letter
to write second. Notice that the specific letters comprising these three choices
depend on how decision 1 was made, but their number does not. That is what is
meant by the number of choices for decision 2 being independent of how the pre-
vious decision is made. Of course, ¢c3 = 2, but what about ¢4? Facing no alternative,
is it correct to say there is “‘no choice” for the last decision? If that were literally
true, then ¢4 would be zero. In fact, ¢4 = 1. So, by the fundamental counting
principle, the number of ways to make the sequence of decisions, i.e., the number
of words on the final list, is

ClXcp Xe3xXxes=4x3x2x1.

The product n x (n— 1) x (n —2) x --- x 2 x 1 is commonly written n! and
read n-factorial.* The number of four-letter words that can be made up by rearrang-
ing the letters in the word LUCK is 4! = 24.

What if the word had been LUCKY? The number of five-letter words that can be
produced by rearranging the letters of the word LUCKY is 5! = 120. A systematic
list might consist of five rows each containing 4! = 24 words.

Suppose the word had been LOOT? How many four-letter words, including non-
sense words, can be constructed by rearranging the letters in LOOT? Why not apply
the fundamental counting principle? Once again, imagine yourself in the midst of
making a brute-force list. Writing down one of the words involves a sequence of
four decisions. Decision 1 is which of the three letters L, O, or T to write first.
This time, ¢; = 3. But, what about ¢,? In this case, the number of choices for deci-
sion 2 depends on how decision 1 was made! If, e.g., L were chosen to be the first
letter, then there would be two choices for the second letter, namely O or T. If, how-
ever, O were chosen first, then there would be three choices for the second decision,
L, (the second) O, or T Do we take ¢; = 2 or ¢; = 3? The answer is that the funda-
mental counting principle does not apply to this problem (at least not directly).
The fundamental counting principle applies only when the number of choices for
decision i + 1 is independent of how the previous i decisions are made.

To enumerate all possible rearrangements of the letters in LOOT, begin by dis-
tinguishing the two O’s. maybe write the word as LOoT. Applying the fundamental
counting principle, we find that there are 4! = 24 different-looking four-letter words
that can be made up from L, O, o, and T.

*The exclamation mark is used, not for emphasis, but because it is a convenient symbol common to most
keyboards.
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LOoT LOTo LoOT LoTO LTOo LToO
OLoT OLTo OoLT OoTL OTLo OToL
oLOT oLTO oOLT oOTL oTLO oTOL
TLOo TLoO TOLo TOoL ToLO ToOL

Figure 1.1.2. Rearrangements of LOoT.

Among the words in Fig. 1.1.2 are pairs like OLoT and oL.OT, which look dif-
ferent only because the two O’s have been distinguished. In fact, every word in the
list occurs twice, once with ““big O coming before “little 0", and once the other
way around. Evidently, the number of different words (with indistinguishable O’s)
that can be produced from the letters in LOOT is not 4! but 4!/2 = 12.

What about TOOT? First write it as TOot. Deduce that in any list of all possible
rearrangements of the letters T, O, o, and t, there would be 4! = 24 different-look-
ing words. Dividing by 2 makes up for the fact that two of the letters are O’s. Divid-
ing by 2 again makes up for the two T’s. The result, 24 /(2 x 2) = 6, is the number
of different words that can be made up by rearranging the letters in TOOT. Here
they are

TTOO TOTO TOOT OTTO OTOT OOTT

All right, what if the word had been LULL? How many words can be produced
by rearranging the letters in LULL? Is it too early to guess a pattern? Could the
number we’re looking for be 4!/3 = 8? No. It is easy to see that the correct answer
must be 4. Once the position of the letter U is known, the word is completely deter-
mined. Every other position is filled with an L. A complete list is ULLL, LULL,
LLUL, LLLU.

To find out why 4!/3 is wrong, let’s proceed as we did before. Begin by distin-
guishing the three L’s, say L, Ly, and L;. There are 4! different-looking words that
can be made up by rearranging the four letters Ly, L,, L3, and U. If we were to make
a list of these 24 words and then erase all the subscripts, how many times would,
say, LLLU appear? The answer to this question can be obtained from the funda-
mental counting principle! There are three decisions: decision | has three choices,
namely which of the three L’s to write first. There are two choices for decision 2
(which of the two remaining L’s to write second) and one choice for the third deci-
sion, which L to put last. Once the subscripts are erased, LLLU would appear 3!
times on the list. We should divide 4! = 24, not by 3, but by 3! = 6. Indeed,
41/3! = 4 is the correct answer.

Whoops! if the answer corresponding to LULL is 4!/3!, why didn’t we get 4!/2!
for the answer to LOOT? In fact, we did: 2! = 2.

Are you ready for MISSISSIPPI? It’s the same problem! If the letters were all
different, the answer would be 11!. Dividing 11! by 4! makes up for the fact that
there are four I's. Dividing the quotient by another 4! compensates for the four S’s.
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Dividing that quotient by 2! makes up for the two P’s. In fact, no harm is done if
that quotient is divided by 1! = 1 in honor of the single M. The result is

1!

aaa - oh60

(Confirm the arithmetic.) The 11 letters in MISSISSIPPI can be (re)arranged in
34,650 different ways."

There is a special notation that summarizes the solution to what we might call
the “MISSISSIPPI problem.”

1.1.2 Definition. The multinomial coefficient

n n!
ST & T " rilrloonl’

where ri + o+ -+ =n.

So, “multinomial coefficient” is a name for the answer to the question, how
many n-letter “words’ can be assembled using r) copies of one letter, r, copies
of a second (different) letter, r3 copies of a third letter, ..., and r; copies of a
kth letter?

1.1.3 Example. After cancellation,

9 _9><8><7><6><5><4x3><2><1
43,1,1) 4x3x2x1x3x2x1x1x]1

=9 x8x7x5=2520.

Therefore, 2520 different words can be manufactured by rearranging the nine letters
in the word SASSAFRAS. [l

In real-life applications, the words need not be assembled from the English
alphabet. Consider, e.g., POSTNET" barcodes commonly attached to U.S. mail
by the Postal Service. In this scheme, various numerical delivery codes are repre-

sented by “words” whose letters, or bits, come from the alphabet { l, |} Correspond-

ing, e.g., to a ZIP+4 code is a 52-bit barcode that begins and ends with | The 50-
bit middle part is partitioned into ten 5-bit zones. The first nine of these zones are
for the digits that comprise the ZIP + 4 code. The last zone accommodates a parity

*This number is roughly equal to the number of members of the Mathematical Association of America
(MAA), the largest professional organization for mathematicians in the United States.

" Postal Numeric Encoding Technique.

"The original five-digit Zoning Improvement Plan (ZIP) code was introduced in 1964; ZIP+4 codes
followed about 25 years later. The 11-digit Delivery Point Barcode (DPBC) is a more recent variation.
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0 = ||III 1 = Illll 2 = II|I| 3 II”I 4

I|||I 7 |III| 8 = |II|I 9
Figure 1.1.3. POSTNET barcodes.

I|I|I 6

W
1l
]
I
I

check digit, chosen so that the sum of all ten digits is a multiple of 10. Finally, each
digit is represented by one of the 5-bit barcodes in Fig. 1.1.3. Consider, e.g., the ZIP
+4 code 20090-0973, for the Mathematical Association of America. Because the
sum of these digits is 30, the parity check digit is 0. The corresponding 52-bit
word can be found in Fig. 1.1.4.

20090-0973
Figure 1.1.4

We conclude this section with another application of the fundamental counting
principle.

1.1.4 Example. Suppose you wanted to determine the number of positive
integers that exactly divide n = 12. That isn’t much of a problem; there are six
of them, namely, 1, 2, 3, 4, 6, and 12. What about the analogous problem for
n = 360 or for n = 360,000? Solving even the first of these by brute-force list
making would be a lot of work. Having already found another strategy whose
implementation requires a lot less work, let’s take advantage of it.

Consider 360 = 2% x 32 x 5, for example. If 360 = dg for positive integers d
and g, then, by the uniqueness part of the fundamental theorem of arithmetic, the
prime factors of d, together with the prime factors of g, are precisely the prime
factors of 360, multiplicities included. It follows that the prime factorization of d
must be of the formd = 29 x 3% x 5, where 0 < a <3,0<bh<2,and0 < ¢ < 1.
Evidently, there are four choices for @ (namely 0, 1, 2, or 3), three choices for b, and
two choices for ¢. So, the number of possibile d’s is 4 x 3 x 2 = 24. ]

1.1. EXERCISES

1 The Hawaiian alphabet consists of 12 letters, the vowels a, e, i, 0, u and the
consonants h, k, I, m, n, p, w.

(a) Show that 20,736 different 4-letter ““words” could be constructed using the
12-letter Hawaiian alphabet.
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(b) Show that 456,976 different 4-letter ““words” could be produced using the
26-letter English alphabet.”

(¢) How many four-letter “words” can be assembled using the Hawaiian
alphabet if the second and last letters are vowels and the other 2 are
consonants?

(d) How many four-letter “words” can be produced from the Hawaiian
alphabet if the second and last letters are vowels but there are no restrictions
on the other 2 letters?

2 Show that
(a) 3! x5! =6
(b) 6! x 7! = 10.

(© (n+1)x(n) = (n+ 1
(d) n* =n![1/(n— D!+ 1/(n—2)1].
(e n*=n!l/(n—1)1+3/(n—-2)1+1/(n-3)].
3 One brand of electric garage door opener permits the owner to select his or her

own electronic “combination” by setting six different switches either in the
“up” or the “down” position. How many different combinations are possible?

4 One generation back you have two ancestors, your (biological) parents. Two
generations back you have four ancestors, your grandparents. Estimating 210 ag
10?, approximately how many ancestors do you have

(a) 20 generations back?
(b) 40 generations back?

(¢) In round numbers, what do you estimate is the total population of the
planet?

(d) What’s wrong?

5 Make a list of all the “words™ that can be made up by rearranging the letters in
(a) TO. (b) TOO. (c) TWO.

6 Evaluate multinomial coefficient

(@) <4? 1)' ®) <363>' © (222)'

"Based on these calculations, might it be reasonable to expect Hawaiian words, on average, to be longer
than their English counterparts? Certainly such a conclusion would be warranted if both languages had the
same vocabulary and both were equally “efficient” in avoiding long words when short ones are available.
How efficient is English? Given that the total number of words defined in a typical ‘“‘unabridged
dictionary” is at most 350,000, one could, at least in principle, construct a new language with the same
vocabulary as English but in which every word has four letters—and there would be 100,000 words to
spare!
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6 6 6
@ (3,2,1)' © (1,3,2)' ® (1,1,1,1,1,1)'

How many different “words” can be constructed by rearranging the letters in
(a) ALLELE? {(b) BANANA? (c) PAPAYA?
(d) BUBBLE? (e) ALABAMA? (f) TENNESSEE?

(g) HALEAKALA? (h) KAMEHAMEHA? (i) MATHEMATICS?
Prove that

@ 142422 +2° ... 420 =2 — 1.

b IxU4+2x2143x34---4+nxnl=m+1) -1

(¢) (2n)!/2" is an integer.

Show that the barcodes in Fig. 1.1.3 comprise all possible five-letter words
consisting of two I’s and three |s.

Explain how the following barcodes fail the POSTNET standard:

(a)II||Il|lII|II|I|l||||l||||||IIIIIII|||IIIIII|||I||I|
(b)””IIIHIIIIII”IIIIII”IIII]IIII”I“[III,IIIIIIH

(c)|I||lIIIIIIlI|I|l||||I|I|I||I]IIII|||II[IIII|||||I|I

“Read” the ZIP+4 Code

(a)|||II|I||III|I|||||lIIII|l|IIIIII'IIII”III|III|I|I|
(b)I|I|II|II||lllI|||III|II|I|I|1I|I|III|!|I|IIIlll||l|

Given that the first nine zones correspond to the ZIP+4 delivery code 94542-
2520, determine the parity check digit and the two “‘hidden digits™ in the
62-bit DPBC
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(Hint: Do you need to be told that the parity check digit is last?)

Write out the 52-bit POSTNET barcode for 20742-2461, the ZIP+4 code at
the University of Maryland used by the Association for Women in
Mathematics.

Write out all 24 divisors of 360. (See Example 1.1.4.)

Compute the number of positive integer divisors of
(a) 2'° (b) 10'°, (c) 1219, (d) 31'°,
(e) 360,000. (H 10



