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Editors' Preface

This issue of Lecture Notes in Physics is the second of two volumes
constituting the Proceedings of the Third International Conference on
Numerical Methods in Fluid Mechanics, which was held at the University
of Paris VI, from July 3 to 7, 1972. Three general lectures and forty
eight short individual communications were presented at this conference;
the complete proceedings are published here. The general lectures

were given by Professor A. DORODNICYN, Director of the Computing Center
of the Academy of Sciences of the Soviet Union, who presented the
Soviet works dealing with the solution of Navier-Stokes equations; by
P. MOREL, professor at the University of Paris VI and Director at the
Laboratory of Dynamical Meteorology of the National Center of scienti-
fic research (C.N.R.S.), who presented the Problems of numerical simu-
lation of geophysical flows; by Professor R.D, RICHTMYER of the Uni-
versity of Colorado, U.S.A., who spoke on Methods for (generally
unsteady) Flows with Shocks.

The individual communications have been separated into two groups:
Fundamental Numerical Techniques and Problems of Fluid Mechanics; in
each group they are published in the alphabetic order of the author,
or of the first of the authors.

Volume I contains the three general lectures and the thirteen commu-
nications on Fundamental Numerical Techniques. Volume II contains the
thirty five communications on Problems of Fluid Mechanics.

This Conference follows the conferences with the same topic hold at
Novossibirsk, U.S.S.S. in 1969, and at Berkeley, U.S.A. in 1970 (the
proceedings of which appeared in Lecture Notes in Physics, Vol. 8).
The French Organizing Committee was sponsored by Commissariat a
1'Energie Atomique, Electricité de France, Union des Chambres Syndi-
cales des Industries du Pétrole, in France, and also by the Office of
Naval Research and Air Force Office of Scientifie Research, in the
U.S.A. The Universities of Paris VI and Paris XI, and the Centre
National de la Recherche Scientifique also helped the Committee in a

much appreciated manner.
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We wish to thank all the persons who contributed to the success of the
Conference, the participants for fheir scientific conmtributions, our
colleagues and younger researchers for their help in the organization
and Mrs. M.T. CARTIER and Miss S. DELABEYE for their excellent secre-
tarial work.

Finally we wish to express our appreciation to Dr. W. BEIGLBOCK and
the Springer-Verlag Company for the rapid publication of these pro-
ceedings in the series of Lecture Notes in Physics.

January 25, 1973 HENRI CABANNES
ROGER TEMAM
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A NUMERICAL METHOD FOR HIGHLY ACCELERATED
LAMINAR BOUNDARY-LAYER FLOWS

R.C. Ackerberg and J.H. Phillips

Polytechnic Institute of Brooklyn Graduate Center
Farmingdale, New York, 11735, U.S.A.

A second-order-accurate implicit finite difference method is
developed to study the boundary-layer flows that occur just upstream
of a trailing edge which is attached to a free streamline. An
important feature of this technique is the use of an asymptotic
expansion to satisfy the boundary condition at the edge of the boundary
layer while retaining a rapid algorithm for inverting the system of
linear equations for each Newton iteration. The method is applied to
the Kirchhoff-Rayleigh flow past & finite flat plate set perpendicular
to a uniform stream. Computed velocity profiles are found to be in
excellent agreement with those obtained from an asymptotic solution
(Ackerbverg (1970), (1971a), (1971b)) with pointwise differences being
less than 1.2% over two-thirds of the profile. A detailed description
of the method is given in Ackerberg and Phillips (1973).

This work was supported by the U.S. Army Resdarch Offlce-Durham
under Grant No. DA-ARO-D-31-124-T1-G68.
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RELAXATION METHODS FOR TRANSONIC FLOW ABOUT WING-CYLINDER
COMBINATIONS AND LIFTING SWEPT WINGS
Frank R. Bailey
Ames Research Center. NASA
Moffett Field, California 94035
ar-ld
William F. Ballhaus
U. S Army Air Mobility Research and Development Laboratory

Moffett Field, California 94035

INTRODUCTION

1t has recently been demonstrated that relaxation methods are a powerful numerical tool for obtaining
steady-state solutions to the two-dimensional transonic potential equations. The basic numerical procedure,
first introduced by Murman and Cole (1971), accounts for the mixed elliptic-hyperbolic character of the
governing equations by using a mixed finite-difference scheme. The general procedure is to employ centered
differences when the flow is locally subsonic and one-sided differences when it is locally supersonic. In this
paper we ecxtend the mixed elliptic-hyperb- lic relaxation method to the transonic small disturbance
equation in three dimensions. In particular, we consider transonic flow over thin lifting wings with sweep
and taper and about nonlifting wing-cylinder combinations. We restrict our treatment to freestream Mach
numbers less than one and to wings with subsonic trailing edges.

BASIC EQUATION AND BOUNDARY CONDITIONS

The governing equation for small disturbance transonic perturbation potential (Spreiter (1953) and
the corresponding pressure coefficient can be written

(l —M?;o'_(7+ I)Mgo ¢x> ¢xx+¢y_y+¢zz:0 N
Cp==2¢x )
respectively, where M is the free-stream Mach number and the ¢ is the perturbation potential divided by

the free-stream velocity. In small disturbance theory the flow tangency condition at the wing surface is
linearized and applied on the wing mean plane (z = 0) giving

LY
).

are the slopes of the upper and lower surfaces and include the effect of thickness,

here
where— —_
axl, 2 axle

camber and angle of attack. In the case of a lifting wing the Kutta condition is applied, thus forcing the
flow to leave all subsonic trailing edges smoothly. In the small disturbance theory the Kutta condition is
satisfied by requiring that ¢, (pressure) be continuous across the trailing edge. In addition, provision must
be made for a trailing vortex sheet downstream of the wing trailing edge. The vortex sheet is assumed to be
straight and lie in the wing mean plane z = 0 with the conditions that ¢y and ¢, be continuous and ¢ be
discontinuous through it. Due to the continuity of pressure through the vortex sheet, the jump in potential
at any span station, y = y,, is independent of x and is equal to the circulation about the wing section
defined by



FGo) =~ § do(xyo.2) (4)
for any path enclosing the wing section.

The outer flow boundary conditions for a nonlifting wing are that the perturbation velocities tend to
zero with increasing distance from the wing. In the numerical method this is approximated by specifying
free-stream conditions far from the wing. In the case of a lifting wing the pertrubation velocities. ¢,- and ¢-.
far downstream do not vanish due to the presence of the vortex sheet. At an infinite distance downstream
the motion due to the vortex sheet becomes two-dimensional in the (1,z) Trefftz plane and this motion is
described by the two-dimensional Laplace equation.

BASIC NUMERICAL PROCEDURE

The basic feature of the numerical method is to account for the mixed elliptic-hyperbolic nature of
the governing transonic equation by central differencing the streamwise derivatives when the coefficient of
$x is positive and backward differencing when the coefficient is negative. Consider a three-dimensional
rectangular domain and let the mesh be evenly spaced with the streamwise coordinate, x =jAx, the
spamwise coordinate, v = kA v, and the vertical coordinate, = = LAz. At each mesh point the equation type
(i.e., elliptic or hyperbolic), is determined by the sign of the expression

V=1 - ML —(y+ 1) MY Lbﬂ'_;‘pli (5)
ANy

If V> 0 the flow is subsonic, and the x derivatives are approximated by the centered difference

: r 1 — = O .
{ 1—MZ, —(y+ 1) M2 0y ](b‘\-x = ll M2 (vt 1)M§o(¢/” 9] )} i1 0 * 9 0)
2Ax (Ax)?

If V> 0 the flow is supersonic, and the x derivatives are approximated by the backward difference

di— <Z>j—1:| bj+1 ~ 205+ ¢

.
JAvx (Ax)? o

I:] ML —(y+ ])Mgo‘b.\‘]‘ﬁxx = [1 -ML —(y+ 1ML,

Notice that the derivative ¢y is also backward differenced. The v and z derivatives are replaced everywhere
by the usual centered formula except at the wing root. A = 0, where the symmetry condition gives

,)‘(251 — ;)

o= 2 8
Oy ar)? (8)

and at the boundary 2 = 1 which is placed half a mesh spacing off the z = 0 plane. At these points the wing
boundary condition is incorporated by writing

Llg, —¢
P77 = A_ZI: zAz l _(¢z)z=u:l (9N

Note that applying the wing boundary condition in this manner requires that the values of ¢ on the wing
mean plane itself must be found by some procedure such as extrapolation. Studies made by Krupp (1971)
on solutions for blunt nosed lifting airfoils have shown that in the region of the nose the best resulis are
obtained by linear extrapolation.’

The set of nonlinear algebraic equations obtained from the difference formulas are solved iteratively
by a line-relaxation algorithm. Each vertical line is successively relaxed by marching toward the increasing y
direction in an x = constant plane; the process is repeated for each x = constant plane in the increasing
x-direction.



NONLIFTING WINGS AND WING-BODY COMBINATIONS

The numerical method can be applied to rectangular nonlifting wings in a straightforward manner. For
swept and tapered wings, however, complications can occur, since in general the boundary points defining
the wing shape do not fit naturally in a-Cartesian grid network. A special case, which can be easily described
in a Cartesian grid is that of an untapered swept wing. In this case, an equally spaced mesh may be used
with Ay = Ax/tan A, where A is the sweep angle, thus permitting the same number of chordwise mesh
points on each wing section. An illustrative example is shown in Fig. 1 for a 30° sweptback wing of aspect
ratio 4 and with a 6 percent (streamwise) parabolic arc section. The results calculated for M_= 0.908 show
an embedded shock wave at the wing root that weakens and becomes oblique as it proceeds outboard from
the root. The calculations for this example were carried out on a 70 X 31 X 21 (xyz) grid which was evenly
spaced in the (xy) plane (Ax = 5% chord and Ay = 8.66% chord) and required 140 iterations corresponding
to 40 minutes of computer time on an 1BM 360/67.

The transonic relaxation method has also been applied to wing-body combinations that can be
represented by boundary conditions applied on combined mean planar and cylindrical control surfaces. The

problem is recast into cylindrical coordinates for which Eq. (1) becomes

1 1
[I‘M;‘(7+1)M§o¢x]¢xx +7("¢r)r + r—2¢99 =0 (10)

The finite difference approximations for the derivatives in Eq. (10) are essentially the same as those that
were applied to Eq. (1). The body boundary condition(r¢,=RdR/dx where R is the body radius) is applied on
the cylindrical control surface ry=1 and can be written

.2 [’1‘“’2)(‘?2‘%) dR
= - R — (1)
k=1 i\ 2 ar dx

while the wing boundary condition is given by Eq. (9) with Az replaced by rAf.

1
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. The results for the 30° swept wing on a straight cylinder and on a symmetrically indented cylinder
based on Mach-one area-ruling are shown in Fig. 2. Note that the area-ruling eliminates the embedded shock
waves on the wing. These calculations were carried out on a 77 X 30 X 23 (xrf) grid and required 200
iterations and one hour computation time on the IBM 360/67.

NUMERICAL TREATMENT OF LIFTING WINGS

In the numerical procedure for treating lifting wings, the wing is placed in the finite difference grid as
shown in Fig. 3. The circulation at each span station (defined in Eq. (5)) is determined by the jump in
potential at the trailing edge from the relation

s Fn_(n - ) (12)
K “1k ¢JTE,k,o+ ¢JTE,k,o"

where n is the iteration count and w is a relaxation parameter. New values of I' are obtained at each
iteration with the values of ¢ being obtained by extrapolating the values above and below the trailing edge.
The continuity of pressure through the vortex sheet is maintained by holding the value of T, given by Eq.
(12), fixed in x along the entire length of the vortex sheet and by setting ¢, ; + = &; ¢ o + I'-

Difference formulas for ¢77 at the vortex sheet may be derived by noting that jumps in ¢ occur only at
the vortex sheet and only odd functions may jump. Since the jump is independent of x, the solution at the
vortex skeet decouples into even, ¢€, and odd, ¢°, solutions with ¢¢ satisfying Eq. (1) and ¢O satisfying

By + 97, =0 (13)



At the sheet itself the odd solution is given by
¢%(x,y,0t) = +1/2I'(y) 14)
Therefore, ¢,; at the sheet can be written

= ¢f
brzlor = ¥

F1/2r,, (15)

The difference approximation for Eq. (15) is applied at points (/. k,0~) (see Fig. 3} and is given by

4 1
ZZ/’k,O_ =?A—Z); [(4)!.1\‘) - [‘/\) - 2¢j,k,()— + ¢/’s,“]:| + m ( k417 ZFI\ + l"/\ 1) (]6)

The difference formula for points (j,4, 1) is the usual centered difference with ¢, kot replaced by
¢] k,0-* I'j. The wing tip and edge of the vortex sheet are placed midway between grid points, thus avoiding
differencing at the tip singularity. The required value of potential just outboard of the tip is found by
interpolation.

The infinity boundary conditions far from the wing and vortex sheet are given at some finite distance
by an approximate analytical expression for the far field solution (see Klunker (1971)). The dominant term
in the expression is due to lift and is proportional to the circulation integrated over the wing. The
conditions at the downstream boundary, i.e., Trefftz plane, are found by relaxing Eq. (13) with boundary
condition, Eq. (14), along with the rest of the flow field.

DIFFERENCING SCHEMES FOR SWEPT AND TAPERED WINGS

We now consider the application of the relaxation method to lifting wings with swept and tapered
planforms. Experience with calculations about two-dimensional lifting airfoils has shown that very small
mesh spacing (less than 1% chord) is required in the nose region, particularly for blunt leading edges.
Satisfying this requirement with an even spaced mesh would require a prohibitive number of mesh points.
An alternate approach is to use a coordinate transformation and map any swept or tapered planform into a
rectangle. Such a transformation, valid for wings with finite tip chords, is given by

ne=r 2=z a7

where x| g(y) is the value of x at the leading edge and (') is the ratio of the local chord to the root chord.

The governing small disturbance equation can be rewritten in terms of the new independent varialbes £,1,z
in the form

M2, 111
[l ML —(r+ 1)— ¢ }—2 TE Gt 2, 0y E 0t B v 8, = 0 as)

and the pressure coefficient becomes

Cp =~ (19

[



The transformation given by Eq. (17) shears v to remove the sweep and stretches x to remove the taper.
The effects of sweep and taper on the boundary conditions are thereby removed from the boundary
conditions themselves and incorporated into the governing Eq. (18). {n the region outboard of the tip the
same rate of stretching and shearing is used unless ¢(1') becomes much less than one. In this case ¢(y) is set
equal to a constant, ¢y p)s for values of » between some point v,>1 and the far field boundary.

Treatment of the wing root boundary condition at n = 0 in the transformed coordinate system
requires special consideration since the derivatives of ¢ with respect to n are discontinuous there. The
condition of symmetry leads to the relation

dyhy=o = Fgpt 54\-'14’5 + %'7\.‘2555 =0 (20)

which can be used to eliminate tn from Eq. (18). Since «(»’)=1 at the root section, the governing equation
then reduces to

[I M - (Yt ME ¢g—£;] Opp+ (6 ~ 258,00 + 6pp + 6, = 0 (1)

The ¢qq term in Eq. (21) is replaced by expressing ¢ at point 2 (see Fig. 4) in a Taylor series about point |
and using the symmetry condition. The final form of the equation to be relaxed at the root boundary
becomes

2 2p, —
[' 'M;““’*”M@"’s‘fz} ot {5,1;.*(/3—77 - 28,\-_1) §} o +%ﬁ4+ 9::=0 (22)

with the £ and - derivatives replaced by the already mentioned difference formulas and where

At each point n is picked such that [{] is made as small as the mesh will allow. For a wing with no taper
(g” = E_n.:O) a zero value of { would reduce Eq. (22) to the untransformed equation.

In subsonic regions centered difference formulas applied to Eq. (1 8) give essentially the same solution
as that found by applying centered formulas to Eq. (1). Unfortunately, however, a difficulty arises in
differencing Eq. (18) in supersonic regions. It occurs if the initiation of backward differencing in the &
direction commences when M, the local Mach number, becomes supersonic; that is when

+l 1/2
M=M, [1+(’ )¢£] > (232)

In such a case the coefficient of @rt is still positive since it contains the term Ef,, and the calculations do
not converge. Furthermore, in this case the numerical domain of dependence can not include the analytical
domain of dependence traced out by the local characteristics. This is illustrated in Fig. 5.

This difficulty can be overcome by substituting for the condition of backward differencing, the
requirement that

M>+c g {23b)



which amounts to the condition that the coefficient of ¢gg¢ changes sign, or alternatively, that the
component of local Mach number normal to the local sweep angle becomes supersonic. It should be
emphasized that the criterion given by Eq. (23b) is successful for supercritical flow fields only if tocal Mach
numbers are sufficiently large to ensure backward differencing at shock waves. For example,
application of this method at M= 0.908 to the 30° swept wing shown in Fig. 1 produced no detectable
shock wave because at no point did the local Mach numbers satisfy condition (23b), although they did, of
course, satisfy condition (23a). The method appears to give satisfactory results, however, for wings with
moderate sweep angles in flows with sufficiently high local Mach numbers, examples of which are given
below.

It should be pointed out that the above difficulty can be alleviated, and the ability to capture weak
oblique shocks by means of Eq. (18) can be improved if a skewing technique, similar to that constructed
for the root section in Eq. (22), is used in the supersonic region. The object is to find a computational
molecule in the supersonic region which is aligned as closely as possible to the (xy) coordinates. Such a
scheme applied to the 30° swept wing at M_= 0.908 with the angle of the skewed computational molecule
differing from the (xy) molecule by less than four degrees gave the same results as those shown if Fig. 1.

Subcritical (M= 0.752) and supercritical (M., = 0.853) results obtained using the transformation
method (with root skewing only) are shown in Figs. 6 and 7 for flow about a lifting swept wing at two
degrees angle of attack. The constant chord, 23.75° sweptback wing with a Lockheed C141 airfoil section
(11.4% thick streamwise) was tested in the NASA Ames 11-Foot Transonic Wind Tunnel by Cahill and
Stanewsky (1969). The results for M,= 0.752 are compared in Fig. 6 with both the experimental results
and those obtained by the subsonic panel method of Saaris and Rubbert (1972). The present results agree
will with those obtained by the panel method but both numerical methods show more lift than the
experiment. The present method also shows more lift than the experiment at M,,= 0.853 (see Fig. 7), as
well as a shock location aft of the experimental one. It should be mentioned that inviscid solutions
generally give more lift than the experiment when compared at the same geometric angle of attack. The
principal cause is that viscous effects at the trailing edge (apparently a separation and formulation of a thin
turbulent wake) decrease the circulation, thereby causing the loss in lift. The associated decrease in
expansion also causes the experimental shock to occur further upstream. This is not to be confused with
shock induced separation which, it is believed, does not occur in the experimental data shown.

These numerical solutions were obtained using an unevenly space (£n,z) grid of 68 X30 X 49 points
and 7 hours of computation time for both solutions on the IBM 360/67 computer. Convergence was
established when the lift changed less than 0.02 percent per iteration. The three relaxation parameters
required in the method were set at 1.4 in subsonic regions, 0.7 in supersonic regions, and 1.0 for the
circulation equation. Experimentation with the circulation relaxation parameter indicated that the value of
one was the best choice. The use of higher values caused oscillations to occur.

CONCLUSIONS

A mixed elliptic-hyperbolic relaxation method has been applied to the study of a nonlinear small
perturbation equation modeling steady, three-dimensional transonic flow. Certain nonlifting wing-body
combinations were computed without difficulty, and a numerical procedure for treating lifting wings
without bodieswas presented. In an effort to simplify the treatment of swept and tapered wings with blunt
leading edges, a coordinate transformation has been introduced to map the wing planform into a rectangle.
Certain difficulties introduced by this transformation were explored, and results found from its use under
valid circumstances were presented and compared with experiment.
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