PERFORMANCE
MEASUREMENT AND
VISUALIZATION OF
PARALLEL SYSTEMS




PERFORMANCE MEASUREMENT
AND VISUALIZATION OF
PARALLEL SYSTEMS

Proceedings of the Workshop on
Performance Measurement and Visualization
Moravany, Czechoslovakia, 23-24 October, 1992

Edited by

Giinter Haring
and

Gabriele Kotsis

Institute for Statistics and Informatics
University of Vienna
Vienna, Austria

NH

F iy
z l%

1993

NORTH-HOLLAND
AMSTERDAM « LONDON « NEW YORK « TOKYO



ELSEVIER SCIENCE PUBLISHERS B.V.
Sara Burgerhartstraat 25
P.0.Box 211, 1000 AE Amsterdam, The Netherlands

Library of Congress Cataloging—-in-Publication Data

Workshop on Performance Measurement and Visualization (1992 : Moravany

nad Vahom, Czechoslovakia)

Performance measurement and visualization of parallel systems :
proceedings of the Workshop on Performance Measurement and
Visualization, Moravany, Czechoslovakia, 23-24 October 1992 / edited
by Gunter Haring and Gabriele Kotsis.

p. cm. —-- (Advances in parallel computing ; v. 7)

Incliudes bibliographical references.

ISBN 0-444-89902-2 (alk. paper)

1. Parallel computers—--Congresses. 1. Haring, Gunter, 1943-
II. Kotsis, Gabriele, 1967- . III. Title. 1IV. Series.
QA76.58.W673 1992
005.2--dc20 93-9512
CIP
ISBN: 0 444 89902 2

© 1993 ELSEVIER SCIENCE PUBLISHERS B.V. ALL RIGHTS RESERVED

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photecopying, recording or otherwise, without the prior written permission of the publisher, Elsevier
Science Publishers B.V., Copyright & Permissions Department P.0. Box 521, 1000 AM Amsterdam, The Netherlands.

Special regulations for readers in the U.S.A. - This publication has been registered with the Copyright Clearance Center Inc.
(CCC), Salem, Massachusetts. Information can be obtained from the CCC about conditions under which photocopies of parts
of this publication may be made in the U.S.A. All other copyright questions, including photocopying outside of the U.S.A.,

should be referred to the publisher, Elsevier Science Publishers B.V..

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained

in the material herein.
Printed on acid-free paper.

Printed in The Netherlands



PERFORMANCE MEASUREMENT
AND VISUALIZATION OF
PARALLEL SYSTEMS



ADVANCES IN PARALLEL COMPUTING

VOLUME 7

Bookseries Editors:

Gerhard R. Joubert

(Managing Editor)
Aquariuslaan 60
5632 BD Eindhoven, The Netherlands

Udo Schendel
Institut fiir Mathematik |
Freie Universitét Berlin

Germany

NORTH-HOLLAND
AMSTERDAM « LONDON * NEW YORK « TOKYO



Preface

The Workshop on Performance Measurement and Visualization of Parallel Systems was
jointly organized by the Institute for Statistics and Informatics, Department of Applied
Informatics at the University of Vienna, as a member of the Austrian Center for Parallel
Computation (ACPC) and the Institute for Control Theory and Robotics at the Slovac
Academy of Sciences. Internationally well known researchers working in the field of per-
formance measurement and visualization of parallel processing systems were invited to
present their recent research results at the workshop. All together 14 papers were pre-
sented and a general discussion on the future trends in this topic was held at the end of
this workshop.

To write parallel programs is much more tedious and complex than developing sequential
programs. This is particularily true for distributed memory multiprocessor systems and
message passing programming models. Performance aspects play an important role in
this context. The performance of parallel programs depends on many different facts.
Therefore it is important for any parallel programming environment to have appropriate
performance monitoring and visualization tools included in it to give the programmer a
good understanding of the dynamic program behaviour.

The papers in these proceedings focus on new approaches for monitoring parallel pro-
cessing systems and new performance visualization techniques. Beside the description
of fundamental, basic approaches to these topics extensions and recent developments of
existing tools and concepts for new tools are presented, especially emphasising on the in-
tegration of monitoring and visualization techniques in parallel program development en-
vironments. A couple of case studies reflect the practical importance of these approaches.
Some papers tackled the scalability problem (with massiveley parallel systems), both from
the monitoring and the visualization point of view.

We would like to thank the Austrian Federal Ministry for Science and Research for
sponsoring this workshop under the research grant no. 613.542, and the members of the
organizing institutions whose efforts have been fundamental for the success of this event.

Ginter Haring
Gabriele Kotsis
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Abstract

The monitoring of parallel systems involves the collection, interpretation and display of
information concerning the execution of parallel processes. This information can support
the debugging, the performance evaluation, the understanding of the behavior of parallel
programs. When jumping from parallel to massively parallel systems, the monitoring
tools have to face the problem of scalability.

Concerning the user interface, the “displaying” of information (graphics, sounds, ...)
must follow a more hierarchical and abstract point of view and on the user response-time
point of view, the tool must implement a scalable no-bottleneck software architecture. In
this paper, we try to answer that problem with a distributed monitoring solution, where
most of the data treatment is done on the parallel target machine and where the classical
data gathering bottleneck is avoided with a distributed storage and a parallel treatment
of the interpretation. The “views” are also handled by different processors on different
external displays. Our approach thus becomes fully scalable (in terms of collecting power,
storage, computing and displaying power). Our only assumption is that the massively
parallel target machine is able, for at least a part of its nodes, to run Unix-like system
calls. It is realistic regarding what will be provided in the next generation of parallel
machines. We also present the protocol established for the data communications in an
implementation which runs on a LAN of SUN workstations using the Parallel Virtual
Machine system.

1. Introduction

Programs for parallel MIMD distributed memory multicomputers are difficult to write,
understand, evaluate and debug, while at the same time parallel algorithm design is much
more complex than the sequential one. The motivation behind the monitoring of parallel



programs is to improve parallel program development through analysis of the execution
of parallel programs. Monitoring tools play thus an essential role in this improvement
process and form as such an essential part of future programming environments.

The GPMS (General Parallel Monitoring System) project of the LIP has been a first step
in parallel monitoring systems and provided us with a complete monitoring environment.
The portability of our approach has been demonstrated by the porting of the GPMS
system under two different operating systems.

While working on the GPMS project, it became clear that the classical centralized
approach to monitoring is non-scalable and thus unsuitable for massively parallel ar-
chitectures. At the same time, our experience with the porting of the environment to
different operating systems strengthened our idea that it is up to the vendors to pro-
vide the low-level monitoring functions (A fact that is verified by nowadays evolution of
parallel machines).

One of most common approaches to monitoring and the one used in GPMS is a cen-
tralized post-mortem approach, in which runtime information is generated during the
execution of a program and centralized in one location (usually a file). The analysis
takes place in a post-mortem fashion [10]. Three different activities can be distinguished
in the monitoring of programs [17, 18, 12] : the generation of the runtime information,
the transport of the runtime information and the utilization (reduction, analysis) of the
gathered information.

The gathering of the runtime information can either be performed by software (us-
ing software probes inserted in the code and executed like instructions), or with special
dedicated hardware. The gathering of the runtime information is in any case a truly dis-
tributed activity that takes place locally on all the nodes of a parallel machine and thus
is scalable.

The transportation strategy defines the way the information is transported from the lo-
cation of generation to the location of usage. Usually, the adopted transportation strategy
consists of centralizing all the runtime information at one point in the system (one trace
file). The cost of this centralization is considerable in communication bandwidth and
results for larger systems into a communication bottleneck and is therefore not scalable.
Only the distribution of the runtime information over different locations can possibly
result in a monitoring system that scales up to massively parallel systems.

Whereas most of nowadays monitoring systems use the host for the processing and
representation of the generated runtime information, this approach to the processing is
limited by the power of the host processor and by the storage capacities of the host.
Scaling centralized processing and access of the runtime information beyond 64 nodes can
easily be shown to be hardly feasible ([15]).

In a similar manner, the number of different views on the same data raises a perfor-
mance issue, whose impact can be easily realized by using the state-of-the-art performance
visualization tool ParaGraph with a lot of views at the same time ([19]).

The Massively Parallel Monitoring System (MPMS) project is the logical consequence
of our experience with GPMS and aims to provide a truly massively parallel monitor-
ing environment. As such MPMS addresses the bottlenecks of the classical centralized
monitoring approach.

As opposed to the lack of scalability of the preceding approach, MPMS proposes a



solution where the parallel machine is used to produce, reduce, and display information
about the execution : i.e. to perform all of the monitoring steps.

In the following sections, we will start be outlining the assumptions that underlie the
MPMS project. Next, the characteristics of the MPMS system will be described, whereas
a third part presents some examples of views that we have constructed on top of the data
communication system. We will conclude with the implementation of MPMS on a LAN
of workstations simulating the targeted Massively Parallel Computer.

2. Definitions and assumptions

2.1. Presentation of the massively parallel machine model

The massively parallel machine that is targeted in the MPMS project is a MIMD type
distributed-memory machine composed of several thousands of nodes. At least some of the
nodes in the machine provide high-level OS capabilities, such as X-like client commands
(displays control) and secondary storage. These capabilities are fundamental for the
distribution of the data and processing as we will see later.

Although the described machine does not correspond to any existing machine at the
moment, it closely looks like the projected architecture of both US and EC supercomput-
ing projects. Please note that several new generation systems are also very close to these
assumptions ([8, 16]).

N|<=>[Disk 1
[Disk2 ]
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Figure 1. A massively Parallel Machine : the gray area represents the nodes with high
OS capabilities.

2.2. Assumptions related to the available monitoring information

The runtime information is supposed to be available in the form of event-records, that
describe events during the execution. Our actual visualization tools assume that a global
timestamp is associated with each traced event, but no assumption is made about how
this timestamp is obtained. Several algorithmic methods exist in [5, 9, 13, 4]. Remark



that all the assumptions about the ordering of the events are related to the developed
views, but are not a constraint.

A trace file is defined as a set of event-records concerning the execution of a program
on a set of nodes of a machine. Depending on the distribution of the runtime information,
several trace files may thus be necessary to completely describe the execution of a parallel
program. Trace files are usually stored on secondary storage media, but for real-time
purposes it could be imagined that each node possesses its own RAM-disk secondary
storage. For the sake of simplicity, we assume that, in each file, the records are sorted by
processor number and timestamp.

2.3. Representation of the runtime information

By representation, we mean any ways of interpreting the data for the user’s understand-
ing and by view their realizations. All the human senses should be employed to overload
the user so that he could synthesize very accurately the information. For example, we may
think about the use of stereo sound to represent each node efficiency and their position
(according to the topology) using sound widgets [15]. The use of the stereo, also, permits
us to show the position of the messages in the topology. No assumption about the trace
record format is made, a self-defining format [15] or an external file description format
[14] or any internal format can be used.

3. MPMS - the main ideas

The main idea in the MPMS project is to develop on top of the vendor’s low-level
monitoring functions (generation of event-records), a powerful, scalable and flexible tool
for the analysis of parallel program behavior. Besides the independence of the underlying
monitoring data generated, MPMS must include the possibility to integrate future devel-
opments (extensibility) and support the increase in the number of processing elements
(scalability).

To meet the above requirements, we have created two different layers of functionality
in the tool. At the low-level, the vendor environment will provide a distributed data
generation mechanism for the runtime information and at the mid-level we provide the
tools that allow the efficient, easy and scalable access to this information. On top of the
mid-level layer, we provide the users with high level tools such as standard and new visual
analysis software for analysis and replay of the execution. We also provide a framework
which facilitates the construction of new tools that will better fit the application problems.

For the realization of the two layers, we designed a client-server architecture. Trace-
servers integrate the functions for the access to the runtime information and their trans-
portation. A trace-server can handle one or more trace files. The distribution of the
runtime information is transparent to the clients and is handled through an inter-server
protocol. The synchronization of multiple views on the same data is realized within the
protocol by master-slave commands on clients.

Clients encapsulate completely the processing of the runtime information. They obtain
this information by requesting the needed information to a trace-server independently of
the location of the information. All the processing on the runtime information in done
within a client and as such a client can be considered as an independent object.



In general, the amount of exchanged information is limited by the fact that information
is delivered on-demand only. In comparison in many existing systems all the information
is conveyed even if not needed.

Several advantages result from the above architecture. First of all, by adding new
servers the storage bottleneck can be avoided, since there is no competition for the same
central storage medium. The distribution of the processing to different clients, on the
other hand, limits the performance bottleneck on the host processor. Since clients might,
but do not have to use the same display, the display performance bottleneck that might
appear with many different simultaneous views can also be avoided. Extensibility of
the monitoring environment is guaranteed by the client-server protocol. As long as this
protocol is respected, new clients can be added without interference with existing clients
(except for the load of the trace-servers). This independence of clients also allows for
the existence of completely separate programs using the same runtime information. One
could for example imagine some clients using the same information for separate tasks such
as map calculations and performance analysis.

Thus, the main ideas that lead us to the MPMS design are : a strict separation between
the generation, data storage and transportation and usage of runtime information. This
ensures a total independence from any pre-define trace format or from the type of trace
generator (hardware or software). The independence of the different parts of the system
allows their distribution in a parallel computing environment. Clients that encapsulate
completely the processing of the runtime information and generate only requests for data
to the associated server. They run on the MPM nodes that provides enough OS capabil-
ities. Servers run on any nodes controlling secondary storage (RAM-disk or disk). The
data exchanges are done within the MPM interconnection network.

Compared to classical monitoring of parallel machines, the first phase (generation)
remains unchanged excepted that it is handled by the vendors and that the OS allows
the creation of many trace files (each one corresponding to a part of the machine), the
second phase (transport) is delayed and reduced because the collected data stays in the
parallel machine storage area and is filtered and compressed so that only the necessary
records will be communicated to the client views.

The project is thus also twofold, it consists in designing a parallel program (SERVER)
that manages the trace files and designing scalable visualizations (CLIENTS) that use
the system servers for gathering the data they need. The link between these two parts is
realized with a classical client/server protocol. Requests are sent from the views to the
servers which send back the desired filtered information.

Hence, the typical performance bottlenecks of classical monitoring systems are avoided
and the system is scalable. MPMS thus provides a truly parallel monitoring tool.

4. The trace servers

We call trace server, the tool that runs on a node of a parallel machine and that is able
to read files, to communicate over the parallel machine network with other trace servers
and its attached views. We assume that the execution generates a file for each logical
parts of the machine that has been used. As the execution takes place on different part of
the machine, a trace server will be started on the nodes that manage a disk which contains



trace data. At this level, the service will be as clever as possible to reduce the amount of
data communication. With this approach, we do distribute most of the monitor elements
and treatments.

The goal of this software is to allow everything that a view will need for the analysis
of the massively parallel application. Thus a trace server must be able to manage several
trace files, move inside them without any constraints.

A client can request data from all the nodes that participated to the given execution.
The trace servers will keep a list of the trace servers that has worked for the computation
in order to minimize the number of messages between trace servers.

As we want to be able to synchronize views, the trace servers must be able to know the
monitoring system environment, i.e. the other trace servers and which views are existing.
That means, once a view is created, the trace server that serves it, broadcasts the creation
information to the servers. For the same reason, the same message exchange is done when
a view is dismissed. The synchronization is done in a master-slave protocol way, the slaves
receiving the information for their new position in time.

Because some views can be killed without sending an announce to the trace server, there
is a verification during every crucial phase that the context is still valid. For example, at
the time of a synchronization between several views.

As the trace files are distributed among the massively parallel computer disks, the main
problem is to communicate the information required by a view in an efficient way. This
is realized by filtering of the data requested on each field of the event-records. Com-
pressing is also possible if the client possesses the decompressing module. More complex
pre-computations at the server level are possible such as summations, simple statistics
(average, relative percentage, ...). All this commands are obtained by parameters in the
request messages.

Execution of MY_PROG
Processors HD Contents
E 7
2|1 mMm
Bl
BIEE
| 5{| MY_PROG={HDS5, HD6}
| 6| | MY_PROG={HDS5, HD6}
L 7{[ ™M
A L8]
B Nodes linked
with HD8
Execution place

Figure 2. Example of an execution and the corresponding hard disk content.

A client can be started on any node by a command in a trace server control window.
The client consists of a process that manages for example a window display and requests



its data to the trace server it was started from. In order to be completely independent,
it encapsulates completely the processing of the runtime information and generates only
requests for data to the server with appropriate filtering parameters. A client can allow
to be synchronized if it contains the synchronization module.

A client view is running on one or several nodes which have enough OS capabilities for
the I/O needs (Xwindows ...). This node communicates to one trace server at a time.
The information asked to the trace server is either written on its associated hard disk or
not. As the trace server got the list of the trace servers which compose the execution, it
collects from them the requested events. The result is then sent to the client view.

Following our assumptions, the parallel machine can be linked to several human inter-
faces like screens where the high level OS nodes are able to display their views.

Hence the number of human interface devices can be raised when the number of nodes
increase without any loose in scalability.
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Figure 3. Simple and distributed views on MY _PROG
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Figure 4. resulting software architecture

Our aim of efficiency implies that we try to keep as low as possible the data amount
to be communicate between the views and the trace files. That’s why we introduced in



the data requests the possibility to precisely define which type of data is needed. This is
done by general filtering parameterized commands associated to the different fields of the
recorded data.

The timestamp field allows for example to ask for only a period of time of the execution
or the trace-type field to look only communication events, ... . But to be able to reduce
again the data transfer, we will allow a simple boolean algebra (and, or, not) on the filters.

Remark that as these filtering operations are managed at the lowest possible level (on
the trace servers), so there is no communication of the whole trace files. The network
load can be directly tuned by the user when choosing the tools to be started.

As in all software products, we try to have a modular software architecture. We preserve
the independency of the monitoring tool from the trace generator. That means that
hardware or software collection can be used by working on an internal trace-data format
and providing input and output format translators. The server requests and answers can
thus be encapsulated to provide any data format.

5. Views

The second part of our system consists in the means given to the users to interpret the
performance variations and to look at the parallel behavior of their programs.

Our aim of scalability leads us to a complexity study which aims to show the ability
of a view for scalability regarding several computation and visualization complexity as a
function of the number of processors p.

Some classical views have been developed to show the power of the implemented version
(we chose examples in the ParaGraph [7] views).

We also introduce the hierarchical decomposition of classical views. A mean which
allow scalability for classical views by considering groups of processors, groups of groups,
etc ... For instance, the problem of automatic research of the localization of a problem
(efficiency to poor or this kind of information) The user can choose the minimal efficiency
for a given group level and start a search. The tool will stop at the first group under the
minimal bound and select it. Then the user can go down a level in th hierarchic display
and restart the automatic search to precise the problem location.

The main characteristics of the views are : to be able to be synchronized with others,
to be dynamically created and destroyed. Different views can ask for the same executions
events at the same time (that permits comparisons between different instants in time for
example). If the massively parallel program allows multiple processes per node, as soon
as the files are accessible, the trace servers can access data and thus the views can start
during the execution (pseudo real-time monitoring).

The clients can either be sequential (one process on one node) or distributed among
different nodes of the machine. The second case is interesting because of its scalability in
power but it causes communication problems that are let to the view programmer.

The figure 3 shows the different messages exchanged during one request. The first step
consists of asking for the information. Then, the trace server asks its homologues the
information they own. If the view is sequential, everything (after filtering) is merged by
the first trace server and sent back to the view, otherwise, the merging step is avoided
and each part of the information is sent to the different window processes.



5.1. Notations and classification

In this section,
the number of nodes,
the trace file total duration
(last event timestamp - first event timestamp),
the number of events,
the current event,
the shortest distance between two represented nodes
(in pixel, tone, ...).

This last variable gives the maximal number of representable processors and for example
allows us to compute the surface of the view : if a node is represented by circle, this circle
must have a diameter greater than a pixel on a workstation screen.

In order to reflect, referring to the time, the data needs of every views we introduce a
qualitative classification of the data that will be requested by a view. A view can need
the whole events of a trace file to compute its representation(s) (attribute WHOLE), the
past (PRED), a part (PART), one event (EVENT).

These definitions allow us to have a quite formal approach to the needs of each repre-
sentation and to partition them into classes. We are interested in :

as =2 N

e the amount of information needed to compute the representation,

o the surface of the view (for visual ones),

the time to initiate the view at a timestamp,

the time to move from one event to the next (or previous) one,

the computational complexity of a representation (in number of events, operations,

),

The ability of the views regarding scalability can thus be studied trough ”objective”
criteria. Remark that at least, none of the selected criteria can be of an order greater
than o(p) to respect the aim of scalability.

5.2. Implemented views

The first clients implemented in our prototype are described in the following. We try
to take advantage of the trace servers capabilities at the lowest level, duplication of views,
filtering, synchronization, etc...

5.2.1. The nodes load
This view is constituted of windows representing the load of the node with a classical
perf-meter. There can be as many window as the screen can display.

5.2.2. Animation window

This window provides, a study of the communication under replay conditions. But
here we use the power of the trace servers approach. The events are requested by groups
corresponding to a time interval. Each time a user or the automatic replay scrolls the
time to an event which is not in the known interval, the view asks for an interval centered



