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FOREWORD

The Ninth Symposium on Operating System Principles continues the tradition of its
eight predecessors by reporting on significant original work in the field. The papers
in this proceedings range from design proposals to implementation lessons, from
storage allocation to security verification, from data storage to communication
protocols. While many focus on topics and issues in distributed systems, the papers
as a whole are indicative of the true breadth of the field.

The strong technical history of these symposia and their relatiye infrequency (bi-
annual) exerted considerable influence on the makeup of the program committee
and on the reviewing process for the submitted papers. Ten committee members,
displaying wide technical diversity, were chosen from six academic institutions and
three industrial organizations. More than half were serving on an SOSP program
committee for the first time. Departing from the approach followed in recent years,
the committee members decided to review most of the papers themselves,
consulting outside referees in those cases where special expertise was needed. A
two round reviewing process was employed, ensuring that at least three committee
members read each submission and that most members read most of the papers.
The committee was thus very well informed when it met and selected sixteen papers
from a field of eighty-three for inclusion in the symposium. Three outstanding
papers were nominated and subsequently accepted for publication in a special issue
of the ACM Transactions on Computer Systems. A fourth paper was independently
submitted to and accepted by TOCS. In accordance with ACM policy, only extended
abstracts of these papers appear in the proceedings.

A good technical program is necessary but not sufficient for a successful conference.
In addition to the program committee and other symposium officials, we wish to
thank Kathi Anderson, Shannon McElyea, and Muriel Webber, whose diligence and
care have greatly contributed to the quality of this conference.

Roy Levin and Dave Redell
Program Committee Co-Chairmen
August, 1983
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Computation & Communication in R:
A Distributed Database Manager

W

by

Bruce G. Lindsay, Laura M. Haas, C. Mohan,
Paul F. Wilms, & Robert A. Yost

IBM San Jose Research Laboratory
5600 Cottle Road
San Jose, CA 95193

EXTENDED ABSTRACT

R* is an experimental prototype distributed
database management system. The computa-
tion needed to perform a sequence of multi-
site user transactions in R* is structured as a
tree of processes communicating over virtual
circuit communication links. Distributed com-
putation can be supported by providing a
server process per site which performs re-
quests on behalf of remote users. Alternative-
ly, a new process could be created to service
each incoming request. Instead of using a
shared server process or using the process per
request approach, R* creates a process associ-
ated with the computation of the user on the
first request to the remote site. This process
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is incorporated into the tree of processes
serving a single user and is retained for the
duration of the user computation. This ap-
proach allows R* to factor some of the re-
quest execution overhead into the process cre-
ation phase, and simplifies the retention of
user and transaction context at the multiple
sites of the distributed computation.

R* uses virtual circuit communication links
to connect the tree of processes in an R*
computation. Virtual circuits provide message
ordering, flow control, and error detection
and reporting. Especially important in the dis-
tributed transaction processing environment is
the ability of the virtual circuit facility to de-
tect and report any process, processor, Or
communication failures to the end points of
the virtual circuit. Error detection and report-
ing by the virtual circuit facility is used to
manage the tree of processes comprising a
user computation and to handle correctly the
resolution of distributed transactions in the
presence of various kinds of failures.

R* uses the communication facility in a
variety of ways. Many functions use a syn-



chronous, remote procedure call protocol to
perform work at remote sites. Site authentica-
tion, user identification, data definition, and
database catalog management are all imple-
mented using this remote procedure activation
protocol. Query planning, on the other hand,
distributes query execution plans in parallel to
the sites involved. Parallel plan distribution
allows server sites to overlap the computation
needed to validate and store query execution
plans. The query execution plans often in-
volve passing data streams from site, to site
with each site transforming the data stream in
some way. The execution of data access re-
quests exploits virtual circuit flow controls to
allow overlapped execution at data producer
and data consumer sites.

Finally, distributed transaction management
in R* uses the virtual circuits connecting the
process tree to exchange the messages of the
two-phase commit protocol. However, if a
failure occurs during the commit protocol, the
virtual circuits and process of the original
computation may be lost. When failures inter-
rupt the distributed commit protocol, R* re-
verts to a datagram-oriented protocol to
transfer the messages needed to resolve the
outstanding  transaction. @ R* also  uses
datagrams to communicate the information
needed to detect multi-site deadlocks.

The R* approach to distributed computation
may be contrasted with _datagram—based and

‘

server-oriented distributed systems. The reten-
tion of remote processes, and the virtual cir-
cuits connecting them, for the duration of the
user computation improves execution perfor-
mance whenever repeated accesses are made
to a remote site. The retention of remote
processes is also helpful for maintaining user
and transaction context between requests to
the remote site. The use of virtual circuits
allows several concerns, such as message or-
dering and flow control, to be relegated to
the network and virtual circuit implementation.
The ability of the virtual circuit implementa-
tion to report failures is fundamental to the
management of the R* distributed computa-
tion.

Currently, R* is running on multiple pro-
cessors and is able to perform any SQL
statement on local or remote data. This in-
cludes not only data definition and catalog
manipulation statements, but also n-way joins,
subqueries, and data update statements. Be-
sides the SQL language constructs, the trans-
action management and distributed deadlock
detection protocols are implemented and run-
ning. The tree structure of the R* computa-
tion and the wuse of virtual circuits have
proved to be quite well adapted to the prob-
lems of implementing and controlling the
complex, distributed computations needed to
support the execution of a distributed data-
base management system.



Implementing Remote Procedure Calls

Andrew D. Birrell and Bruce Jay Nelson
(Abstract written by Andrew D. Birrell)

Xerox Palo Research Center,
Palo Alto, CA 94304, USA

Remote procedure calls (RPC) are a useful paradigm for
providing communication across a network between
programs written in a high level language. This paper
describes a package, written as part of the Cedar project,
providing a remote procedure call facility. The paper
describes the options that face a designer of such a
package, and the decisions we made. We describe the
overall structure of our RPC mechanism, our facilities
for binding RPC clients, the transport level
communication protocol, and some performance
measurements.  We include descriptions of some
optimisations we used to achieve high performance and
to minimize the load on server machines that have many
clients.

Our primary aim in building an RPC package was to
make the building of distributed systems easier. Previous
protocols were sufficiently hard to use that only members
of a select group of communication experts were willing
to undertake the construction of distributed systems. We
hoped to overcome this by providing a communication
paradigm as close as possible to the familiar facilities of
our high level languages. To achieve this aim, we
concentrated on making remote calls efficient, and on
making the semantics of remote calls as close as possible
to those of local calls.

To use the package, a programmer designs an interface
module (just as he would for a single-machine program),
then uses a translator called Lupine to produce stub
program modules which are responsible for converting
local calls into calls on a package which provides
node-to-node packet transport. A program wishing to
make a remote call just makes a local tall to the
appropriate stub module. The stub module causes the
RPC runtime system to transport the appropriate packets
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to the corresponding stub n‘l“odule on the destination
machine, where the packets are unpacked and a local
call is made to the programmer’s module implementing
the desired procedure.

We provide facilities for binding the parts of a distributed
computation together at runtime. These facilities use the
Grapevine distributed database to locate the appropriate
nodes on our internet, then make an RPC call to the
appropriate node to obtain the binding information. The
binding is performed at the level of an interface module.

Our packet transport protocol concentrates on two
techniques to achieve efficiency. Firstly, we are careful
to minimize the number of packets transmitted for simple
calls. The simplest calls take just one packet in each
direction.  Secondly, we designed our connnection
management to ensure that connection establishment and
take down are cheap, and that maintenance of large
numbers of connections does not impose an undue load
on the server nodes. When a connection is idle, the only
state maintained by a caller is the binding information
and a machine-wide sequence number; the state
maintained by a callee is just the identity and last
sequence number of the caller. Furthermore, the callee
(which we expect to be typically a server machine shared
amongst many users) can discard the state information
on a connection after a suitable interval.

The package is fully implemented, and we are in the
early stages of acquiring experience with its use. The
paper includes some measurements of the performance
of the system on test cases. We believe the parts of our
RPC package that we discuss are of general interest in
several ways. They represent a particular point in the
design spectrum of RPC. We believe that we have
achieved very good performance without adopting
extreme measures, and without sacrificing useful call and
parameter semantics. The techniques for managing
transport level connections so as to minimize the
communication costs and the state that must be
maintained by a server are important in our experience
of servers dealing with large numbers of users. Our
binding semantics are quite powerful, but conceptually
simple to a programmer familiar with single machine
binding. They were easy and efficient to implement.



An Asymmetric Streamn Communication System

Andrew P. Black

Department of Computer Science, FR-35,
University of Washington,
Seattle, WA 98115

Abstract

Input and output are often viewed as complementary operations, and it is certainly true that the
direction of data flow during input is the reverse of that during output. However, in a conventional
operating system, the direction of control flow is the same for both input and output: the program
plays the active ro6le, while the operating system transput primitives are always passive. Thus
there are JSour primitive transput operations, not two: the corresponding pairs are passive input
and active output, and active input and passive output. This paper explores the implications of this
idea in the context of an object oriented operating system.

This_ work is supportegi in part by the National Science Foundation under Grant No. MCS-8004111. Computing
equipment and technical support are provided in part under a cooperative research agreement with Digital

Equipment Corporation.

0. Introduction

In most operating systems the primitives for transput
(i.e. input and output) appear as system calls. Programs
almost always take the initiative in interactions with the
system. The most notable exception to this generalisa-
tion is that usually there exists some kind of primitive
interrupt facility whereby the operating system kernel
can notify a program that a certain event has occurred.

The Eden system currently under construction at
the University of Washington is radically different from
this norm. In Eden it is quite usual for one program to
ask another for a service, via a mechanism called invo-
cation. This design naturally leads to a system in which
most services are provided by “programs” rather than
by the system itself, and each program is a provider as
well as a consumer of services.

One of the consequences of this design is that each
program is prepared to receive invocations as well as to
send them. Communication with the outside world is no
longer the perogative of the program; the “outside
world” is able to take the initiative in communication.
This capability allows a transput system for Eden to be
built in a rather novel way, which this paper explores.
However, before continuing it is necessary to provide
some background about Eden itself.

1. The Eden System N

The Eden Project [11] (currently in its third year) is a
five-year experiment in the design, construction and use
of an integrated. distributed computing environment.
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The distribution aspects of Eden are not particularly ,
relevant to this paper. The significant aspect of Eden is
that it is usual for programs both to provide and con-
sume services. Using the term object in a sense very
similar to that of the Smalltalk programming language
[5], we refer to Eden as an “object oriented system™.

To distinguish our particular flavour of object from
that of other systems and languages, we refer to them as
Ejects (for Eden Objects). An Eject has the following
characteristics.

« Each Eject has a unique unforgeable identifier
(UID); one Eject may communicate with another
only by knowing its UID. It is not necessary to know
the physical location of an Eject within the Eden sys-
tem.

+ Ejects may receive and reply to invocations from
other Ejects. An invocation is a request to perform
some named operation, and may be thought of as a
kind of remote procedure call.

» Each Eject has a concrete {ype, that is, a fixed piece
of code that defines the set of invocations to which
the Eject will respond. Eden types are similar to the
collection of methods that make up a Smalltalk
Class.

e An Eject may perform a Checkpoint operation. The
effect of Checkpointing is to create a Passive
Representation, a data structure designed to be
durable across system crashes. The data in a pas-
sive representation should be sufficient to enable
the Eject they represent to re-construct itself in a
consistent state. The checkpoint primitive is the
only mechanism provided by the Eden kernel
whereby an Eject may access “stable storage” (i.e.
the disk).

« Each Eject has its own thread of control and may be
thought of as active at all times. The sending of an
invocation does not suspend the execution of the
sending Eject: the sender is free to perform other
tasks. The programming language used within Eden
is an extension of Concurrent Euclid [8], [9], and
encourages such a programming style. Each Eject



is provided with multiple processes, of which some
may be waiting for incoming invocations, some may
be waiting for replies to invocations, and some may
be running. This is in contrast to the Smalltalk
language, where the act of sending a message
transfers control to the receiver.

In practice, Ejects are not always active, either
because they (or their computers) have crashed, or
because they have explicitly deactivated themselves.
However, if a passive eject is sent an invocation, the
Eden kernel will activate it. When an Eject is activated

by the kernel it will normally attempt to put its internal
data structures into a consistent state. If the Eject had
previously Checkpointed, it can use the data in its Pas-
sive Representation to define this state.

Ejects and invocations are the only entities in the
Eden system. Eden is obviously well-suited to the server
model of computation, where progress is made by one
Eject requesting another to perform some service. For
example, the interface to a data-base system could be
represented by an Eject which responds to invocations of
the form "“List the records that match the following pat-
tern.” What is not immediately clear is how conventional
operating system services like a filling system and
redirectable device independent transput fit into the
Eden model of computation. These topics are explored
in the next section.

2. Files and Transput in Eden

In Eden, fles are Ejects: they are active rather than pas-
sive entities. An Eden flle would itself be able to respond
to open, close, read and write invocations rather than
being a mere data structure acted upon by operating
system primitives. Once a file has been written, the data
is committed to stable storage by Checkpointing.
Management of the underlying storage medium is per-
formed by the Eden kernel, not by the filing system
itself.

Once a flle has been created, it is usual to enter it
into some directory and associate a meaningful string
with that entry, so that the information contained in the
flle can be conveniently accessed. In Eden directories
are also Ejects; they respond to invocations like Lookup,
Delete Entry, AddFntry and List. Each entry in a direc-
tory Eject is in principle a pair consisting of a mnemonic
lookup string and the Unique Identifler of the Eject. It is,
of course, possible to enter the UID of any Eject in a
directory, so arbitrary networks of directories can be
constructed.

From the point of view of an Eject trying to perform
a Lookup operation, any Eject which responds in the
appropriate way is a satisfactory directory. For exam-
ple, it is possible to provide a Directory Concatenator
type which is initialised with a list of directories and
which yields the same result as would be obtained from
performing the lookup on all of the directories in turn
until the name is found. Such a concatenator provides a
facility rather like that offered by the Unix®shell and the
PATH environment variable. It may be implemented
either by actually performing the multiple lookups, or by
maintaining some sort of table which represents the con-
catenation of the directories.

There are thus two notions of “type” in Eden. The
behaviour of an Eject is the only aspect that is important
to its users. The Eden type of the Eject, i.e. the identity
of the particular piece of type-code which defines that
behaviour, is irrelevant. Each Eject may be thought of as
an abstract machine. The type-code of the Eject defines
the transitions of the machine; the inputs are the invoca-
tions it receives, and the outputs are the replies to those
invocations. Since this pattern of invocation and reply is
all that other entities can observe about the Eject, all

Ejects with equivalent state machines provide the same
functionality. Because many pieces of code can define
the same transitions, it is quite possible for several dis-
tinct Eden types to behave in the same way. In such a
case the Eden types provide alternative implementations
of the same abstract machine.

The notion of behavioural compatibility can be
further extended. If a client Eject £ assumes that some
server Eject behaves according to an abstract
specification S, then not only will £ be satisfiea by any
implementation of S, but also by any implementation of
S', where S'is a superset of S. In other words, provided
that S’ contains all the operations of S and that their
semantics are the same, it does not matter to £ that S’
contains other operations in addition.

A tree of abstract machines similar to the above can
be constructed with Simula Classes [2] and Smalltalk
Objects [5]. Observe, however, that the behaviour of a
given Eden type may include that of more than one other
type., so the situation in Eden is more general than in
these languages. In fact, in some ways it resembles
Smalltalk with a multiple class inheritance hierarchy [3].
However, our implementation does not currently enforce
recompilation when inherited code is changed.

3. Filters and Pipes

A large number of utilities in a typical operating system
may be described as fllters. A filter is a program which
takes a single stream of input and produces a single
stream of output; the output is some transformation of
the input. A simple example of a filter is a program
whose output is a copy of its input except that all lines
beginning with “C” have been omitted. Such a filter
might be used to strip comment lines from a Fortran
program. Most fllters may be parameterised: a more
useful program is one which deletes all lines matching a
pattern given as an argument. Text formatters, stream
editors, spelling checkers, prettyprinters and paginators
are all fllters.

In a conventional operating system, a fllter F per-
forms two functions. In addition to applying a transfor-
mation to the data stream, it acts as a data pump, that
is, it causes data to flow from the input to the output.
The pumping function arises because both input and out-
put are performed actively. By this I mean that F takes
the initiative in both input and output; it is 7" which calls
the Read and Write operations. The réle of the operating
system is merely to respond to the requests made by the
filter. If F calls a Read operation, the response of the
operating system is in some sense a kind of output,
because data flows from the system to F. However, the
system does not itself call a #rite operation: it responds
to the Read that is already in progress. I will call this
response passive oufput. The adjective passive indicates
that the operating system is responding to an initiative
of F''s; passive output is by definition the complement ot
active input. In general, data will flow from entity 4 to
entity B if B performs active input and A4 responds with
passive output. Because they communicate with each
other I will refer to active input and passive output as
corresponding operations.

When F performs active output, the response from
the operating system is passive input. Thus data can
also flow from entity A to entity B if A performs active
output and 5 responds with passive input. Passive input
and active output are also corresponding operations.

One very useful facility provided by the Unix operat-
ing system is the ability to connect fllters F|, F,, ..., F,

n
together so that the output of F, becomes the input of

F, This is done by interposing an entity called a pipe

i1

® Unix is a trademaerk of Bell Laboratories.
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put and active output. The circles represent facilities provided by the Unix kernel. P, and p, are pipes; data

source and data sink may be files or devices.

Figure 1: A Pipeline in Unix.

between F, and F,,;i Unix refers to the whole arrange-
ment as an n-stage pipeline. The function of a pipe is to
perform passive transput in response to the active tran-
sput operations of the filters. When F, performs a Write
operation, the pipe to which it is connected responds by
accepting the data, i.e. it performs passive input. When
F,, performs a Read operation, the pipe responds by
supplying ddta it has previously received from F, ie. the
pipe performs passive output (see Figure 1). Because
entities like Unix pipes perform both buffering and pas-
sive transput, 1 will refer to them as passive buffers.

It should now be clear why passive buffers are
necessary. Even though filter F, performs active output,
and filter F,,, performs active input, they cannot be con-
nected directly because these operations are not com-
plementary. The passive buffer provides the active tran-
sput operations with the necessary correspondents. In a
conventional operating system, the only transput opera-
tions made available to user programs are the active
ones. The passive transput operations are always per-
formed by the system itself.

In Eden the invocation of the read or write operation
of some other Eject represents an active transput opera-
tion. Responding to such an invocation is a passive tran-
sput operation. All four operations are thus available to
any Eject. As was observed above, data can be made to
flow from one entity to another using only two of the
operations, provided that they form a corresponding
pair. Thus data can moved from Eject A4 to Eject B either
by A initiating a Write invocation to which B responds, or
by B initiating a Read invocation to which A responds. It
thus seems to be possible to construct a transput sys-
tem in which there is no active output, just passive out-
put and active input. In ottker words, the write primitive
is apparently unnecessary.

It is interesting to compare this implementation
with input and output in Hoare's CSP [7] and in
Browning's Tree Machine Notation [4]. In these
languages transput occurs when one process executes an
output (/) operation and its correspondent executes an
input (?) operation. This interaction may be regarded in
several different ways. Both / and ? may be regarded as
active, and the (software or hardware) interpreter as the
passive connection which transfers data from one to the
other. Alternatively, input may be regarded as active
("get me data!”) and output as passive (“wait until I am
asked for data”). The converse interpretation is also
possible: input may be regarded as a passive wait for

data, and output as the active operation which generates
data. This last interpretation corresponds to Hoare's
decision to allow input commands in guards but to
exclude output commands.

4. Programming with Read-Only Transput

It is worthwhile considering just how a transput system
without active output be constructed and used. 1 will
refer to such an arrangement as a “read only” transput
system.

Output devices such as terminals and printers would
provide a potentially infinite supply of Fead invocations.
Connecting a terminal to a filter Eject would be rather
like starting a pump; it would suck data through the
filter and generate a partial vacuum (in the form of out-
standing read invocations) on the far side. A file opened
for input would respond to read invocations with the
appropriate data, and eventually with an indication that
the end of the file had been reached. A file opened for
output would immediately issue a Read invocation, and
would continue reading until it received an end of file
indicator. It is possible to create pipelines of arbitrary
length without any need for intermediate buffering; the
only requirement is that each pipeline must start with a
data source and end with a data sink.

As should be apparent from the discussion of Eden
types, any Eject which responds to Read invocations is
by definition a source, and any Eject which generates
them is a sink. The null sink is an Eject which reads
indiscriminately and ignores the data it is given. An
Eject which responds to a read invocation by returning
the current date and time is a source. Eden Directories
also behave as sources; in addition to Lookup and
Delete Entry, they respond to an invocation called ist.
The effect of a List invocation is to prepare the directory
to receive a number of Read invocations, which transfer
a printable representation of the directory’s contents to
the reader.

There is a certain similarity between a transput sys-
tem constructed in this way and a lazy implementation
of Lisp [6]. In both cases no computation need be done
until the result is requested. There is, of course, a
difference in the origin of the laziness; in the case of an
applicative language it is designed into the implementa-
tion, whereas in the case of the transput system each
Eject may be programmed so as not to do any work until
it is asked for output. A consequence of this is that the
filter Ejects are pure transformers: they do not also



pump data (unlike Unix programs). No data flows until a
sink is connected to the pipeline.

Laziness, however, is not desirable in a system
which permits parallel execution. Instead, one would
prefer that each Eject does a certain amount of compu-
tation in advance, in anticipation that it will eventually
be asked for the fruits of it's labours. Typically, each
Eject in a pipeline should read some input and buffer-up
some output, and then suspend processing pending a
request for output. In this way all the Ejects in a pipe-
line can run concurrently.

The interconnexion of the elements of the pipeline is
easily accomplished in Eden. A filter is initialised by an
invocation which supplies it with arguments. Most of
these arguments parameterise the behaviour of the filter
in the usual way, but one of them is the Unique Identifier
of the Eject from which it is to obtain its input. Note
that it is not necessary to tell a filter where the output is
to go: it will be sent to whatever Eject requests it (by
performing a Kead). A file could be printed simply by
requesting the printer server to read from the file. If a
paginated listing were required, the printer server would
be requested to read from the paginator, and the pagina-
tor to read from the file. Since files are active entities,
there is no distinction between input redirection from a
file and from a program. (This is not so in Unix, for
example, where the shell uses different syntax and a
different implementation in the two cases.)

One advantage of the “read only” system just out-
lined is that a sequence of n filters, a source and a sink
can all be implemented by n+2 Ejects. This means that
only n+1 invocations are needed to transfer a datum
from one end of the pipeline to the other. Conversely, if
each fllter were to perform active output as well as
active input, 2n+2 invocations would be needed, as would
n+1 passive buffer Ejects. Thus considerable savings of
communications overhead and process switching can be
realised with long pipelines. Figure 2 illustrates the
same pipeline as Figure 1, but constructed according to
the “"read only” model.

One way of visualising the origin of these savings is
as a merging of each passive buffer with its source. In
doing this merge, two Ejects are turned into one, and the
inter-Eject communication link between them is turned
into internal communication. Without any further
refinement, this implies that the filter must be written
so that it looks for incoming Read invocations pending
from other Ejects instead of performing write opera-
tions.

It is possible to adopt a more conventional style of
programming by adding an extra process to the filter.
The standard 10 module obtained from a library would
implement the usual Write operations that put charac-
ters into a buffer. However, that buffer would ke shared
with a process that receives invocations which request
data and services them. The filter process itself would
be programmed in the conventional way and make use of
the Write operations whenever necessary.

In some sense, then, the cost of “read only” tran-
sput is that the programmer (or her language implemen-
tor) is given the burden of providing the processes and
communication primitives that are no longer necessary
at the system level. Is this good or bad? Answering this
question requires more experience with “read only”
transput than we currently have, but the following obser-
vations are relevant.

« The programming language,used in the construction
of Ejects needs to support }arallelism regardless of
the transput protocol. An Eject which provides a set
of services to clients will typically be organised as a
“coordinator” process that receives incoming invo-
cations, and a number of "worker” processes that
actually perform the processing necessary to satisfy
them.} The use of a separate process to service read
requests from the next stage of the pipeline is only
a special case of a more general programming
methodology.

e Processes provided within the programming
language are likely to be more efficient than the
processes of the underlying machine or system on
which the Ejects are based. Similarly, interprocess
communication within an Eject is likely to be much
more efficient than invocation.

e By eliminating active output and passive input from
the system (at the level of inter-Eject interfaces, if
not internally to the Ejects), a considerable
simplification of Eject interfaces has been achieved.

» In comparison with the obvious design incorporating
passive buffers between each pair of active Ejects,
roughly half as many invocations are required to
move data from one end of the pipeline to the other.
The cost of an invocation must inevitably be higher
than that of a system call in an ordinary operating

1 Such an organisation is described in [11], where the Eden kernel
was assigned responsibility for its maintenance. Our current implemen-
tation provides processes at the language level; see [1]
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Figure 2: The same Pipeline in Eden with “read only” Transput.



system (because invocation is location-
independent), so such saving may be significant in
Eden.

5. Write-Only Transput; Multiple Inputs and Outputs

The system described so far uses active input and pas-
sive output as its only transput primitives. The dual
arrangement should also be considered:; in this case only
passive input and active output would be available. Data
sources would continually attempt to perform write invo-
cations, and sinks would always be ready to accept them.
An Eject would explicitly send data to the next Ejectin a
pipeline, but would not in general be concerned with the
origin of the data it processed. Within an Eject, a con-
ventional Read routine could be implemented by extract-
ing data from an internal buffer; another process would
respond to incoming Write invocations and use the data
thus obtained to fill the same buffer.

Because the “"read only” and “write only” models
are exact duals, both are equally convenient in the case
of a pipeline of pure filters. The differences between the
models become apparent when we start to relax the
assumptions that introduced this discussion. One
assumption that must be examined is that pure filters
occur frequently amongst the utilities of the average
operating system. In fact it is very common for filters to
be impure: many useful programs require multiple
inputs or generate multiple outputs. Examples of pro-
grams with multiple inputs include file comparison pro-
grams and stream editors that have a command input as
well as a text input. It is also common for a program to
produce a stream of Reports (i.e. monitoring messages)
in addition to its main output stream.

In the “read only” transput scheme the filter Eject &
knows the Unique ldentifier of the Eject from which it
requests input data. Because of this feature it is easy to
generalise the “read only” scheme to allow an arbitrary
number of inputs. If F needs m inputs, it maintains n
UlIDs, each referring to an Eject which responds to read
requests. In contrast, it is difficult to have multiple out-
puts with the "read only” scheme, because output
occurs only in response to an external request. Arrang-
ing for two or more Ejects to make Read invocations on F
does not help: F cannot distinguish this from one Eject
making the same total number of Read invocations. As
we have described it so far, “read only” transput allows
arbitrary fan-in but no fan-out.

The dual situation exits with “write only” transput.
Each filter has (or appears to have) a single source, but
can direct output to as many sinks as is convenient.
There is arbitrary fan-out, but no fan-in. Conventional
transput allows arbitrary fan-in and fan-out because both
reads and writes are active. (However, some operating
systems place restrictions on the number of streams
which may be redirected.)

One might attempt to remedy this failing by permit-
ting F to examine the UID of the originator of the
request; however, this introduces more problems than it
solves. Although these UIDs are present in the invoca-
tion message (so that the reply may be returned
correctly) they are in principle private to the Eden ker-
nel. This is because the effect of a particular invocation
ought to depend only its parameters, and not on the
identity of the invoker. Doing otherwise would prohibit
dynamic re-direction of transput streams. A parallel
may be drawn with programming languages: the effect of
a particular procedure call should not depend on who
makes it. Even though the return address is on the exe-
cution stack and could easily be accessed, procedural
programming language~ do not provide a primitive to do
so. The semantics of procedure call would be greatly
complicated by such a provision.

Let us consider how multiple outputs may be
accommodated within the “read only” model. One possi-
bility is to designate one output stream as the “primary”
output, and make all the others “secondary”. Primary
output is supplied in response to Fead invocations in the
way previously discussed, but now secondary output is
volunteered in Write invocations. When such impure
filters are initialised, they must be informed of the desti-
nation of their secondary outputs. Typically these out-
puts will be directed into passive buffers, which will then
be sources for other pipelines. This amounts to aban-
doning the "read only” nature of the transput system for
all filters with multiple outputs — and a large number of
filters produce reports.

On the assumption that more filters have multiple
outputs than multiple inputs, the dual arrangement may
be preferable. In a “write only” transput system each
filter would have a primary input, which is supplied by a
source Ejects performing Write invocations, and a
number of secondary inputs, which are actively read.
These secondary inputs will typically be passive buffers,
filled by the active output of some pipeline, file or device.
Multiple outputs present no difficulty; Figure 3 shows a
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Once again, each box represents an Eject. The source, F, and F; produce reports as well as normal output.
The reports from source and F1 are directed to a common destination, perhaps a window on a display.

Figure 3: An Eden pipeline in the write-only discipline, with Report Streams



