Frame Frame Design || Design
Tool Tool Tool Tool

DDM Kernel

Meta Data Handler

Design Data Handler

CAD FRAMEWORKS

PRINCIPLES AND ARCHITECTURE

by

Pieter van der Wolf

Department of Electrical Engineering,
Delft University of Technology,
Delft, The Netherlands

KLUWER ACADEMIC PUBLISHERS
BOSTON / DORDRECHT / LONDON

CAD FRAMEWORKS
PRINCIPLES AND ARCHITECTURE

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

VLSI, COMPUTER ARCHITECTURE AND
DIGITAL SIGNAL PROCESSING
Consulting Editor
Jonathan Allen

Other books in the series:

PIPELINED ADAPTIVE DIGITAL FILTERS, Naresh R. Shanbhag, Keshab K. Parhi
ISBN: 0-7923-9463-1
TIMED BOOLEAN FUNCTIONS: A Unified Formalism for Exact Timing Analysis, William
K.C. Lam, Robert K. Brayton
ISBN: 0-7923-9454-2
AN ANALOG VLSI SYSTEM FOR STEREOSCIPIC VISION, Misha Mahowald
ISBN: 0-7923-944-5
ANALOG DEVICE-LEVEL LAYOUT AUTOMATION, John M. Cohn, David J. Garrod,
Rob A. Rutenbar, L. Richard Carley
ISBN: 0-7923-9431-3
VLSI DESIGN METHODOLOGIES FOR DIGITAL SIGNAL PROCESSING
ARCHITECTURES, Magdy A. Bayoumi
ISBN: 0-7923-9428-3
CIRCUIT SYNTHESIS WITH VHDL, Roland Airiau, Jean-Michel Berge, Vincent Olive
ISBN: 0-7923-9429-1
ASYMPTOTIC WAVEFORM EVALUATION, Eli Chiprout, Michel S. Nakhla
ISBN: 0-7923-9413-5
WAVE PIPELINING: THEORY AND CMOS IMPLEMENTATION,
C. Thomas Gray, Wentai Liu, Ralph K. Cavin, III
ISBN: 0-7923-9398-8
CONNECTIONIST SPEECH RECOGNITION: A Hybrid Appoach, H. Bourlard, N. Morgan
ISBN: 0-7923-9396-1
BiCMOS TECHNOLOGY AND APPLICATIONS, SECOND EDITION, A.R. Alvarez
ISBN: 0-7923-9384-8
TECHNOLOGY CAD-COMPUTER SIMULATION OF IC PROCESSES AND DEVICES,
R. Dutton, Z. Yu
ISBN: 0-7923-9379
VHDL ’92, THE NEW FEATURES OF THE VHDL HARDWARE DESCRIPTION
LANGUAGE, J. Bergé, A. Fonkoua, S. Maginot, J. Rouillard
ISBN: 0-7923-9356-2
APPLICATION DRIVEN SYNTHESIS, F. Catthoor, L. Svenson
ISBN:0-7923-9355-4
ALGORITHMS FOR SYNTHESIS AND TESTING OF ASYNCHRONOUS CIRCUITS,
L. Lavagno, A. Sangiovanni-Vincentelli
ISBN: 0-7923-9364-3
HOT-CARRIER RELIABILITY OF MOS VLSI CIRCUITS, Y. Leblebici, S. Kang
ISBN: 0-7923-9352-X
MOTION ANALYSIS AND IMAGE SEQUENCE PROCESSING, M. I. Sezan, R. Lagendijk
ISBN: 0-7923-9329-5
HIGH-LEVEL SYNTHESIS FOR REAL-TIME DIGITAL SIGNAL PROCESSING: The
Cathedral-1I Silicon Compiler, J. Vanhoof, K. van Rompaey, 1. Bolsens, G. Gossens, H. DeMan
ISBN: 0-7923-9313-9

CONTENTS

PREFACE

1 INTRODUCTION

1.1
1.2

The Need for CAD Frameworks
The Search for CAD Frameworks

2 STATE OF THE ART AND REQUIREMENTS

2.1
2.2
23
24

The Evolution of CAD Frameworks

State of the Art in Framework Architectures
Principal Requirements

Conclusion

3 GLOBAL FRAMEWORK MODEL

3.1
32
33
34
3.5

Introduction

Global Run-Time View

Coarse-Grain Data Management

Design Transaction Model

The Framework Architecture Definition Process

4 DATA MODELING

4.1
42
43
44

Introduction

Data Models

The OTO-D Semantic Data Model
Discussion

5 THE INFORMATION ARCHITECTURE

5.1
5.2
53
54

Introduction

Design Objects

Projects

Teams of Design Engineers, An Example

vii

-

29
34

35
35
36
41
46
51

55
55
56
59
67

71
71
72
73
76

vi CAD FRAMEWORKS: PRINCIPLES AND ARCHITECTURE

5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

Design Transactions

View Types

Versioning

Hierarchy

Equivalence Relationships

77
81
85
91
94

The Interplay among Versioning, Hierarchy and Equivalence 96

Sharing Design Data Across Projects
Design Flow Management
Conclusion

6 THE COMPONENT ARCHITECTURE

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Introduction

Framework Kernel and Framework Tools
The Framework Kernel

The Data Handling Component

The Meta Data Handling Component

The Design Data Handling Component

The Data and Design Management Kernel
The Data and Design Management Interface
Framework Tools

Summary and Conclusion

7 THE IMPLEMENTATION ARCHITECTURE

7.1
12
13
7.4
7.5
7.6
7.7
7.8

Introduction

Implementation Primitives

Process Organization

Project Identification and Initialization Procedure
RPC Protocol Specification

Application of Shared Memory IPC
Performance

Summary and Conclusion

8 CONCLUSION

Bibliography

Index

103
107
117

121
121
123
126
130
137
147
157
163
172
182

185
185
186
189
194
195
199
199
201

203

207

221

1

INTRODUCTION

1.1 THE NEED FOR CAD FRAMEWORKS

More and more these days, the bottleneck in the development of advanced
electronic products is design. More and more designs of increasing complex-
ity have to be done faster and faster to bring more advanced end-products to
the market in time [Man92, dG93]. The key to gains in design productivity
is Electronic Design Automation (EDA). The optimistic EDA picture is that
a large number of tools have become widely available. For specific design
tasks these tools help the designer to master the complexity and perform
these tasks efficiently. Together with the interactiveness provided by modern
graphical workstations this has yielded significant productivity improvements
for parts of the design process.

Due to this focus on fool automation, design systems have become large
tool-boxes offering the designer a great variety of loosely coupled tools to
perform the many design tasks. The realistic EDA picture, however, is that
these tools support only individual design tasks, leaving the designer with
the problem of handling the multitude of tools and of successfully moving
his design data from one tool to the other. Moreover, the number of tools
to be operated is growing continuously, as are the amounts of design data to
be handled. What is lacking is integration and overall support for managing
the design process.

People have recognized these problems and have realized that attention has
to be paid to the overall efficiency of the design process in order to continue
achieving gains in productivity. As a consequence, one of the buzzwords in
the EDA arena is CAD framework. CAD stands for Computer-Aided Design.

2 CHAPTER 1

We adopt the following definition of CAD framework, as originally given by
the CAD Framework Initiative (CFI), the international consortium developing
framework standards [CFI90b]:

Definition 1.1 (CFI) A CAD framework is a software infrastructure that
provides a common operating environment for CAD tools.

CAD frameworks play a role in building as well as in operating integrated
design environments. First, a CAD framework has to provide facilities for
conveniently integrating multiple CAD tools into a coherent design environ-
ment. It is a basis for tool integration. In this respect there is a direct analogy
with the role an operating system plays in the development of general-purpose
software applications.

Second, a CAD framework can support the end-user in conveniently oper-
ating the design environment. Being the infrastructure that binds the tools
together, the framework is the proper place to incorporate facilities for or-
ganizing the design information and managing the design process. In an
integrated design environment, these facilities can support the end-user in
keeping track of the state of his design and in applying tools effectively.
This will help him to master the complexity of the design and the design
process. More complex circuits, satisfying more stringent performance and
quality standards, can then be done faster under the increasing time to market
pressures. Thus, a CAD framework is to become the electronic assistant of
the designer for organizing the design information and managing the design
process.

From the above description we identify two categories of framework users:
developers (e.g. CAD tool developers, CAD tool integrators) and end-users
(e.g. design engineers, administrators, project managers). To get a more con-
crete idea of what the introduction of CAD frameworks may yield in practice
for the end-user, consider the following support that a CAD framework is
expected to give:

s Help the design engineer to maintain an overview of his design descrip-
tions: which components are available, what is their status and history,
how are the components related.

= Tell the design engineer which tools are available for which design tasks
and give information on their usage. Moreover, a framework may take

Introduction 3

care that tools are applied in the proper sequence such that a pre-defined
design methodology is adhered to.

s Make design projects manageable by performing book-keeping on the
status of achievement for consultation by the project manager.

= Allow teams of design engineers to cooperate effectively on a design
project. A related buzzword here is concurrent engineering, which is
“the art of decomposing a complex serial task into smaller, relatively
independent tasks that can be executed in parallel” [CFI90a].

Effective framework technology providing such advanced facilities as exem-
plified above can thus help to:

m Cut down design time. Recent studies show that for every six months a
project is late, the potential profit is reduced by a third [DEC92].

m Make the design process less error prone. According to recent studies,
design errors account for an average of 20 percent of product costs
[DEC92].

m Master the increasing complexity of the design and the design process.

s Increase performance and quality of electronic products.

In addition, a CAD framework provides environmental stability as it offers
a standard operating environment to an ever evolving set of CAD tools, in
which many services have yet been captured. It promotes modularization of
CAD systems, as these are to be constructed as cooperating tool components
on top of a CAD framework, rather than being implemented as monolithic
super-tools. In fact, CAD tools may become simpler as the generic services
of CAD frameworks become more powerful. Further, we think that CAD
frameworks do not simply add to what a designer has to learn; Increased
uniformity and user-friendliness may actually make CAD systems easier to
operate.

4 CHAPTER 1

1.2 THE SEARCH FOR CAD FRAMEWORKS

There appears to be world-wide consensus on the point that there is an
urgent need for CAD framework technology in order to build effective in-
tegrated design environments that help improve design productivity. Also,
the EDA community appears to agree on the major functional requirements
for a CAD framework. However, there is no common idea how to go about
developing and implementing one. As is said in [Val90], “The tremendous
amount of importance placed on frameworks, as they directly relate to im-
proving productivity, combined with the lack of agreement on their exact
nature has shrouded the subject in mystery and uncertainty”. The current
situation is that effective framework based design systems satisfying the ma-
jor framework requirements have not yet reached the designer’s workbench
[vdHO1, Mal92]. In fact, major EDA vendors are investing heavily but have
problems in providing the required functionality while making the system
efficient [BHNS92].

The CAD Framework Initiative (CFI), the international consortium devel-
oping framework standards, is trying to alleviate the mystery surrounding
frameworks. The mission of CFI is: “To develop industry acceptable guide-
lines for design automation frameworks which will enable the coexistence
and cooperation of a variety of tools” [CFI90b]. Having standard interfaces
to CAD framework components will substantially reduce the cost of com-
bining multi-sourced CAD tools into an effective design environment. But,
progress is slow and consensus on specifications, detailed requirements and
implementations appears difficult to reach [vdH91].

The major European framework effort is the Jessi-Common-Frame (JCF)
project, which is aimed at building a CAD framework. Also in this project
the different development partners, though having extensive framework expe-
rience, appeared to have quite different views on how to build a framework.
Extensive exertions were required in order to identify critical differences in
the respective approaches and to obtain a common understanding on a global
framework architecture.

Now, what makes it so difficult to develop, implement, and even discuss
CAD frameworks? Obviously CAD frameworks are complex systems; this
is the nature of the subject. First of all frameworks have to satisfy many func-
tional and operational requirements posed by different categories of users.
A great variety of services has to be provided to tool integrators, design
engineers, administrators, etc. A CAD framework is not a piece of software

Introduction 5

performing a specific design task in a specific way with measurable results.
In many respects it must be generic, customizable, and open, in order not to
have built-in restrictions for a particular usage of the system. For example,
it should not make restrictive assumptions on the kinds of tools to be sup-
ported. The generic nature required for many framework functions adds to
the complexity. Further, the framework is a multi-user system, which must
provide services to many concurrent users in a distributed hardware environ-
ment, responding well under all kinds of circumstances. This significantly
adds to the complexity of the framework problem.

In addition to the complex nature of CAD frameworks, discussions on frame-
work architectures are hampered by the lack of agreement on a common
formal “language” or “model” to represent and discuss framework architec-
tures. Each active member of the framework community appears to have
his/her own way of (informally) representing certain aspects of a frame-
work architecture. As a result, ideas on framework architectures do not get
communicated well. It is hard for framework developers to disengage from
their own background and learn the essence of the work of other people. A
confusion of tongues in framework discussions is often the result.

In the following chapters we respond to the situation sketched above by
systematically deriving the architecture of a CAD framework. This architec-
ture will be described by a global framework model and three more specific
framework views. We will define key principles to direct design choices and
will use well-defined primitives to describe the framework views.

Two key features of the CAD framework architecture will be openness and
efficiency. Openness is the ability of the CAD framework to easily incorpo-
rate new tools, new types of data, and new design methodologies. It must
be flexible, configurable, and largely independent of a specific application
domain. Efficiency implies that overall efficiency of the design process is
optimized. This relates to run-time performance of individual framework
services as well as to framework functions that help the end-user to work
more effectively.

Before we start the architecture definition process, we investigate in the
next chapter the state of the art in the area of CAD frameworks, and their
architectures in particular. We also present the principal requirements a CAD
framework has to satisfy.

2

STATE OF THE ART AND
REQUIREMENTS

2.1 THE EVOLUTION OF CAD FRAMEWORKS

2.1.1 File-and-Translator Based Systems

From the literature it appears that over the last ten years people have gradually
discovered the topic of CAD frameworks, and have gradually allocated more
functional requirements to this topic. The state of the art in CAD frameworks
is the result of increasing awareness and evolutionary developments rather
than specific scientific breakthroughs. We therefore start our assessment of
the state of the art from an historical perspective.

The history of CAD frameworks starts in the early eighties when people
realized that with the growing number of CAD tools data transfer between
tools became an ever growing pain. At that time tools typically used propri-
etary and tool-dependent ascii or binary formats to represent the design data.
Communication between design tools was possible only if a translator for the
respective formats was available [Kat83, Kal85, Kat85h, GE87, HNSB90].
This situation is illustrated in Figure 2.1. Bringing the growing number of
tools together into an integrated design environment involved writing a large
number of translators. The emergence of de-facto standard formats, allowing
the number of translators to be reduced, eased this pain a bit.

These tool integration efforts had made people realize that effective EDA
solutions not only had to provide the individual tools but also the integration
facilities, or ‘glue’, to support the communication between tools. The integra-
tion facilities in the file-and-translator based systems consisted of translators

8 CHAPTER 2

Tool 1 Tool 2 ! Tool 3

I
e Transl 2-3
Data 1 Data 2 / E:\ Data 3

Figure 2.1 Tools having proprietary data representations. Translation across
data representations is required for sharing data among tools.

and a whole collection of ad-hoc utilities to make life easier for the end-user.
These simple integration facilities can be termed the first primitive CAD
frameworks, and a new EDA topic had been born.

2.1.2 First Role: Design Database

Historically, the first role allotted to CAD frameworks is that of common
data repository [NPSVtS81, Kat82, Goe85, Tur85, CFHL86]. Data which
is common to a number of CAD tools is stored only once in the repository,
from where it can be used as input for all tools. For tools that have not been
written to operate directly on the common data repository, reformatting may
be performed on input and output. The common repository has come to be
called ‘integrated design database’, or just ‘design database’. 1t is the key
to tool integration, and in particular to tool interoperability: the ability of
CAD tools to communicate and share data. See Figure 2.2.

PR—

O oL s

Design Database

Figure 2.2 Tools integrated on top of a design database.

State of the Art und Requirements 9

Advantages of this approach are increased consistency and increased effi-
ciency. For the end-user there is increased convenience as his design data
is stored in a structured way in a single place. Additional database utilities
support the end-user in managing his design data.

File Based Systems

In many CAD systems the design database is a file based system, imple-
mented as a small layer on top of the host operating system [NPSVtS&1,
Kat83, Kat85b, May87]. This layer augments the operating system with
specific support for managing the design files. Design files are stored in a
structured file organization, for example, employing a hierarchical file sys-
tem and pre-defined naming conventions. Access methods are provided for
storage and retrieval of design data. These access methods may offer atomic
update capabilities.

Examples of the file based approach are the Nelsis CAD Framework, Release
2 and Release 3 systems [Dew86]. Several more advanced CAD frameworks
still employ file based systems for persistent design data storage. Examples
are Design Framework II from Cadence Design Systems, Falcon from Mentor
Graphics, PowerFrame from Digital Equipment Corporation, and the Nelsis
CAD Framework, Release 4.

Use of Conventional DBMSs

Another approach has been to employ conventional (record-oriented) data-
base management systems (DBMSs) to fulfil the role of design database.
These conventional DBMSs are typically used as storage and transaction
processing components in business applications. The interest in DBMSs was
driven mainly by the apparent ‘keyword-level’ match between DBMS func-
tions and facilities and the emerging requirements for design databases. A
DBMS provides mechanisms for the reliable storage of data, including re-
covery facilities, it protects data from unauthorized access, and it provides
concurrency control and integrity maintenance. The notion of transaction
supported by these systems also seems useful: a sequence of database oper-
ations that are either executed completely or not at all [Dat86].

Quite a number of attempts to employ conventional database techniques
have been published in the literature [Hay81, RBJ&1, Zin81, Kat82, WBSS2,
Hay83, HNCL&84, Har84]. However, none of them reported a straightforward

10 CHAPTER 2

applicability of off-the-shelf DBMSs. Most of the conventional DBMSs have
been targeted for business applications and do not specifically address the
problems encountered in a design environment. Critical differences occur in
characteristics of data to be handled (e.g. granularity and inter-relatedness)
and access characteristics (e.g. frequency, granularity and duration of trans-
actions) [Sid80, LP83, Buc84, HY85, SA86]. There is a mismatch between
the facilities provided by the DBMSs and the requirements posed by engi-
neering applications. Due to this mismatch, efficiency is hard to obtain, if
at all, given the internal mechanisms (for concurrency control and recovery,
for example), which have been geared towards the characteristics of busi-
ness applications. We are currently not aware of any successful application
of a classical business DBMS for the purpose of a CAD framework design
database, and consider this to be a dead end.

Successes have been reported in the application of conventional DBMSs
for meta data handling only, that is, to hold administrative data including
references to the actual design data stored in files. An example of the use of
a conventional DBMS for meta data handling is [BD91].

Object-Oriented DBMSs

The database community has recognized the fundamental nature of the re-
quirements posed by engineering applications and other new database appli-
cations such as multimedia databases and knowledge bases. Work was started
on next-generation DBMSs targeted at these applications: object-oriented
DBMSs. In contrast to conventional DBMSs, object-oriented DBMSs offer
far more flexibility for handling highly interrelated data of different granu-
larities on which different types of access are performed. For engineering
applications, the DBMS must be capable of handling many different data
types and large numbers of instances of each type. Moreover, flexibility
must be provided for modifying or extending the conceptual schemas to
match the different views of data operated on by different application pro-
grams [SA86, BP86].

Databases typically found in Artificial Intelligence (AI) systems tend to pro-
vide flexibility for many different data types, which may also be defined
dynamically. An example of such a system is the Pearl Al Package (Package
for Efficient Access to Representations in Lisp) [DFW82]. These systems,
however, have not been geared towards the large numbers of instances of
each type, as found in engineering applications [SA86]. Moreover, they typi-
cally are single-user systems. They may be used for purposes of prototyping,

State of the Art and Requirements 11

but are not suited as production systems.

The data models provided by powerful object-oriented DBMSs permit ar-
bitrary types of design information to be represented and accessed conve-
niently. Typically the design information is modeled as a web of highly
interrelated objects [HMSN86, FFHe91, Obj91, HJIR92]. Granularity of the
objects may vary significantly; from a simple integer attribute value to a
complete design file. Typically, a traversal type of access is provided to
the application programs built on top of the DBMS. This permits them to
navigate through the object web, to retrieve objects or to add new ones
to the web. A key in achieving efficiency for EDA applications is main-
taining locality of larger aggregates of data that are typically accessed as
a (compound) entity. For this purpose object-oriented DBMSs targeted at
these applications provide such features as clustering or complex objects
[LP83, Buc84, HS87, FFHe91, Obj91, HPC93].

A number of object-oriented DBMSs have been realized and have become the
base components of some of today’s frameworks. For example, the Objec-
tivity/DB [Obj91] has been used for meta data management in ValidFrame
[Val90] and the Cadlab OMS (Object Management System) [FFHe91] is
used in the Jessi-Common-Framework [JCF91b]. Cadence Design Systems
has announced an agreement with Object Design, Inc. to use the ObjectStore
DBMS in its next-generation EDA software. These developments signal a
move by the EDA software industry away from proprietary design databases
to the use of standard commercially available DBMSs.

2.1.3 Second Role: Design Data Manager

The second major role allotted to CAD frameworks is that of design data
manager. A design database, in the sense of common data repository, pro-
vides a facility for storing the design data, but provides no support for man-
aging the data. Randy Katz from U.C. Berkeley was one of the first to realize
that ‘brains’ could be added to the design database ‘muscle’, to actually help
the designer in organizing his design information [Kat83]. A design data
management system uses knowledge of the structure and status of design
information to provide management support and enforce constraints on the
design process.

Clearly, system integration can be, and should be, much more than the def-
inition of common formats for the purpose of tool communication. With

