MC68000

MC68000
Assembly
Language
Programming

ttt

Edward Arnold

© B. Bramer 1986

First published 1986
by Edward Arnold (Publishers) Ltd
41 Bedford Square, London WC1B 3DQ

Edward Arnold (Australia) Pty Ltd,
80 Waverley Road, Caulfield East,
Victoria 3145, Australia

Edward Arnold, 3 East Read Street,
Baltimore, Maryland 21202, USA

ISBN: 0 7131 3595 6

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying
recording or otherwise, without the prior permission of Edward Arnold (Publishers) Ltd.

Printed in Great Britain by
J.W. Arrowsmith Ltd, Bristol

Preface

This book is designed as a learning text for students of Computer Science,
Electronic Engineering, Information Technology and other HND, B.Sc or M.Sc
courses who are attending a module that introduces microcomputer
architecture and the assembly language programming of the Motorola MC68000
microprocessor. In addition, the book may also be used for self-instruction
by experienced programmers and home computer users who wish to program their
68000 based microcomputers in assembly language.

The Motorola MC68000 family of microprocessors is used in many modern
microcomputers ranging from single board development systems up to
professional CAD/CAE workstations. The MC68000 can address up to 16 Mbytes
of memory and has a large range of powerful instructions that can process
8=, 16~ or 32-bit data.

This learning text would normally be used to accompany a course of
practical/tutorial sessions that may be backed by lectures. Each chapter is
a self contained unit that can be read by the student and contains exercises
that should be attempted during tutorial/practical sessions. Answers to the
exercises are given in Appendix E. To complete each chapter is a problem
that should be attempted and may be used by instructors as a means of
assessment. At critical points in the text reviews of topics covered in the
previous few chapters are presented. Depending upon the level of the course
and the programming experience of the students, lectures can be given to
reinforce the learning process (e.g. based upon the reviews).

Good programming practice is encouraged throughout the book by the use
of modular and structured programming techniques. In particular, as an aid
to modular programming, the use and writing of subroutines is described
early in the text and a library of MC68000 assembly code subroutines is
provided which enables student programs to read and write numeric and other
data via the computer console. This enables the use of subroutines in the
exercises and problems before the operation of the subroutine call and
return instructions are described in detail.

Although this book is a self contained text, it is expected that a
computer architecture/assembly language programming ‘module that makes use of
it would rum in parallel with a module on high—level language programming
(e.g. Pascal). This would serve to reinforce the modular and structured
programming techniques outlined in this book, which could then be formalized
in a Software Engineering module at a later stage.

This book has not been written with any particular MC68000
microcomputer system in mind and the only assumption made is that single
character input/output routines are available which can be accessed from
assembly language programs (Appendix C discusses some of the problems that
may arise when using different 68000 based microcomputers).

Outline of the Book

An introduction to computer systems, information representation, and
computer hardware and software fundamentals is presented in Chapters 1, 2
and 3 (these initial chapters may be omitted if these topics have already
been covered in other modules). While these chapters are being covered, the
students could be carrying out practical exercises on number systems
(Appendix A describes the binary and hexadecimal number systems and the
ASCII character code), and learning to use the monitor/operating system of

iv Preface

the microcomputer to be used (a tutorial/practical learning system could be
provided for this).

When the basic MC68000 architecture and programming is introduced in
Chapters 4, 5 and 6, the student should be familiar with the use of the
microcomputer and will be ready to attempt the programming exercises and
problems. Software Engineering techniques are then presented in Chapter 7
(this could be omitted if the student has already covered this topic in
another module) followed in Chapter 8 by an introduction to subroutine
programming and the use of the assembly language subroutine library of
Appendix D. Subroutines can then be written and used in the exercises and
problems of Chapters 9 to 15 (well before the operation of the subroutine
call and return instructions are described in detail in Chapter 14).

Basic input/output programming is introduced in Chapter 16 followed in
Chapter 17 by an introduction to parallel communications and the MC6821 PIA
(Peripheral Interface Adaptor). The exercises of this chapter (and Chapter
19) may be carried out using ready built plug-in cards to attach to the PIA,
and/or may be amended to take account of the facilities available and the
overall course objectives. For students who have covered basic digital
sequential and combinational logical circuits, extra exercises and problems
can be provided in whixhH the students build circuits to be attached to the
PIA and testéd with assembly language programs. Chapter 18 gives details of
MC68000 exceptions (interrupts are a type of exception) and Chapter 19 then
describes the use of interrupts with the MC6821 PIA. Chapter 20 discusses
serial communications and describes the MC6850 ACIA (Asynchronous
Communications Interface Adaptor). The exercises and problems of this
chapter will depend upon what external equipment may be connected.

_Proficiency in programming can only be gained by practice. It is
therefore recommended that programs given as exercises and problems are
designed, coded, run, and tested before continuing to the next chapter.
Depending upon the knowledge of the students and the overall aims of the
course sections of the book may be skimmed over or omitted entirely, and
extra exercises and problems provided. For example, if the microcomputer
being used supports Pascal, it would be possible to provide exercises in the
linking of Pascal main programs to assembly language subroutines.

Recommendations to Tutors

The tutor should initially scan the book to gain an overall impression of
each chapter with its associated exercises and problems. Appendix C should
then be examined to determine problems that may arise due to the target
microcomputer configuration. Chapters 1 to 6 can then be read in detail and
the exercises and problems attempted. Chapters 7 and 8 can then be read,
the assembly language library of Appendix D implemented (test programs are
provided to check the library) and the exercises and problems of Chapter 8
attempted. Once the library is operational the following chapters can be
read. By attempting the exercises and problems the.tutor should discover
any difficulties associated with the particular microcomputer and assembler
being used. The students could then be provided with a list of such
difficulties and modifications (e.g. the use of a non-standard assembler),
and other details such as I/0 device register addresses,etc.

If the students are to attempt to program the MC6821 PIA (Chapters 17
and 19) and/or MC6850 ACIA (Chapter 20) input/output devices, plug—in cards
and other external equipment will have to be provided (sample circuits that
can be built for use with the MC6821 PIA are shown in Chapters 17 and 19).

Brian Bramer,1986

Contents

Preface

1l Introduction to Computer Systems
1.1 An end-user”s viewpoint of a computer system
A computer programmer’s viewpoint
A microcomputer system
Instruction and data storage
Assembly languages
High-level problem solving languages
Review of information representation
Problems for Chapter 1

el el e e o e
O~NOWUL WL

2 Computer Hardware: The Functional Components
2.1 Memory

The control unit

The ALU (Arithmetic/Logic Unit)

Input and output

The instruction cycle

A typical microcomputer configuration

8-bit, 16-bit and 32-bit microprocessors

Problem for Chapter 2

[ACRE SN I SIS IOSE
o~ PN

3 Software

3.1 System start—up or bootstrapping
A system monitor
Bootstrapping the operating system
Advanced system software facilities
Run-time system facilities
A low-level program development system
Problem for Chapter 3

Wwwwww
NOoO UL PN

4 Introduction to MC68000 Architecture
4.1 The data registers DO=-D7
The address registers AO-A7
MC68000 primary memory
Absolute and relocatable machine code
Different MC68000 based microcomputers

e
O SRR

5 The MC68000 Assembler
5.1 Specification of numeric and other data
5.2 Assembly language mnemonics
5.3 Format of assembly language statements
5.4 Problem for Chapter 5

6 Introduction to MC68000 Instructions
6.1 Addressing modes
Addressing categories
Using CLR to clear data registers
Using the MOVE instruction
Data register direct addressing mode

a0
()N S R VLR (N]

The exchange register contents (EXG) instruction

iii

NoU LW N -

11
11
12
12
13
14
14

15
15
15
16
17
19
19
19

20
20
20
21
22
22

24
24
25
26
28

29
29
29
30
30

31

vi Contents

6.7

6.8 Using MOVE to move constants into data registers

6.9

The equate (EQU) pseudo-operator

The assembler listing

6.10 Errors reported in the assembler listing

6.11

6.12 Binary addition (ADD) and subtraction (SUB) instructions
6.13 The negate (NEG) and sign extend (EXT) instructions

6.14
Review

7 Progr
7.1

Execution time errors

Problems for Chapter 6
of Chapters 4, 5 and 6

am Design, Testing and Debugging
Software engineering

Documentation

Analysis

Program design - stepwise refinement
Modular programming

Testing

Problem for Chapter 7

8 Modular Programming with the MC68000

8.1

8.2 Use of the 68000 assembly code library in Appendix D

8.3

9 Simpl
9.1

Review

10 Prog
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

11 Prog
11.1
11.2
11.3
11.4

12 Logical, Shift, Rotate and Single Bit Instructions
12.1 NOT, AND, OR and EOR (Exclusive OR) logical instructions

12.2

Subroutines
Problems for Chapter 8

e Arithmetic Programs

The DC (Define Constant) pseudo—operator
The DS (Define Storage) pseudo—-operator
Accessing operands in memory

Binary multiply instructions (MULS and MULU)
Binary divide instructions (DIVS and DIVU)
Multiple-word arithmetic

BCD (Binary Coded Decimal) arithmetic
Problem for Chapter 9

of Chapters 7, 8 and 9

ram Control Structures

The branch (BRA) and jump (JMP) instructions
The Condition Code Register (CCR)
Conditional branch instructions

The test (TST) instruction

The compare (CMP) instruction

The IF conditiomal structure

The IF conditional ELSE structure
Problem for Chapter 10

ram Loop Control

WHILE and UNTIL loops
The FOR loop

Nested loops

Problems for Chapter 11

Shift and rotate instructiomns

31
31
34

37
37
39
39

40

43
43
44
44

47
47
48

49
49
51
55

56
56
57

60
60
61
62
62

63

72
72
74
76
78

79
79
81

12.3 Operations on single bits
12.4 The test and set an operand (TAS) instruction
12.5 Problem for Chapter 12

Review of Chapters 10, 11 and 12

13 Address Register Addressing
13.1 Address register indirect addressing

13.2 Postincrement and predecrement addressing modes
13.3 Problem for Chapter 13

14 Stack Operations and Subroutines
Using address register A7 as the stack pointer

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

The JSR,

BSR and RTS instructions

Use of the move multiple (MOVEM) instruction
Saving and restoring condition codes

Passing
Passing
Passing
Problem

15 Advanced use

15.1
15.2
15.3
15.4
15.5
15.6
15.7

Address
Address
The LEA

parameters to subroutines

parameters to subroutines via registers
parameters to subroutines on the stack
for Chapter 14

of Address Registers

register indirect with displacement

register indirect with index and displacement
and PEA instructions

Accessing RECORD type data structures
The CASE control structure
Subroutine parameters following JSR or BSR in memory

Problem

for Chapter 15

Review of Chapters 13, 14 and 15

16 Introduction to Input/Output Programming

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8

The 1/0

device interface

Programming I/0 devices

Accessing the I/0 device interface registers
The RESET instruction

The MOVEP instruction

DMA (Direct Memory Access)

Programming time intervals

Problem

for Chapter 16

17 Introduction to the MC6821 PIA
17.1 Parallel input/output
17.2 The MC6821 PIA (Peripheral Interface Adaptor)
17.3 Simple input and output
17.4 Using the handshaking lines CAl and CBl
17.5 Problems for Chapter 17

18 Exceptions
Processor operating modes

The SSP and USP stack pointers
Exception types

Exception priorities

Exception vector table
Exception processing

18.1
18.2
18.3
18.4
18.5
18.6

Contents

100
100
100
101
102
107
110
112

113

116
116
117
119
122
122
123
123
125

127
127
128
130
131
133

137
137
138
139
140
141
143

viii Contents

18.7
18.8
18.9

The return from exception (RTE) instruction
The STOP instruction
Saving registers during exception processing

18.10 Problem for Chapter 18

19 Advanced Programming of the MC6821 PIA

19.1
19.2
19.3
19.4
19.5
19.6
19.7

Review of the PIA control register
MC6821 exception vectors
Using line CAl to interrupt a program

The use of the control lines CA2 and CB2 for input

The use of CA2 and CB2 for manual output
The use of CA2 and CB2 for automatic output
Problem for Chapter 19

20 The MC6850 ACIA

20.1
20.2
20.3
20.4
20.5
20.6
20.7

Asychronous serial communications

Practical considerations

The EIA RS-232C standard

The MC6850 ACIA

Using the ¥MC6850 ACIA for polled I/0

Using the MC6850 ACIA for interrupt driven I/0
Problem for Chapter 20

21 Writing Position Independent Modules

21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8

The reasons for writing relocatable code
Position independence with the MC68000
The XDEF and XREF pseudo-operators
Relocation and linking

Program Counter relative addressing

Base displacement addressing

Variables on the stack

Problem for Chapter 21

22 Macros and Conditional Assembly

22.1
22.2

Macros
Conditional assembly

23 Review of Computer Systems and the MC68000 Family

23.1
23.2
23.3

Microcomputers, minicomputers and mainframes
8-bit, 16-bit and 32-bit microprocessors
The Motorola MC68000 microprocessor family

Appendix A Representation of Data Within the Computer

Appendix B MC68000 Information

Appendix C Difficulties due to Target Microcomputer

Appendix D Assembly Language Library of Subroutines

Appendix E Answers to the Exercises

References

Index

146
146
146
147

148
148
148
149
151
152
152
155

158
158
159
160
160
164
165
166

170
170
171
172
172
173
174
176
177

178
178
179
182
182
182
184
185
194
205
207
218
239

243

1
Introduction to Computer Systems

Until a few years ago computer systems were large, expensive and required
many expert staff to maintain, operate and program them. The users of such
systems were generally restricted to staff within large organizations that
could afford to purchase and operate them. The advent of microcomputers has
changed this, enabling the production of a computer system small enough to
sit on a desk and cheap enough to be used in the home (1), the laboratory
(2), the factory (3,4), in commerce (5) and in the office (6).

1.1 An end-user’s viewpoint of a computer system

The vast majority of users of computer systems are end—-users, in that they
use computer systems as a tool to aid their everyday work. The computer
system can be considered as a “black box” into which information is fed for
processing and then results are produced. The information input can range
from simple text (7) or numerical data (8) (entered via a keyboard) to
diagrams (entered via a digitizing tablet). Similarly, information output
may be text, nuwbers or diagrams and pictures (9) presented on a display
screen or printer. To communicate with the system, users employ terms that
are common to their everyday working environument, e.g. accountants use
columns of numbers and artists use pictures.

In general end-users can purchase a complete microcomputer system that
consists of the hardware (the physical components), and the software (the
programs that tell the hardware what to do) that suits their application.
Thus they do not need to have any knowledge of how a computer system works
or how to write the programs. In fact, attempts by end-users to learn-these
skills will distract them from gaining a knowledge of the more important
requirements, such as (10):

1 Applications of computers in their own field.

2 Limitations of computer systems, e.g. accuracy, size of problem that
can be solved, etc.

3 How to draw up a specification of a computer system to suit their
requirements.

4 How to draw up tender documents and arrange demonstrations.

5 How to assess the system”s performance in meeting the requirements
specification.

6 How to install and then manage the computer system, e.g. taking disk

backups, etc.

1.2 A computer programmer’s viewpoint

1.2.1 Application programmers

In many application areas there is still a need for specialists with a
knowledge of computer programming. These specialists may be professional

2 Introduction to Computer Systems

computer scientists implementing computer systems in particular application
areas, or scilentists or engineers writing programs for their own
applications. Such programs would generally be written in a high-level
problem-solving language (l1) that, apart from some appreciation of accuracy
limitations, requires little knowledge of the internal workings of the
computer system.

1.2.2 Systems programmers and hardware designers

Computer scientists and electronic engineers who have a need to write
programs to control input and output devices do require a knowledge of the
internal working of computer systems and how to write in assembly language.
This book describes the assembly language for the Motorola MC68000
microprocessor and how it can be applied to program simple input/output
devices. The MC68000 is a member of the Motorola range of microprocessors
(12). It is an advanced 16-bit microprocessor (13) that, in its various
versions, is used in many modern microcomputer systems (14,15).

1.3 A microcomputer system

At a superficial level a computer system can be considered as consisting of
three components, namely hardware, software and data.

1.3.1 Hardware

The term hardware embraces the physical components of the system:

1 The box that contains the processing elements, memory, input/output
interface circuits and power supply.

2 Display screen and keyboard for user interaction.

3 Peripheral devices such as disks and printers.

The internal electronic circuits of modern computers are made up from a
number of integrated circuit chips and other components. An integrated
circuit chip is a small packaged device a few centimetres square that
contains complex electronic circuits. The heart of the modern microcomputer
is the microprocessor which is an integrated circuit chip that contains the
basic control and processing circuits of a small computer. The complete
microcomputer system contains a microprocessor plus memory, input/output
devices, power supplies, etec.

However, before the computer hardware can perform a task (for example
add numbers or read a character from a keyboard), it requires a program to
tell it what to do.

1.3.2 Software

Software comprises the programs that tell the hardware what to do. A
program is a sequence of instructions stored in the memory of the computer
system. The processor fetches an instruction, decodes it and then executes
the required operation (e.g. to add two numbers). When an instruction
execution is complete, the processor fetches the next one and so on. A
program may be simple, for example, to calculate the average of ten numbers,
or very complex, as would be required to draw a picture on a display screen.

1.4 Instruction and data storage 3
1.3.3 Data

The data is the information to be processed by the computer system. Data
may be simple numbers for mathematical calculations, text such as addresses
or more complex structures such as pictures or drawings. The instructions
that make up the program define what data is to be processed, in what form
and at what time.

1.4 Instruction and data storage

Within the computer hardware there must be some memory that stores the
instructions of the program to be executed and the data to be processed.

1.4.1 Representation of integer numbers

Within modern computer systems the basic element of storage is the binary
bit which can represent a 0 or a 1. The reason for this is that it is very
easy to build electronic switches to represent an off/on condition or 0/1
binary value. Although a single binary bit can only represent two states, O
or 1, a sequence of bits can be used to store a larger range of values.
Such a sequence is called a word of storage and is usually 8, 16, 32 or 64
bits in length. An 8-bit word, for example, can represent a positive
number in the range 0 to 11111111 binary (0 to 255 decimal) as shown below:

bit 7 6 5 4 3 2 1 0

bit value |27 |20 25| 2423222120

In the diagram above it can be seen that the least significant or rightmost
bit, bit O, represents 1 and the most significant or leftmost bit, bit 7,
represents 128 decimal (the convention for identifying the bits within a
word is that the least significant bit is numbered 0). The combinations of
ls and Os of the 8-bit word thus represent the range O to 11111111 binary (O
to 255 decimal). The general term given to an 8-bit storage word is a byte.
The majority of modern computer systems use a memory based on bytes of
storage. To represent values that are too large to store in eight bits a
number of bytes may be used. For example, a 16-bit number, that could be
made up from two bytes, can represent a value in the range 0 to 65535
decimal (see Appendix A for more details of the binary number system).

Many scientific calculations require the use of signed numbers and in
this case the majority of modern computer systems use a storage system known
as twos complement binary arithmetic in which the most significant bit 1is
used to store the sign (1 for a negative number and O for a positive
number). Thus an 8-bit number can represent values in the range -128 to
+127 and a 16-bit number values in the range -32768 to +32767 (see Appendix
A for further discussion). The Motorola MC68000 allows calculations to be
carried out on 8-, 16- and 32-bit signed and unsigned numbers.

In practice it would be both difficult and error prone to enter data
directly in binary form, so hexadecimal (base 16) or decimal are more
commonly used. It is a relatively easy task to convert between binary and
hexadecimal (Appendix A describes some conversion techniques).

4 Introduction to Computer Systems

Exercise 1.1

Convert the following numbers to binary and hexadecimal; do the calculation
in each case and then convert the result back into decimal (use signed 8-bit
twos complement binary numbers):

16 45 110 110
+32 +60 - 45 + 45

The last calculation gives a condition called overflow; explain what has
happened.

1.4.2 Character data

Character data is used within the computer to represent text (such as names
and addresses) and consists of all the usual printable characters (for
example the alphabet A-Z and a-z, digits 0-9 and other characters such as +,
) *: /)'

In practice, each character is stored in a byte of memory and
represented by a particular binary pattern or character code. To enable
different computers, terminals and printers to be connected together there
are a number of standard character codes. The most commonly used character
code is called ASCII (American Standard Code for Information Interchange),
which is listed in Table A.2 of Appendix A. The character A, for example,
is represented by the binary pattern 01000001 (41 hexadecimal), and B by
01000010 (42 hexadecimal), etc. The majority of computer users do not need
to know or even be aware of these codes as the keyboard and display
equipment converts between the characters and the internal codes
automatically (i.e. if the user hits the key A on the keyboard the binary
value 01000001 is sent to the computer).

Exercise 1.2

From Table A.2 of Appendix A determine the decimal, hexadecimal and binary
values of the ASCII character code for the following characters:

A a B bI { X x 1 5 + - 272 =

Can you see anything significant about the order of the ASCII character
codes for letters and digits and why it may be useful ?

1.4.3 Instruction representation

A computer program is made up of a sequence of instructions which are
represented by binary patterns. For example, the binary pattern
0100001001000011 (4243 hexadecimal), when executed by the Motorola MC68000
microprocessor, would set all the lower 16 bits of the data register D3 to
0. Each instruction that the computer hardware can execute has a particular
binary pattern, with sequences of such binary patterns in the memory of the
computer forming a program. Programs in this form are in a language called
machine code, i.e. the language the hardware of the computer understands.
It is clear that if humans had to write programs in this machine code form,
programming would be a very error prone and time consuming task. In
practice, machine code programming is limited to applications where there is
no other way of getting a program into a machine (for example, testing a

1.6 High-level problem solving languages 5

computer where the input/output system is faulty).
In practice, professional programmers use either an assembly language
or a high-level language.

1.5 Assembly language

In an assembly language each machine instruction is represented by a
meaningful mnemonic (e.g. ADD, SUB, DIV) and data can be represented in
binary, octal, hexadecimal, decimal and character form. The MC68000
instruction that clears the lower 16 bits of data register D3, as above,
would be written:

CLR.W D3

where CLR.W is the instruction mnemonic and D3 is the position of the data
being operated upon. The computer hardware can only understand machine
code, so before it can be executed the assembly language program has to be
converted into machine code. This is done by a program called an assembler
that takes each assembly language statement and converts it on a one—to-one
basis into the equivalent machine code. The resultant machine code is then
executed.

Even this form of programming is difficult because it is only one level
above machine code and orientated to a particular computer (each processor
type has its own machine code language). For example, programmers who had a
knowledge of the Motorola MC68000 microprocessor assembly language would
have to learn a new assembly language if they then worked with an Intel 8086
microprocessor. In addition, any assembly or machine code language programs
that had been written for the MC68000 would have to be totally rewritten for
the 8086.

Even with the above disadvantages assembly language programming is
still required in many cases, such as:

(a) for code to control input/output devices;

(b) for time critical code in real time applications;

(c) for some control applications.

Machine code and assembly languages are described as low-level languages in
that they are orientated towards the computer hardware. High-level
languages on the other hand are computer independent and problem orientated.

1.6 High-level problem solving languages

High—level languages are written in an English or mathematical notation that
is orientated towards solving practical problems (11). Some examples of
high-level languages are:

BASIC Beginners All-purpose Symbolic Instruction Code: a simple language
available on many home microcomputers;

FORTRAN FORmula TRANslation: a language widely used for mathematical,
scientific and engineering applications;

COBOL COmmon Business Orientated Language: a language designed for
commercial business applications;

PASCAL a modern powerful general problem solving language.

After the program has been entered into the computer it has to be converted

6 Introduction to Computer Systems

into machine code by a program called a compiler. Each statement in a high-
level language can be converted into a number of machine code instructions.
For example, the Pascal statement:

A:=B+C+20;

could become several machine code instructions.

The compilation process is not 1007 efficient so a program written in a
high-level language will take more memory and run slower than an equivalent
assembly language program writtenm by a good programmer. However, the
advantages of working in a language that is orientated towards solving
problems rather than towards the computer hardware means that the majority
of application programs are written in high-level languages.

An additional advantage of using high-level languages is that such
languages are less computer dependent than assembly languages (depending
upon the quality of the international standard of the language and the
particular implementation being used). A Pascal program written and tested
on one make of computer system should run without problems on a different
make.

1.7 Review of information representation

ALL information within the computer, either instructions or data, is
represented in binary. To a programmer working in a high-level language
this is not a problem as the compiler and run time system look after data
storage and conversion between decimal and binary. Consider the following
simple Pascal program which writes a number and a character:

PROGRAM TEST;

CONST I=20; X="D";

BEGIN

WRITELN(® number is “,I,” letter is 7,X);
END.

When the above program is compiled (i.e. converted into machine code), the
compiler assigns the storage for any variables and sets up the values
defined by CONSTant expressions - the values of I and X are converted to the
equivalent 16-bit and byte binary wvalues 0000000000010100 and 01000100
respectively (0014 and 44 hexadecimal). When the program is executed the
WRITELN statement converts the internal binary representation of the integer
number I into a string of digit character codes to be transmitted to the
display screen (the display hardware converts these into characters to be
viewed).

When working in a low-level language such as machine code or assembly
code, the binary pattern 01000010 01000011 (42 43 hexadecimal) could
represent to the computer hardware:

two 8-bit integer numbers: 66 and 67 decimal;

a 16-bit number: 16963 decimal;

two characters in ASCII: B and C respectively;

the instruction to the Motorola MC68000 microprocessor to set the lower
16 bits of data register D3 to O, i.e. CLR.W D3.

P VRN SR

When working in a high-level language such as Pascal, the compiler and run

1.8 Problems for Chapter 1 7

time system look after the organization of data storage and conversion
between external characters and the internal binary form. When working in
machine code or assembly languages the programmer is responsible for seeing
that instructions and data are kept separate and that the correct code is
executed and data processed. It is very easy to get mixed up and try to add
character data or even execute data. Careful program design and coding will
avoid this problem.

Exercise 1.3
What particular problems could face an assembly language programmer when
looking for a new job ?

1.8 Problems for Chapter 1

1 Why is the binary system used for information storage within modern
computer systems ?

2 Convert the following numbers to binary and hexadecimal; do the
calculation in each case and then convert the result back into decimal
(use signed 16-bit twos complement binary numbers):

67 67 456 456 1027
+86 -86 +345 -345 +2056
3 Describe, in each case, the advantages/disadvantages and areas of

application of:
(a) machine code programming;
(b) assembly language programming;
(c) high-level language programming.

2

Computer Hardware: The Functional
Components

The hardware of a microcomputer system can be broken down into a number of

functional components:

High speed registers

Primary and secondary memory

The Control Unit

The Arithmetic/Logic Unit (ALU)

Input and Output

Fig. 2.1 is a diagrammatic representation of these components and shows
information and control flow within the system.

SECONDARY
MEMORY

L

P

) o
INPUT OUTPUT
PRIMARY
> VMEMORY i
i S E R —— |
I v
} CONTROL ALU
| i CPU - Centra
Processing
I | 4 Unit
|
I High speed registers
L —_ -

— nstructions

Data

Control signals

Fig. 2.1 Functional block diagram of a computer system

the

The following sections describe each functional component and its role
within the overall system.

