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Preface

WHEN I learnt my second machine-level language, I became fasci-
nated by the possible variations in computers at this level. My fasci-
nation resulted in this book, which is designed to give a comprehensive
survey of computers from 1946 to the present, and which should be of
interest toanyone involved in computing. In particular it should appeal
to those who are interested in the differences between computers at an
architectural level, for example programmers who would like to know
more than is revealed in their assembler language manuals. It is suit-
able as a textbook for courses on computer architecture for second-
and third-year undergraduate students, who have done some program-
ming at the machine level.

The book describes the different features seen by a machine-level
programmer, after all the supportive software is stripped away. It does
not attempt to describe this software itself. Nor does it describe the
technology and design of the combinatorial and sequential circuits out
of which the hardware is built. A number of excellent books are avail-
able which describe these two levels. The computers discussed are
always general-purpose, stored-program digital computers, except for
a brief excursion to analog and hybrid computers in Chapter 7.

An attempt has been made to adhere to a common terminology
throughout, despite the use by computer manufacturers of different
terms for the same thing (or the same term for different things). In sev-
eral cases, of course, terms introduced by IBM have become de facto
standards.

I would like to thank the many computer manufacturers and others
who have supplied information, my colleagues and students at the Uni-
versity of Lancaster on whom I tried out a number of these ideas, and
my wife for continual encouragement.

Lancaster, October 1979 R.G.G.
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1 Introduction

1.1. The Classic Von Neumann Computer

THE TYPICAL programmer sees a modern computer in terms of one or
more high-level languages, together with a command language which
he must use to communicate with the operating system. His only con-
tact with its hardware may be with an interactive terminal (if he is
lucky), or with a series of error messages couched in terms of the inter-
nal structure of the computer (if he is unlucky). Even the assembler-
language programmer is protected from some of the worst idiosyn-
crasies of the computer’s hardware by the ministrations of the opera-
ting system (typically in the control of peripheral devices). The aim of
this book, however, is to look beneath this superstructure, and to
describe computers and their variation at a basic hardware level, below
the operating system but above the detailed electronics; we discuss fur-
ther the nature of this level in § 1.3.

We first consider a very simple computer, with which we can intro-
duce the basic concepts and terminology required for the remainder of
the book. We choose to do this in terms of a simplified version of the
computer described in the paper ‘Preliminary discussion of the logical
design of an electronic computing instrument’ by Burks, Goldstine,
and Von Neumann (1946), for reasons which will be mentioned later.
This computer, shown in Figure 1.1, consists of four sections: the store;
the data manipulation unit; the input and output units; and the control
unit. We review the salient points of these sections in turn.

(a) The store

The store is a collection of store locations or words, into each of
which the computer can place a piece of information, to be retained for
later extraction and use. A word is a group of electronic components,
each of which can be set into either of two states. Thus a word can store
any information that can be coded in the form of an appropriate num-
ber of binary bits: such a piece of information might be a numeric
value, a group of one or more characters, or (as we shall see later) an
instruction for controlling the computer.

The number of bits of information which a store word can hold is its
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word length, and is the same for all words in the store. The word length
for the store of a particular computer is chosen to hold a maximal
numeric value or number of characters appropriate to the application
area and cost to which the computer is designed. Word lengths vary
from 12 or less to 64 or more bits, typical lengths being 16 and 32 bits.

In order to store or retrieve information we must have some means
by which the computer can refer to any location. Since a store is con-
structed as a vector or linear sequence of words, we specify each one
by its position in the sequence. Thus if we have a set of /V words or store
locations, each has an associated numeric value in the range zero to
N-1, the store address, by which it is uniquely specified. Such a store
address is a new type of information that we might want to deposit as
the contents of a word.

Two special storage devices or registers form part of the store, the
store address register (SAR) and the store data register (SDR), or
store buffer register. In order to store a piece of information, it is
placed in the SDR; the address at which it is to be stored is placed in
the SAR, and the control unit of the computer sends a ‘write’ signal to
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the store. After some delay depending on the technology involved, the
operation is complete; the specified location contains the new infor-
mation, its previous contents having been overwritten and lost. In
order to retrieve a piece of information, its address is placed in the
SAR and a ‘read’ signal sent to the store; after some delay, the infor-
mation is available in the SDR, for routing to some other part of the
computer. Note that the store location accessed still contains a copy of
the information read.

We assume that the store is randomly accessible; that is, the time
taken to access a store location in order to store or retrieve information
is constant and (in particular) is independent of the particular location
being accessed and of the location previously accessed.

Notice that we avoid the (anthropomorphic) term memory, and the
term core store, which presupposes a particular store technology
(although it is often used generically); when we wish to distinguish
among several levels of storage on a computer, we will refer to this
basic level as main or primary store. Furthermore the term register is
sometimes used to refer to any device which holds a group of one or
more bits of information, and which is capable of being accessed at
electronic speeds: in this book we use it only for storage devices pro-
vided for some special purpose (such as the SAR), and do not apply it
to a general store location.

(b) The data manipulation unit

The data manipulation unit is capable of performing any of a fixed
set of operations as signalled by the control unit. A typical operation
requires two pieces of data or operands upon which to operate; one is
extracted from an appropriate location in store, and one is found in a
special storage device or register within the data manipulation unit,
the accumulator. The result of the operation is placed in the accu-
mulator, destroying its previous contents. In a computer oriented
towards numerical calculation, the operations must include provision
for addition and subtraction, and probably multiplication and division
as well; on a computer oriented towards character manipulation there
would be various operations for moving and scanning character
strings.

We have chosen a name for this unit which does not presuppose
numerical calculation; other terms for this unit are the arithmetic unit,
the arithmetic and logical unit (ALU), and the mill (a term introduced
by Babbage, and used in some British computers).
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(¢) Input and output units

Any computer has a number of input/output or peripheral devices
attached to it, both for communication with the outside world (card
readers, line printers, terminals, etc.) and for augmenting the com-
puter’s information storage capacity (magnetic discs, magnetic tape,
etc.). As with the data manipulation unit, these units are able to carry
out any one of an appropriate set of operations when signalled by the
control unit; for example, to read a digit punched on paper tape and
store it in a specified store location or to retrieve a digit from a specified
store location and print it on an electric typewriter.

At present we assume that the computer does only one thing at a
time. If a read or write operation is started on a peripheral device, the
computer awaits the completion of this operation before continuing
with the next. When we consider that a typical input/output operation
is thousands or millions of times slower than a typical internal opera-
tion (such as the addition of two numbers), and that there may be other
tasks to which the computer could turn its attention while such an
operation is going on, then we can see scope for redesigning the com-
puter in this area.

Weintroduce the term transput from the Algol 68 language to cover
both input and output: thus for instance we will talk of a transput
device instead of a peripheral device, and a transput operation instead
of an input/output operation.

(d) The control unit

The control unit supervises the operation of the other three sections
of the computer discussed above. It does this by initiating the transfer
of data between units, and by sending appropriate control signals, in
accordance with a schedule or program of instructions. Each instruc-
tion is encoded in such a way that it can be held in a store location, so
that the store contains both the data being operated on and the pro-
gram of instructions specifying the operations to be performed. The
control unit contains a special storage device or register, the program
counter, which contains the address of the store location holding the
next instruction to be executed or obeyed. Other names in common use
for this register are the instruction counter, next instruction address
register (or NIAR), sequence register, and current order register.

While the computer is running, the control unit is executing a basic
cycle divided into two phases, fetch and execute. The fetch phase
involves extracting the contents of the store location referred to by the
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program counter, and decoding it into an operation code portion,
specifying an operation to be carried out, and an operand portion,
specifying a store address (whose numeric value we will indicate as X).
The program counter is then incremented by one, to point to the next
store location in sequence, since this normally holds the next instruc-
tion to be executed. The control unit then enters the execute phase, to
carry out the operation decoded in the fetch phase. There are three
cases.

(a) An operation of the data manipulation unit is called for; for exam-
ple, transfer the numeric value held at store address X to the data
manipulation unit, and add it to the value in the accumulator, or trans-
fer the value in the accumulator to the store and deposit it at address
X.

(b) An input/output operation is called for; for example, transfer the
character at store address X to the typewriter and print it, or read the
next character punched on a piece of paper tape and transfer it to the
store, to be deposited at address X.

(c) The sequence of instructions being executed is to be changed, so
that the next instruction to be executed is not the one stored immedi-
ately after the instruction currently being executed. The store address
X extracted from the current instruction is placed by the control unit
in the program counter (destroying its previous contents), so that the
next fetch extracts an instruction from store address X (and then from
store addresses X+1, X+2, etc., until a further such ‘jump’ instruction
is encountered).

We require two types of jump instruction; one (the unconditional
Jjump) which always changes the program counter, and one (the con-
ditional jump) which changes the program counter only if a certain
condition is true (such as that the accumulator contains a non-negative
value); if the condition is false, the next instruction to be executed is
the one stored immediately after the jump instruction. Thus the com-
puter selects a course of action dependent on the data values it
encounters.

To illustrate these concepts, Figure 1.2 gives a section of program
to compare the contents of locations 100 and 101, and store the larger
value in location 102.
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Load into accumulator contents of location 100
Subtract from accumulator contents of location 101
If contents of accumulator non-negative, jump to
Load into accumulator contents of location 101
Jump to |
Load into accumulator contents of location 10!
Store accumulator in location 102

FiG. 1.2

The stored program concept

One of the consequences of holding instructions in store locations is
that they can be treated as data, and manipulated as such by the com-
puter. This allows us to write programs which incorporate instruction
modification. Suppose, for example, that we wish to write a program
in which the computer has to sum N values held in successive store
locations, perhaps with store addresses 100, 101, 102, and soon. N may
be too large for there to be room for that number of add instructions
to be held economically in the store, or the value of N may not be
known when the program is being prepared (for example it might be
read in as a piece of data). On the simple computer described above we
would have to do something like the following:

We write an add instruction which initially refers to store address
99, and arrange to have it executed N times by appropriate use of a
conditional jump instruction. Then, before each execution of the add
instruction, we arrange to manipulate it as data in such a way that one
is added to the address portion of the instruction; thus the add instruc-
tion refers successively to store addresses 100, 101, 102, and so on. A
skeleton program for this is shown in Figure 1.3.

Set accumulator to zero

Set loop counter to N

Add one to operand field of ‘add’ instruction below:
Add into accumulator contents of location 99
Subtract one from loop counter

If loop counter > 0, jump to

Fic. 1.3

There are major difficulties with the use of this technique, since it is
likely to result in programs whose structure is extremely opaque, and
which are therefore very difficult to understand and debug. Further-
more the lack of any rigid demarcation between the (unchanging) pro-
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gram and the (changing) data means that the computer hardware
cannot be used to protect the program from corrupting itself, nor can
a single copy of a program be shared simultaneously by several users.
For these reasons the basic form of instruction modification described
aboveis no longer used; instead its effect is achieved by the use of index
registers, as described in the next section.

The stored program concept, the realization that instructions can be
encoded and held in the store of the computer together with the data
being operated on, is an important one for two reasons. First, as men-
tioned above, it introduced the idea of instruction modification, for
which better mechanisms could then be found. Second, a program as
a whole could be treated as data by a supervisory program; a loader,
an assembler or compiler, or an operating system. Since this is such a
vital concept, all the computers discussed in this book are stored pro-
gram computers. We are thus ignoring two classes of externally pro-
grammed device, common in the early days of computing:

(a) Computers whose programs were held on such external media as
paper tape or punched cards. Examples of this class are the Harvard
Mark I (Aiken and Hopper 1946) and Babbage’s analytical engine
(Bowden 1953, Appendix 1).

(b) Devices where the program resides in a plugboard, such as the
early ENIAC computer (Goldstine and Goldstine 1946).

We could envisage computers with two main stores, one for the pro-
gram and one for data, but these would be very inflexible. Instead we
assume that each store location in main store can hold either an
instruction or a piece of data; this does not, of course, preclude the pos-
sibility of distinguishing these two cases at any particular time, either
by segregating instruction areas from data areas, or by marking store
locations in some way.

The general-purpose electronic digital computer

Let us now try and define rather more precisely the type of device
that we are considering. We have introduced the term computer, and
by this we mean a device which can process substantial quantities of
data without detailed human intervention.

We have limited the field to stored-program computers, and we fur-
ther limit the field to general-purpose computers; that is, to computers
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with an instruction set rich enough to perform a wide variety of tasks.
This concept is rather vague because it can be shown that a computer
with a very basic instruction set can simulate a Turing machine and
therefore can, in theory, perform any ‘computable’ task, so that such
a computer is (again in theory) completely general-purpose (see for
example Minsky 1967).

We will not normally discuss the technology out of which the archi-
tectures that we describe are to be implemented. However, we will
from time to time assume that we are discussing electronic computers,
implemented by the routing and gating of electrical signals. This does
not preclude the theoretical possibility of implementation in other
technologies, such as fluidics (see for example Gluskin, Jacoby, and
Reader 1964), although historically this has not been the case.

Finally, we will be considering digital computers, where data is
stored and manipulated by devices that can assume one of only a finite
number of states, rather than by devices which can assume any state
in a prescribed continuous range (as in analog computers).

Von Neumann’s computer

There are many possible computers which could have been used to
exemplify the terms we have introduced. For example we could have
used a simple computer such as the DEC PDP-8, or a suitable hypo-
thetical computer such as that presented for didactic purposes by
Knuth (1968). However, these have assimilated some of the develop-
ments in computer design which we will discuss later. Instead, we
choose to use the Von Neumann, Princeton, or IAS (Institute of
Advanced Studies) computer introduced in Von Neumann’s paper.
We take this paper to mark the beginning of the era of modern com-
puting, since it was the ‘first widely circulated document about high
speed computers’ (Knuth 1970).

The paper proposed a computer with a store of 4096 40-bit words
stored on the faces of a number of ‘Selectrons’ or electrostatic storage
tubes, this being a device able to provide random-access storage before
the introduction of the ferrite core store (first used on the Whirlwind
computer at MIT in 1953). Although such a device matches the
modern conception of main store, most early computers (such as
EDVAC (Knuth 1970) and EDSAC (Wiles and Renwick 1949)) had
a serial store, implemented as a magnetic drum or set of delay lines
(as discussed in §5.6).

The word length of 40 bits was chosen to give suitable accuracy for
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the type of fixed-point binary calculations for which the computer was
designed (hardware floating-point arithmetic having been rejected).
Instructions of such a length would have been wasteful of storage, so
instructions were 20 bits long (6 for an operation code, 12 for a store
address, and 2 unused) and held two to a store word, as shown in Figure
1.4. The control unit executed first the left-hand instruction, then the
right-instruction, of each word in the program. Pairs of jump instruc-
tions were provided to transfer control to the left- or right-hand
instruction of a specified store location.

Left-hand instruction Right-hand instruction
[(6vis [2]  12bits | 6bits [2] 12bis |
Operation code Unused Store address

FiG. 1.4

The internal operations proposed in this paper are shown in Figure
1.5. Notice the ‘partial substitution’ orders (18 and 19), provided for
instruction modification and subsequently altered to provide certain
shifting facilities as well. Apart from the storage of two instructions to
a word, the only extension to our rudimentary computer is in the pro-
vision of a second storage device or register in the data manipulation
unit, the arithmetic register AR, used in conjunction with the accu-
mulator for multiplication and division; the need for such a register is
discussed in §2.1. Figure 1.6 shows how the section of program in
Figure 1.2 would appear encoded for the Von Neumann computer, to
occupy locations 50 to 53.

Input/output operations were not specified in detail in this paper,
but three devices were proposed: an electric typewriter for the transfer
of small quantities of data, a display unit for graphical presentation of
results, and several magnetic wire or tape units to provide a secondary
storage medium and for all normal input and output. It was expected
that input data would be transcribed to the magnetic wire by a process
which did not involve the computer, and similarly for output.

Word-oriented single-address binary computers

Some basic features of the Von Neumann computer do not carry
over to all the other designs we will study, for it can be characterized
as a word-oriented, single-address binary computer.



