3

Shared Memory Multiprocessing

edited by
Norihisa Suzuki

The MIT Press
Cambridge, Massachusetts
London, England

©1992 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or
information storage and retrieval) without permission in writing from the
publisher.

This book was printed and bound in the United States of America.
Library of Congress Cataloging-in-Publication Data

Shared memory multiprocessing / edited by Norihisa Suzuki.
p. cm,

Includes bibliographical references.

ISBN 0-262-19322-1

1. Multiprocessors. 2. Memory management (Computer science) I. Suzuki,
Norihisa, 1946—
QA76.5.54445 1992
004’.35—dc20 92-23489

CIP

Shared Memory Multiprocessing

Preface

The papers included in this book are selected from those presented at
the International Symposium on Shared Memory Multiprocessing, which
was held in Tokyo from April 2 to April 4 in 1991 under the sponsorship
of the Information Processing Society of Japan. It was the first meeting
to focus on shared memory multiprocessing, and I am happy to report
that it was very successful, with excellent papers and an enthusiastic
audience.

Shared memory multiprocessors have been in existence for quite some
time. However, the invention of snoop cache in the early 1980’s and the
subsequent explosion in the computational power of microprocessors and
in the density of ASIC chips made it possible to build shared memory
multiprocessors economically and reliably. Since then, not only have
research prototypes flourished, but many commercial products have also
been introduced. Now the first decade is drawing to a close, and it was
thus a very appropriate time to hold the conference.

If we look at the commercial market place, not only have many com-
mercial products been introduced with considerable economic success,
but also many of the commercial microprocessors and peripheral chips
now contain mechanisms to support shared memory multiprocessors.

Mechanisms for supporting shared memory multiprocessing at the op-
erating system level have been studied well, and they have been intro-
duced into proprietary operating systems. Now, they are being incor-
porated into widely available operating systems. Compiling techniques
are also progressing, and parallelizing FORTRAN and C compilers are
now available on most systems.

On the research side, so-called scalable architecture is being hotly
pursued and is the major theme of this book. Investigations are being
made to see whether we can construct distributed memory multiproces-
sors with hardware support to realize a shared memory model. This
architecture is considered to be able to support hundreds of micropro-
cessors without performance degradation. The speed of microprocessors
is also increasing very rapidly, so it is a big challenge to connect them
efficiently and package them economically.

I believe that this book gives a clear perspective on the state of the
art in shared memory multiprocessors.

I would like to thank the organizations that supported this confer-
ence financially: the International Information Science Foundation, IBM
Japan, and NEC.

Preface

Finally, T would like to thank the following people who worked on

organizing the symposium:

General Chair: Takashi Masuda
Treasurer: Kazuya Tago
Local arrangement: Yoshikatsu Tada
Program committee: Tilak Agerwala
Forest Baskett
Ed Clarke
David Gifford
Jim Goodman
John Hennesy
Paul Hilfinger
Nobuhiko Koike
Norihisa Suzuki (Chairman)
Chuck Thacker
Shinji Tomita
Akinori Yonezawa

Tokyo, Japan
October 1991

Norihisa Suzuki

The MIT Press, with Peter Denning as general consulting editor, publishes
computer science books in the following series:

ACL-MIT Press Series in Natural Language Processing
Aravind K. Joshi, Karen Sparck Jones, and Mark Y. Liberman, editors

ACM Doctoral Dissertation Award and Distinguished Dissertation
Series

Artificial Intelligence
Patrick Winston, founding editor
J. Michael Brady, Daniel G. Bobrow, and Randall Davis, editors

Charles Babbage Institute Reprint Series for the History of
Computing
Martin Campbell-Kelly, editor

Computer Systems
Herb Schwetman, editor

Explorations with Logo
E. Paul Goldenberg, editor

Foundations of Computing
Michael Garey and Albert Meyer, editors

History of Computing
I. Bernard Cohen and William Aspray, editors

Logic Programming
Ehud Shapiro, editor; Fernando Pereira, Koichi Furukawa, Jean-Louis
Lassez, and David H. D. Warren, associate editors

The MIT Press Electrical Engineering and Computer Science Series

Research Monographs in Parallel and Distributed Processing
Christopher Jesshope and David Klappholz, editors

Scientific and Engineering Computation
Janusz Kowalik, editor

Technical Communication and Information Systems
Edward Barrett, editor

Contents

II

Preface
EXPERIENCE

Experience with the Firefly Multiprocessor
Workstation
Susan Owicki

Design and Evaluation of Snoop-Cache-Based
Multiprocessor, TOP-1

Shigenori Shimizu, Nobuyuki Oba, Atsushi
Moriwaki, and Takeo Nakada

Symbolic Computation Algorithms on Shared
Memory Multiprocessors
E. M. Clarke, S. Kimura, D. E. Long, S. Michaylov,
S. A. Schwab, and J. P. Vidal

Experimental Evaluation of Algorithmic
Performance on Two Shared Memory
Multiprocessors

Anand Sivasubramaniam, Gautam Shah, Joonwon
Lee, Umakishore Ramachandran,

and H. Venkateswaran

CACHE COHERENCY

Formal Verification of the Gigamax Cache
Consistency Protocol
Kenneth McMillan and James Schwalbe

An Evaluation of Cache Coherence Protocols
for Multiprocessors

Sandra Johnson Baylor, Kevin P. McAuliffe,

and Bharat D. Rathi

25

53

81

111

135

vi

II1

10

11

12

13

KRPP: The Kyushu University
Reconfigurable Parallel Processor: Cache
Architecture and Cache Coherence Schemes
Kazuaki Murakami, Shin-ichiro Mori, Eiji Iwata,
Akira Fukuda, and Shinji Tomita

SOFTWARE SYSTEM

MUSTARD: A Multiprocessor UNIX for
Embedded Real-Time Systems

Shuichi Hiroya, Takeshi Momoi, and Katsutoshi
Nihei

An Empirical Investigation of the
Effectiveness and Limitations of Automatic
Parallelization

Jaswinder Pal Singh and John L. Hennessy

Fine-Grain Loop Scheduling for MIMD
Machines

Carrie J. Brownhill, Ki-chang Kim, and Alexandru
Nicolau

Restructuring a Parallel Simulator to
Improve Cache Behavior

David R. Cheriton, Hendrik A. Goosen, and Philip
Machanick

A Replay Mechanism for Mostly Functional
Parallel Programs
Robert H. Halstead, Jr., and David A. Kranz

Abstracting Data-Representation and
Partitioning-Scheduling in Parallel Programs
Gail A. Alverson and David Notkin

Contents

165

195

213

241

261

287

315

Contents

v

14

15

16

17

18

19

SCALABLE SHARED MEMORY
MULTIPROCESSOR

Latency Tolerance through Multithreading in
Large-Scale Multiprocessors

Kiyoshi Kurihara, David Chaiken, and Anant
Agarwal

Cenju: A Multiprocessor System with a
Distributed Shared Memory Scheme for
Modular Circuit Simulation

Toshiyuki Nakata, Norio Tanabe, Nobuki Kajihara,
Satoshi Matsushita, Hiromi Onozuka, Yoshihiro
Asano, and Nobuhiko Koike

Overview and Status of the Stanford DASH
Multiprocessor

Daniel Lenoski, James Laudon, Kourosh
Gharachorloo, Wolf-Dietrich Weber, Anoop Gupta,
and John Hennessy

An Analysis of Shared-Memory
Synchronization Mechanisms
Philip J. Woest and James R. Goodman

A Cache Coherence Mechanism for Scalable,
Shared-Memory Multiprocessors
Steven Scott

Dynamic Pointer Allocation for Scalable
Cache Coherence Directories
Richard Simoni and Mark Horowitz

vii

341

363

391

407

437

463

viii Contents

20 Fault-Tolerant Design for Multistage Routing 483
Networks
André DeHon, Thomas Knight Jr., and Henry
Minsky

List of Contributors 505

I EXPERIENCE

1 Experience with the Firefly
Multiprocessor Workstation

Susan Owicki

Commercial multiprocessors are used successfully for a range of applications,
including intensive numeric computations, time-sharing, and shared servers.
The value of multiprocessing in a single-user workstation is not so obvious,
especially in an environment where numeric problems do not dominate. The
Digital Equipment Corporation, Systems Research Center has had several
years of experience using the five-processor Firefly workstation in such an
environment. This report is an initial assessment of how much is gained from
multiprocessing on the Firefly.

Reported here are measurements of speedup and utilization for a variety of
programs. They illustrate four sources of concurrency: between independent
tasks, within a server, between client and server, and within an application.
The nature of the parallelism in each example is explored, as well as the
factors, if any, that constrain multiprocessing. The examples cover a wide
range of multiprocessing, with speedups on a five-processor machine varying
from slightly over 1 to nearly 6. Most uses derive most of their speedup
from two or three processors, but there are important applications that can
effectively use five or more.

1.1 Introduction

Commercial multiprocessors are used successfully for a range of appli-
cations, including intensive numeric computations, time-sharing, and
shared servers. In these uses, there is abundant scope for multiprocessing
in handling simultaneous requests from separate users or in single-user
computations where there is substantial concurrency in the structure of
the problems.

The value of multiprocessing in a single-user workstation is not so
obvious, especially in an environment where numeric problems do not
dominate. Can other applications besides scientific computation exploit
multiple processors? Are multiple users essential to generate a reason-
able workload for the system? ‘

For several years, the Firefly multiprocessor workstation [9] has been
the primary source of computing at the Digital Equipment Corporation,
Systems Research Center (SRC). Software for the Firefly spans a wide
range of systems and applications programs. Most Firefly programs are
written in an extension of Modula 2 [12] called Modula 2+ (7], which
provides threads and synchronization primitives for concurrent program-
ming. The Firefly workload does not include the sort of lengthy numeric

4 S. Owicki

calculations that have traditionally benefited from concurrency. Never-
theless, much of the software has been designed to take advantage of
multiprocessing. Thus there has been substantial experience at SRC
with using multiprocessor workstations for non-numeric computation,
and it seems appropriate now to assess their value. To do so, a num-
ber of instances of multiprocessing on the Firefly were examined. This
report gives measures of concurrency for these examples, and describes
the sources and limits of their parallelism.

The Firefly used for these measurements has five 1-MIP MicroVAX
processors, so it is called a 5-MIP machine. In actual use, though, the
Firefly has less computational power than a 5-MIP uniprocessor. This is
partly because some of the software was originally written for a unipro-
cessor. But even code written for the Firefly seldom exploits all the
concurrency that the processors provide. There are many reasons: some
problems have limited parallelism, sometimes the overhead of concur-
rency is too high, sometimes another part of the machine is a bottle-
neck, and sometimes the implementor chose to avoid the complexity of
concurrent programming.

However, the Firefly doesn’t have to provide a full 5 MIPS of com-
puting power to be cost-effective, since it is generally cheaper to build a
multiprocessor than a uniprocessor with the same MIPS rating. Build-
ing a multiprocessor with, say, three to thirty processors may not cost a
great deal more than building a uniprocessor with the same CPU. Thus
the multiprocessor may be economically attractive even if its processors
are not always fully utilized. The benefit gained from greater computing
power must be weighed against the increased cost of the multiprocessor.

This report is concerned with assessing the benefit side of the cost-
benefit equation. Benefit is estimated using the standard metrics speed-
up and processor utilization. These metrics, which are discussed in
Section 2, are less than ideal, but they do give some feeling for the
degree of success in exploiting multiprocessing.

Four sources of concurrency were identified in day-to-day workstation
activities:

e single-user time-sharing: concurrency between independent tasks. A
user may undertake several tasks in parallel, such as editing or reading
mail while a compilation is in progress.

Experience with the Firefly Multiprocessor Workstation 5

e concurrency within a server. The window system, the file system, and
other basic services are implemented with algorithms that use multipro-
cessing.

e concurrency between client and server. Sometimes a server can return
an immediate answer to a request, then compute in parallel with its client
to complete processing the request.

e concurrency within an application: some application programs are
coded with multiple threads for performance.

Note that the first three sources of concurrency are available in all
uses of the workstation, without requiring an application programmer
to write multi-threaded code. So multiprocessors in a workstation can
be useful even when running applications that do not attempt to exploit
concurrency.

Sections 3 to 6 contain speedup and utilization data for a number
of examples from each of the areas above. All the measurements were
taken on a 5-processor, 16 Megabyte Firefly, unless otherwise noted.

1.2 Metrics

Parallel sorting will be used as an example to illustrate speedup and
processor utilization. Figure 1.1 gives graphs of speedup and utilization
for a quicksort program [11] working on an array of 10000 integers. The
algorithm sequentially partitions the array and then recursively applies
quicksort in parallel to the two subarrays.

The speedup reported in Figure 1.1a is defined in the conventional
way: speedup for n processors is

S(n) =T()/T(n), (1.1)

where T'(k) is the execution time when the program is run using k pro-
cessors. Speedup is determined using an option of Taos, the Firefly
operating system, that restricts the set of processors available to the
scheduler. Thus T'(k) is measured by disabling all but k processors and
noting the elapsed time to execute the program. Since elapsed time can
fluctuate due to other activities in the system, T'(k) was taken as the
median elapsed time of three to five runs.

The dotted line in Figure 1.1a represents the theoretical “perfect”
speedup. For two and three processors, Quicksort has a nearly optimal

6 S. Owicki

501 1.0
084 average=3.4
064
044
021

| | | | 0.0
1 2 3 4 5 0 1 2 3 4 5
a. Speedup b. Processor Utilization

Figure 1.1
Quicksort of 10000 integers.

speedup. There is some additional benefit from the fourth and fifth pro-
cessors, but it is less significant. The amount of parallel computation is
limited by the structure of the algorithm: during the initial partitioning,
for example, only one thread is active.

Processor utilization for a five-processor run of Quicksort is shown
in Figure 1.1b. The height of the kth bar represents the fraction of
the time when exactly k processors were busy. There was essentially
no time when all processors were idle, which is to be expected in a
compute-bound task like sorting an array. All five processors were busy
for more than 40% of the time. This is somewhat surprising, given that
the speedup figures for four to five processors were not impressive. With
five processors, the highly parallel parts of the run keep all the processors
busy, leaving a substantial amount of time when only one processor is
busy. With fewer processors, sequential segments in one partition are
more likely to overlap parallel segments of another, and each processor
is busy a larger fraction of the time. The average processor utilization
on a five-processor Firefly was 3.4.

Processor utilization was measured by instrumenting the operating
system to record the amount of time spent with k processors busy. Once
this instrumentation has been done, measuring utilization is much easier
than measuring speedup, because speedup requires multiple runs for
each value of n.

There is a correspondence between speedup and average processor
utilization. If a program does the same amount of work when run with
1 processor or with n processors, its speedup and average utilization

