A Distributed
Pi-Calculus

Matthew Henness

A DISTRIBUTED PI-CALCULUS

MATTHEW HENNESSY

MM

E2007002236

@./P UNIVERSITY PRESS

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sdo Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521873307

© Cambridge University Press, 2007
This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.
First published 2007
Printed in the United Kingdom at the University Press, Cambridge
A catalogue record for this publication is available from the British Library
ISBN-13 978-052-1-87330-7 hardback
Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or

third-party internet websites referred to in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

A DISTRIBUTED PI-CALCULUS

Distributed systems are fast becoming the norm in computer science. Formal
mathematical models and theories of distributed behaviour are needed in order to
understand them. This book proposes a distributed PI-CALCULUS called ADPI, for
describing the behaviour of mobile agents in a distributed world. It is based on an
existing formal language, the PI-CALCULUS, to which it adds a network layer and a
primitive migration construct.

A mathematical theory of the behaviour of these distributed systems is developed,
in which the presence of types plays a major role. It is also shown how, in principle,
this theory can be used to develop verification techniques for guaranteeing the
behaviour of distributed agents.

The text is accessible to computer scientists with a minimal background in
discrete mathematics. It contains an elementary account of the PI-CALCULUS, and
the associated theory of bisimulations. It also develops the type theory required by
ADPI from first principles.

To the memory of John and Ray

Preface

From ATM machines dispensing cash from our bank accounts, to online
shopping websites, interactive systems permeate our everyday life. The underlying
technology to support these systems, both hardware and software, is well advanced.
However design principles and techniques for assuring their correct behaviour are
at a much more primitive stage.

The provision of solid foundations for such activities, mathematical models
of system behaviour and associated reasoning tools, has been a central theme of
theoretical computer science over the last two decades. One approach has been the
design of formal calculi in which the fundamental concepts underlying interactive
systems can be described, and studied. The most obvious analogy is the use of the
A-calculus as a simple model for the study of sequential computation, or indeed the
study of sequential programming languages. CCS (a Calculus for Communicating
Systems) [28] was perhaps the first calculus proposed for the study of interactive
systems, and was followed by numerous variations. This calculus consists of:

e Asimple formal language for describing systems in terms of their structure; how they are
constructed from individual, but interconnected, components.

e A semantic theory that seeks to understand the behaviour of systems described in the
language, in terms of their ability to interact with users.

Here a system consists of a finite number of independent processes that inter-
communicate using a fixed set of named communication channels. This set of
channels constitutes a connection topology through which all communication takes
place; it includes both communication between system components, and between
the system and its users.

Although successful, CCS can only describe a very limited range of systems. The
most serious restriction is that for any particular system its connection topology
is static. However modern interactive systems are highly dynamic, particularly
when one considers the proliferation of wide area networks. Here computational

iX

X Preface

entities, or agents, are highly mobile, and as they roam the underlying network they
forge new communication links with other entities, and perhaps relinquish existing
links.

The PI-CALCULUS [9, 29] is a development from CCS that seeks to address at
least some dynamic aspects of such agents. Specifically it includes the dynamic
generation of communication channels and thus allows the underlying connection
topology to vary as systems evolve. Just as importantly it allows private
communication links to be established and maintained between agents, which adds
considerably to its expressive power. Indeed the PI-CALCULUS very quickly became
the focus of intensive research, both in providing for it a semantic understanding,
and in its promotion as a suitable foundation for a theory of distributed systems;
see [39] for a comprehensive account.

But many concepts fundamental to modern distributed systems, in particular
those based on local area networks, are at most implicit in the PI-CALCULUS. Perhaps
the most obvious is that of domain, to be understood quite generally as a locus for
computational activity. Thus one could view a distributed system as consisting of
a collection of domains, each capable of hosting computational processes, which
in turn can migrate between domains.

The aim of this book is to develop an extension of the PI-CALCULUS in which
these domains have an explicit representation. Of course when presented with such
a prospect there is a bewildering number of concerns on which we may wish to
focus. For example:

e What is the role of these domains?

e How are they to be structured?

e How is interprocess communication to be handled?
o How is agent migration to be described?

o Can agents be trusted upon entry to a domain?

Indeed the list is endless. Here our approach is conservative. We wish to develop
a minimal extension of the PI-CALCULUS in which the concept of domain plays a
meaningful, and non-trivial role. However their presence automatically brings a
change of focus. The set of communication channels that in the PI-CALCULUS
determines the interprocess communication topology now has to be reconciled with
the distribution topology. Following our minimalistic approach we decide on a very
simple distribution topology, namely a set of independent and non-overlapping
domains, and only allow communication to happen within individual domains.
This makes the communication channels of the PI-CALCULUS into local entities, in
the sense that they only have significance relative to a particular domain. Indeed
we will view them as a particularly simple form of local resource, to be used by

Preface xi

migrant agents. Thus we view our extension of the PI-CALCULUS, called ADPI — for
Asynchronous Distributed PI-CALCULUS, as a calculus for distributed systems in
which

e dynamically created domains are hosts to resources, which may be used by agents
e agents reside in domains, and may migrate between domains for the purpose of using
locally defined resources.

Types and type inference systems now form an intrinsic part of computer science.
They are traditionally used in programming languages as a form of static analysis
to ensure that no runtime errors occur during program execution. Increasingly
sophisticated type-theoretic concepts have emerged in order to handle modern
programming constructs [36]. However the application of type theory is very
diverse. For example types can be used to

o check the correctness of security protocols [12]
o detect deadlocks and livelocks in concurrent programs [26]
e analyse information flow in security systems [22].

In this book we also demonstrate how type systems can be developed to manage
access control to resources in distributed systems. In ADPI we can view domains
as offering resources, modelled as communication channels, to migrating agents.
Moreover a domain may wish to restrict access to certain resources to selected
agents. More generally we can think of resources having capabilities associated
with them. In our case two natural capabilities spring to mind:

o the ability to update a resource, that is write to a communication channel
o the ability to look up a resource, that is read from a communication channel.

Then domains may wish to distribute selectively to agents such capabilities on its
local resources.

We could develop a version of ADPI in which the principal values manipulated by
agents are these capabilities. But this would be a rather complex language, having
to explicitly track their generation, management, and distribution. Instead we show
that these capabilities can be implicitly managed by using a typed version of ADPI.
Moreover the required types are only a mild generalisation of those used in a type
inference system for ensuring the absence of runtime errors, when ADPI systems
are considered as distributed programs.

The behavioural theory of processes originally developed for CCS [28] based on
bisimulations, has been extended to the PI-CALCULUS, and can be readily extended
to ADPIL Indeed the framework is quite general. The behaviour of processes can
be described, independently of the syntax, in terms of their ability to interact with
other processes, or more generally with their computing environment. The form

Xii Preface

these interactions take depend on the nature of the processes, and in general will
depend on the process description language. They can be described mathematically
as relations between processes, with

PrLo

meaning the process P by interacting with its environment can be transformed into
the process Q. The label [serves to record the kind of interaction involved, and
perhaps some data used in the interaction. For example one can easily imagine the
behaviour of an ATM machine being described in this manner, in terms of its internal
states, and the evolution between these states depending of the different kinds of
interactions with a customer. Such a behavioural description is formalised as a
labelled transition system, or Its, and often refered to as an operational semantics.

The theory of bisimulations enables one to take such abstract behavioural
descriptions of processes and generate a behavioural equivalence between
processes. Intuitively

P ey

will mean that no user, or computing environment, will be able to distinguish
between P and Q using the interactions described in their behavioural descriptions.

However the use of types in ADPI has a serious impact on this general behavioural
framework, particularly as these types implicitly represent the limited capabilities
that agents have over resources. In other words these types limit the ways in which
agents can interact with other agents. Consequently whether or not two agents are
deemed equivalent will depend on the current distribution of the capabilities on the
resources in the system.

The third and final aim of this book is to address this issue. We demonstrate
that the general theory of bisimulations can be adapted to take the presence of
types into account. We develop a relativised version of behavioural equivalence in
which judgements such as (1) can never be made in absolute terms, but relative to a
description of current capabilities. Moreover we will show that the proof techniques
associated with standard bisimulations, based on coinduction, can be adapted to this
more general framework, at least in principle.

A secondary aim of the book is didactic. Research into the use of formal calculi
to model distributed or interactive systems, or even understanding the application
of such calculi, requires detailed knowledge of a variety of mathematical concepts.
We hope that the book will provide a good introduction to a range of these concepts,
and equip the reader with sufficient understanding and familiarity to enable them
to pursue independent research in the area. But we do not start from first principles.
We assume the reader is at least familiar with elementary discrete mathematics,

Preface xiii

and in particular structural induction. It would also be helpful to have a passing
acquaintance with bisimulations, as in [28]. Chapter 1 reviews the knowledge
assumed in these areas. But other than this, the aim is to be self-contained. In
particular we give a detailed exposition of the PI-CALCULUS, and an elementary
introduction to types and typing systems.

Structure

As already stated, Chapter 1: Background recalls elementary notions of induction
and coinduction, which will be used extensively in all subsequent chapters.
However the only form of coinduction to be used is that associated with
bisimulations, the theory of which is also reviewed.

The PI-CALCULUS, or at least our version of it — called API, for Asynchronous
PI-CALCULUS, is explained in Chapter 2: The asynchronous PI-CALCULUS. This
exposition starts from first principles, giving a detailed account of both syntactic and
semantic concerns. We give two semantic accounts. The first, a so-called reduction
semantics, may be viewed as a description, at a suitable level of abstraction, of a
prototypical implementation of the language, explaining how API processes can be
executed. The second gives an /ts for API, explaining how processes can interact,
by communicating along channels, with their peers. As we have already indicated
this automatically gives us a bisimulation equivalence between processes, and
moreover bisimulation theory supplies a very powerful coinductive proof principle
for establishing equivalences.

However perhaps the most important topic in this chapter is a discussion of
appropriate behavioural equivalences for process description languages in general.
On the basis of some simple criteria we give a definition of a behavioural
equivalence between processes, called reduction barbed congruence, =, which
has the advantage of being applicable, or at least easily adapted to, most process
description languages. We will also argue that it is the most natural semantic
equivalence between processes; it relies essentially only on the process description
language having a reduction semantics, and therefore is widely applicable. The
chapter ends by showing how bisimulation equivalence needs to be adapted so as
to coincide with =, thereby providing a complete coinductive proof principle for
this natural behavioural equivalence.

In Chapter 3: Types in API we turn our attention to types, using a typed version
of our language, TYPED API. By focusing on a straightforward notion of runtime
error for API, we first explain the use of type systems, the general structure that the
types need to take and the associated typechecking system. We then elaborate on

Xiv Preface

the kind of technical results one needs to establish about such a framework. These
cumulate to the demonstration of:

e Subject reduction: the property of being well-typed is preserved under the reduction
semantics.
o Type safety: well-typed processes do not give rise to runtime errors.

Next we introduce a more sophisticated capability-based type system, in which
a type corresponds to a set of capabilities, or permissions, on a channel or resource.
By means of examples we show how this type system can be used to manage, or
control, access to these resources. Establishing the required technical results in this
case is somewhat more challenging.

As we have already indicated, the presence of types affects the perceived
behaviour of processes, and consequently the behavioural theories of Chapter 2
need to be adapted to TYPED API. This is the topic of Chapter 4: Types and
behaviour in AP1, and is quite a challenge. We need to adapt the standard approach
for producing an Its from a process description language, explained in detailed in
Chapter 2, to generate a more descriptive /fs in which the actions are parameterised
by the environment’s knowledge of the current capabilities concerned. Most of this
chapter is concerned with technical results, which ensure that the resulting Its is, in
some sense, self-consistent.

We then go on to show how this parameterised Its can be used to generate
a parameterised version of bisimulation equivalence between processes. In fact
this is relatively straightforward, but we also need to prove that the resulting
parameterised equivalence satisfies a range of mathematical properties, which one
would intuitively expect from such a framework.

At last, in Chapter 5: A distributed asynchronous PI-CALCULUS we give a
detailed account of our distributed version of API, called ADPL The syntax is
obtained by adding a new syntactic category, for systems, to that of TYPED API. We
obtain a description language in which systems consist of a collection of domains,
hosting agents, which can autonomously migrate between domains. These domains
also host local channels on which agents communicate; but more generally these
may be used to model local resources, accessible to agents currently located at the
host domain. The capability-based type system from Chapter 3 is also extended.
One novelty is the use of record types for domains, but the fact that resources are
purely local also requires a significant extension to the set of types. Essentially
the name of a local resource is useless, without knowledge of its location; for this
reason local resources are typed using a primitive kind of existential channel type.

We demonstrate the usefulness of the typing system via a sequence of examples,
and of course we also prove that it satisfies the standard properties one would
expect of any reasonable typing system. The chapter then ends with a detailed

Preface XV

Chapter 1: Background

Chapter 2: API

Chapter 3: Types for AP1

Chapter 4: Types and behaviour in AP1 Chapter 5: ADPI

Chapter 6: Behavioural equivalences for ADPI

formal account of the role of types in ADPIL. This involves defining a version
of ADPI, called TAGGED-ADPI, in which capabilities, rather than values, are the
main entities manipulated by agents. This is a rather complicated language as the
capabilities, and their propagation, have to be explicitly managed by the reduction
semantics. However we demonstrate that in reality, there is no need for such a
detailed language; in the presence of the capability-based type system ADPI can
be considered as a more abstract, and therefore more manageable, version of
TAGGED-ADPI.

In Chapter 6: Behavioural equivalences for ADPI we adapt the parameterised
theory of bisimulation equivalence from Chapter 4 to ADPI. In fact we spare the
reader most of the technical proofs, as they can easily be adapted from those for
APL Instead we show, via a number of examples, that at least in theory many of the
standard methodologies associated with bisimulation equivalence can be adapted
to prove equivalences between ADPI systems.

We also revisit the principal topic of Chapter 2. We justify our parameterised
version of bisimulation equivalence by showing that it coincides with a natural
intuitively defined behavioural equivalence, a typed version of reduction barbed
congruence.

Xvi Preface

We end with a brief section, entitled Sources, with references to the original
research papers on which our material is based, together with some pointers to
related work.

The book is essentially divided into two parts. After reviewing some required
background material in Chapter 2, the following three chapters aim to give a
coherent and detailed introduction to the PI-CALCULUS. These chapters could form
the basis of a postgraduate course on the PI-CALCULUS. Although they pursue
a particular viewpoint, students completing them should be competent in the
mathematical techniques underlying the theory of the PI-CALCULUS, and therefore
should have no problem absorbing supplementary material, taken for example from
[39], [29], or the research literature.

The second part of the book, Chapter 5 and Chapter 6, give a detailed account
of the language ADPI, and its behavioural theory. This could form the core of a
postgraduate course on process calculi for distributed systems, for students familiar
with the PI-CALCULUS. However once more this would need to be augmented with
additional material from the research literature, to reflect the varied approaches to
the subject.

Alternatively, a less theoretical course could be based upon the first four sections
of Chapter 2, Chapter 3 and the first three sections of Chapter 5. This foregoes most
of the material on behavioural equivalences, concentrating on the basic semantics
of the languages (the reduction semantics), and typing.

Each chapter ends with a set of exercises, which the reader is encouraged to
answer. For the most part these are related directly to the material of the chapter,
perhaps extending it in certain directions, or illustrating certain consequences. By
and large they should present no difficulties, although a few may be non-trivial.

Acknowledgements

Most of the research reported on here was carried out over the years with a
large number of colleagues. The main language of the book, ADPI, was originally
developed in conjunction with James Riely, while the behavioural theory, in
Chapter 4 and Chapter 6, was developed jointly with Julian Rathke. Other
colleagues whose contributions and collaborative efforts I wish to acknowledge
include Alberto Ciaffaglione, Adrian Francalanza, Samuel Hym, Massimo Merro
and Nobuko Yoshida.

The book was largely written while the author held a Royal Society/Leverhulme
Trust Senior Fellowship during the academic year 2005/2006, although some
preliminary material on which it was based was presented at the Bertinoro
International Spring School for Graduate Studies in Computer Science in March
2004.

Finally a number of colleagues read parts of the book in draft form, and made
numerous useful suggestions for improvements. These include Adrian Francalanza,
Samuel Hym, Sergio Maffeis, Julian Rathke, James Riely and Nobuko Yoshida.

XVii

Contents

Preface ix
Acknowledgements Xvii
1 Inductive principles 1
1.1 Induction 1
1.2 Coinduction 4
1.3 Bisimulation equivalence 6
2 The asynchronous PI-CALCULUS 10
2.1 The language API 10
2.2 Reduction semantics for API 16
2.3 An action semantics for API 27
2.4 A coinductive behavioural equivalence for API 34
2.5 Contextual equivalences 37
2.6 An observational Its for API 43
2.7 Justifying bisimulation equivalence contextually 47
2.8 Questions 52
3 Types for API 55
3.1 Runtime errors 55
3.2 Typechecking with simple types 60
3.3 Properties of typechecking 65
3.4 Types as capabilities 72
3.5 Questions 93
4 Types and behaviour in API 96
4.1 Actions-in-context for API 98
4.2 Typed bisimulation equivalence 112

4.3 Questions 122

vii

viii

Contents

5 A distributed asynchronous PI-CALCULUS

5.1
52
3.3
54
5.5
5.6

The language ADPI

Access control types for ADPI

Subject reduction for ADPI

Type safety for ADPI

Distributed consistency of local channels
Questions

6 Behavioural equivalences for ADpI

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Sources

Actions-in-context for ADPI

Typed bisimulation equivalence for ADPI

Describing bisimulations

Servers and clients

Modelling a firewall

Typed contextual equivalences

Justifying bisimulation equivalence contextually in ADPI
Questions

List of figures

Notation

Bibliography

Index

124
127
139
159
169
185
191

194
195
200
202
215
221
226
230
242

244
248
250
254
257

1

Inductive principles

Throughout the book we will make extensive use of both induction and coinduction,
and their associated proof techniques. Here we give a brief review of these concepts,
and an indication of how we intend to use them.

1.1 Induction

Figure 1.1 contains a definition of the (abstract) syntax of a simple language of
machines. Here a ranges over some set of action labels Act, and intuitively a
machine can carry out sequences of these actions, and periodically has a choice of
which actions to perform. Let M be the set of all machines defined in Figure 1.1.
Formally this is an inductive definition of a set, namely the least set S that satisfies

e stopesS
e M € § implies a.M € S for every action label a in Act
e My, M, € S implies M; + M, € S.

The fact that M is the least set that satisfies these conditions gives us a proof
technique for defining and proving properties of machines in M; any other set
satisfying the conditions is guaranteed to contain M.

As an example consider the following definition of the size of a machine:

e |[StOop| =0
o laM|=1+|M|
o My + M| = M|+ [M,].

We know by induction that this function is now defined for every machine.
Belabouring the point for emphasis let D be the domain of the size function | |,
the set of elements for which it is defined. The three clauses in the definition of
| | above imply that D satisfies the three defining properties of M. So we can
conclude that M C D; that is every machine is in the domain of | |. We refer to

