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Foundation Vibration Analysis:
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Foreword

The exponential rise in computing capability over the last few decades has permitted the solution,
in principle, of even the most complex of soil-structure interaction problems by means of detailed
numerical analysis. However, there is still a gulf between the potential to analyse such problems
and the practical ability to do so, either for a particular application or for research purposes. Instead,
recourse is made to a range of simplifications in order to focus on that part of the total problem
which is deemed to be critical. Thus foundation engineers may represent the superstructure by an
idealised elastic block, or even as a uniform load applied to the ground, while structural engineers
may represent the ground as a distributed bed of springs or as a rigid boundary.

Where the superstructure is modelled, it will generally be discretised not into three-dimensional
continuum elements, but into a collection of one-dimensional (bar or beam) and two-dimensional
(shell or plate) elements. Such elements represent what is referred to as the ‘strength-of-materials’
approach in this book. They make use of the dominant geometric axes evident in most structural
components, together with simplifying assumptions that allow quantification of appropriate stiff-
ness matrices for the elements. They may also incorporate more subtle rules of response that allow
for local three-dimensional effects, such as edge buckling of a beam, even though the basic model
is one or two dimensional.

Analysis of the ground response is less obviously amenable to treatment using simplified
elements. Instead, continuum elements are almost universally adopted, although often the overall
geometry of the problem is simplified to two dimensions, either in plane strain or axial symmetry.
In static problems, advantage can be taken of the (commonly assumed) horizontal stratification
of soil and rock using the finite layer techniques pioneered by Booker and Small, reducing the
three-dimensional problem to two dimensions, although sophisticated software development is
still necessary. In dynamic problems, a more typical simplification of the ground response has
been the crude idealisation by lumped springs and dashpots, perhaps incorporating a plastic slider
to represent the limit on bearing capacity. Such models have been used in the analysis of impact
and vibration response of piles embedded in soil, but cannot easily be extended to deal with
stratified soil, or with more complex foundation geometries.

The authors of the present book have set out to establish a set of ‘strength-of-materials’ ideal-
isations for the geotechnical response in the analysis of foundation problems. The idealisations
are akin to the bar and beam elements familiar in structural engineering, and are based on the
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truncated cone model developed by Meek in collaboration with Veletsos and Wolf. In his previ-
ous book (Foundation Vibration Analysis Using Simple Physical Models, Prentice Hall, 1994)
Wolf extended the truncated cone model to a range of physical problems and different modes of
dynamic excitation, and also documented various lumped parameter models. While the alternative
solutions provided in that book have proved most useful to practising geotechnical engineers, the
present book focuses on a self-contained development of the truncated cone models. This will
allow practitioners to develop their own armoury of techniques for problems of interest, whether
arising from structural-induced vibrations or from seismic events. Of particular merit is the inclu-
sion of MATLAB software in the book, together with a full executable program, CONAN, which
provides individuals with a starting point for custom-designed solutions.

The basic solutions are developed in the frequency domain, and thus are restricted to linear
response of the soil. The building blocks are the vertical, horizontal, rotational and torsional
response of a disk foundation resting on the surface of a homogeneous half-space. The power
of the book rests in the detailed development of these primitive solutions, using the concept of
reflection and refraction at layer interfaces, to address embedded foundations with quite arbitrary
shapes in stratified soil deposits underlain by either a rigid base or an infinite medium. With
well-chosen example applications (supplemented by segments of MATLAB code), the reader is
shown how to apply the techniques to assess the response to free-field (seismic) ground motions
or vibrations internally generated within the structure.

Treatment of the subject is comprehensive, with detailed appendices covering development of
the basic solutions and their integration to address practical problems. The flow of the main text is
left deliberately uncluttered in this way, and even historical documentation of the truncated cone
solutions is summarised neatly in a separate appendix.

This is the sixth book by John Wolf and I am confident that it will prove as much a landmark
as his previous books on dynamic soil-structure interaction. He is joined in the present book by a
co-author, Andrew Deeks, whose positive influence can be seen clearly in the elegant MATLAB
code and CONAN executable. The authors have taken pains to evaluate the accuracy of their
approach against closed form and rigorous numerical solutions. As they point out, even at worst
the errors are relatively minor in comparison with other uncertainties in the problem, particularly
those associated with characterising the dynamic properties of the geotechnical medium. Just as
in structural analysis there are limitations to conventional ‘strength-of-materials’ solutions, so
there will be situations where the approaches described here may prove insufficient. However,
this book establishes a powerful basis for a ‘strength-of-materials’ approach to dynamic found-
ation problems and will no doubt prove invaluable across the spectrum of practising engineers,
researchers and teachers.

Mark F. Randolph
University of Western Australia




Preface

Most structural analysis is performed based on the strength-of-materials approach using bars and
beams. Postulating the deformation behaviour (‘plane sections remain plane’), the complicated
exact three-dimensional elasticity is replaced by a simple approximate one-dimensional descrip-
tion that is adequate for design. The approach is very well developed, permitting complicated
structural systems, such as curved skewed prestressed bridges with moving loads, to be modelled
with one-dimensional bars and beams. This strength-of-materials theory is extensively taught in
civil and mechanical engineering departments using the excellent textbooks available in this field.

In contrast, in geotechnical engineering, the other field of civil engineering where modelling is
important, the strength-of-materials approach is not being used extensively. There are two main
reasons for this. First, while in structural engineering the load bearing elements to be analysed
tend to have a dominant direction determining the axes and cross-sectional properties of the bars
and beams, in geotechnical engineering three-dimensional media, the soil and rock, are present.
The choice of the axes and especially the cross-sectional properties (tributary section), which must
be able to represent all essential features with the prescribed deformation behaviour, is thus more
difficult in geotechnical engineering than in structural engineering. Second, up to quite recently,
the state of development of the method was severely limited. Even just over ten years ago, only
surface foundations on a homogeneous half-space representing the soil could be modelled with
a strength-of-materials approach using conical bars and beams, which are called cones in the
following. As the soil properties in an actual site will change with depth, this approach was only
of academic interest.

This pioneering effort did, however, form the basis of important recent developments. Today,
based on the same assumptions, reasonably complicated practical cases can be analysed. The site
can exhibit any number of horizontal layers, permitting the modelling of a general variation of
the properties with depth. Besides surface foundations, embedded foundations can be analysed.
Seismic excitation can be processed without introducing any additional assumptions. Thus, the
cone models can be used to model the foundation in a dynamic soil-structure-interaction analysis.
Cone models work well for the low- and intermediate-frequency ranges important for machine
vibrations and earthquakes, for the limit of very high frequencies as occurring for impact loads,
and for the other limit, the static case. By simplifying the physics of the problem, conceptual clarity
with physical insight results. In the cone models, the wave pattern is clearly postulated. The wave
propagates outwards away from the disturbance spreading in the direction of propagation within
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the cross-section of the cone. When a discontinuity of the material properties corresponding to an
interface of the soil layers is encountered, two new waves are generated: a reflected wave and a
refracted wave, propagating in their own cones. When modelling with cones, the analyst feels at
ease, as the same familiar concepts of strength of materials used daily in structural analysis are
applied. This is in contrast to using rigorous methods, based on three-dimensional elastodynamics
with a considerable mathematical complexity, which tend to intimidate practitioners and obscure
physical insight. Due to the simplification of the physical problem, the mathematics of the cone
models can be solved rigorously. The fundamental principles of wave propagation and dynamics
are thus satisfied exactly for the cones. Closed-form solutions exist for these one-dimensional
cases. This leads to simplicity in a practical application. The use of cone models does indeed
lead to some loss of precision compared to applying the rigorous methods of elastodynamics.
However, this is more than compensated by the many advantages mentioned above. It must also
be remembered that the accuracy of any analysis will always be limited by significant uncertainties,
such as in the material properties of the soil, which cannot be avoided. Summarising, the ease of
use with physical insight especially, the sufficient generality and the good accuracy allow the cone
models to be applied for foundation vibration and dynamic soil-structure-interaction analyses in
everyday cases in a design office. It is fair to state that a balanced design using cone models leads
to simplicity that is based on rationality, which is the ultimate sophistication!

Starting from scratch, the one-dimensional strength-of-materials theory for conical bars and
beams, called cones, is developed and applied to practical foundation vibration problems. No
prerequisites other than elementary notions of mechanics, which are taught in civil engineering
departments of all universities, are required. In particular, concepts of structural dynamics are not
needed to calculate the dynamic behaviour of a foundation. (To perform a dynamic soil-structure-
interaction analysis the structure must also be modelled, which is, however, outside the scope of
this book.) The elementary treatment is restricted to harmonic excitation (the frequency domain)
in the main text, with a direct time domain analysis developed as an extension in an appendix.
The transformation from the time domain to the frequency domain using a Fourier series is
described in an appendix. The equations of motion of dynamic soil-structure interaction are also
addressed in an appendix. As the transformation to modal coordinates, which is so powerful
in structural dynamics, cannot be used for foundations because they are semi-infinite domains,
wave propagation plays a key role. Wave motion in prismatic bars is introduced in an appendix,
and wave propagation in one-dimensional cones is described in great detail throughout the book.
Only two aspects of wave motion are actually needed: the outward propagation of waves in the
initial cone away from the disturbance and the generation of the reflected and refracted waves
at a material discontinuity corresponding to a soil layer interface. By tracking the reflection and
refraction of each incident wave sequentially, the superimposed wave pattern up to a certain stage
can be established. This yields a significant simplification in formulation and programming. A
thorough evaluation of the accuracy for a wide range of actual sites is performed. A short computer
program written in MATLAB forms an integral part of the book. It is introduced in stages in the
various chapters of the book. A full understanding of all aspects of the code, which can easily
be modified by the user, results. In addition, an executable computer program called CONAN
(CONe ANalysis) with a detailed description of the input and output is provided, which can be
used to analyse practical cases. A complicated machine foundation problem, a typical seismic
soil-structure-interaction problem and an offshore wind turbine tower with a suction caisson
foundation are analysed as examples. A dictionary translating the key technical expressions into
various languages increases the international acceptance of the book.

Many of the ideas contained in this book developed gradually over the last ten years. Another
book by the senior author, titled Foundation Vibration Analysis Using Simple Physical Models
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(Prentice Hall, 1994), was written primarily to appeal to geotechnical consultants and contains
a very complete description of simple physical models, where, besides cones, lumped-parameter
models (spring-dashpot-mass models) and prescribed horizontal wave patterns are also derived.
However, the completeness and thus redundancy of the book tend to irritate the reader. Also,
significant advances have been made in the area of cone models since the publication of that
book. This leads to the current book, which is self-contained, without any prerequisites, and
concentrates on the method of cones, which is developed using the standard assumptions of the
theory of strength of materials only. Very recent research by the authors, which streamlines
the formulation, is incorporated. Following the suggestions of readers of the previous book over
the years, a computer program for the analysis of practical cases is fully integrated.and explained
in detail. The new book is a state-of-the-art treatise regarding cone models, but can also be
used as the basis for a first course in soil dynamics of geotechnical engineering (at the final year
undergraduate or first year postgraduate level), and can be taught in a course in structural dynamics,
as all structures have foundations that have to be analysed. As the students study bars and beams
extensively in elementary structural engineering, the basis for the extension to dynamics is very
solid. In addition, the book will be valuable to practising geotechnical engineers, who should only
apply a computer program when they fully grasp the computational procedure it is based on. The
computational procedure detailed in the book will be familiar to them, as the strength-of-materials
approach is the same as used routinely in structural analysis.

The contribution of Matthias Preisig in his Diploma-thesis, which clearly demonstrates the
potential of the streamlined formulation using cones, is noted. The creative research of Dr Jethro
W. Meek, performed in an informal, enthusiastic and collegial atmosphere with the senior author
in the beginning of the 1990s, which forms the basis of the strength-of-materials approach, is
gratefully acknowledged. The authors are indebted to Professors Eduardo Kausel of MIT and
John Tassoulas of the University of Texas at Austin who calculated on our request the results for
comparison. Without this support a systematic evaluation of the accuracy would not have been
possible. Provision of simulated strong ground motion for the 1989 Newcastle earthquake by
Dr Nelson Lam of the University of Melbourne is also acknowledged with thanks. The authors
are indebted to Professor Mark Randolph, Director of the Centre for Offshore Foundation Systems
at the University of Western Australia, for writing the Foreword.

John P. Wolf
Swiss Federal Institute of Technology
Lausanne

Andrew J. Deeks
The University of Western Australia
Perth
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Introduction

1.1 Statement of the problem

The following preliminary remark is appropriate. To address the goal of foundation vibration
analysis, certain terms such as dynamic stiffness or effective foundation input motion are intro-
duced. At this stage of development only a sketchy qualitative description without a clear definition
is possible. The reader should not become irritated. From Chapter 2 onwards the treatment is
systematic, from the bottom up and rigorous.

The objective of foundation vibration analysis is illustrated in Fig. 1.1. The response of a mass-
less cylindrical foundation of radius ro embedded with depth ¢ in a layered soil half-space is to be
calculated for all degrees of freedom. The vertical wall and the horizontal base of the foundation
are assumed to be rigid. As a special case a circular surface foundation can be addressed, which
corresponds to e = 0. Horizontal layering exists with constant material properties in each layer.
The jth layer with thickness d; has shear modulus G j, Poisson’s ratio v;, mass density p; and
a hysteretic damping ratio ¢; (j = 1,2, ...,n — 1). The underlying homogeneous half-space
is denoted with the index n. The site can also be fixed at its base (rigid underlying half-space).
Linear behaviour of the site is assumed, meaning that the soil is assumed to remain linearly elastic
with hysteretic material damping during dynamic excitation. This can be justified by noting that
the allowable displacements of foundations for satisfactory operation of machines are limited to
fractions of a millimetre. It should also be noted that all waves propagating towards infinity decay
due to geometric spreading, resulting in soil which can be regarded as linear towards infinity.
Inelastic deformations are thus ruled out.

Two types of dynamic loads, which vary with time, are considered. These consist of loads
acting directly on the rigid foundation at point O (Fig. 1.1), originating from rotating machinery,
for example, and excitations introduced through the soil, from seismic waves, for example. For
the latter excitations only vertically propagating waves are considered, with the particle motion in
either the horizontal or the vertical direction. The so-called free-field motion, i.e. the displacements
in the virgin site before excavation, is shown schematically for these horizontal and vertical
earthquakes on the left-hand side of Figs 1.2a and 1.2b respectively.

As a slight extension, any axi-symmetric foundation can be examined (Fig. 1.3). The wall does
not have to be vertical, but the base must remain horizontal. The wall and the base are again
assumed to be rigid.
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Figure 1.2 Free-field motion and effective foundation input motion for vertically propagating seismic
excitation. a) Horizontal earthquake. b) Vertical earthquake
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Figure 1.4 Fully-embedded foundation in layered soil half-space

Axi-symmetric inclusions can also be processed (Fig. 1.4). They are termed fully-embedded
foundations, while the cases where the wall intersects the free surface are referred to as partially-
embedded where a distinction is appropriate. Of course, a foundation in a full-space is always
fully-embedded.

More general foundations can be transformed to axi-symmetric cases. This can be accomplished
by equating a certain quantity of the general foundation to the corresponding quantity of the
axi-symmetric case. For instance, when translational degrees of freedom dominate, areas in the
horizontal section can be equated, while when rotational degrees of freedom dominate, moments
of inertia in the horizontal section can be equated.

In many applications a structure is also present, with the structure-soil interface coinciding with
the rigid wall and base of the foundation (Fig. 1.5). In this case two substructures are present,
the foundation embedded in the soil and the structure. The two substructures are connected at
point O forming a coupled system. This defines a dynamic unbounded soil-structure-interaction
problem. Exterior loads can also be applied to the structure, and, as already mentioned, the dynamic
excitation can be introduced through the soil (by seismic waves, for example). In such problems
the responses of the structure and, to a lesser extent, of the soil are to be determined.

The coupling of the substructures enforces equilibrium and compatibility of the displacements
and rotations at O. However, the dynamic behaviour of the unbounded soil, a semi-infinite domain,
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Figure 1.5 Soil-structure interaction with structure embedded in layered soil half-space

is significantly different from that of the bounded structure with finite dimensions. The motion
of the structure-soil interface triggers waves propagating in all directions in the soil towards
infinity. Reflections occur at the free surface, and both reflections and refractions occur at the
soil layer interfaces. This complicated wave pattern radiates energy towards infinity, outside the
dynamic system. The unbounded soil thus acts as an energy sink, resulting in damping (which
is known as radiation damping) even in a linear system, in contrast to the bounded structure.
The challenge in analysing the dynamic soil-structure interaction consists of modelling the soil
illustrated in Fig. 1.1.

Thus, the rigid foundation embedded in a layered soil half-space, or, as it can also be described,
the unbounded layered soil containing an excavation with a rigid interface, is addressed. This
substructure’s dynamic properties are defined on the interface with the other substructure, the
structure, at point O. For seismic excitation two quantities must be determined: first, the interaction
force-displacement relationship determining the contribution of the unbounded soil to the dynamic
stiffness of the coupled equations; and second, the so-called effective foundation input motion
arising from the seismic excitation introduced through the soil.

As the unbounded soil remains linear, the dynamic analysis can be performed in the frequency
domain. As outlined in Appendices A.3 and A.4, the dynamic excitation in the time domain is
expressed as the sum of a series of harmonic components (Fourier series and integral). It is thus
sufficient to address a discrete harmonic excitation with a specific frequency w, characterised
by the corresponding complex amplitude, as discussed in Appendix A.1. The amplitude of the
response for this harmonic excitation follows as the product of the complex frequency response
function (examined in Appendix A.2) and the amplitude of the excitation.

In general, the loading applied to the structure will not be axi-symmetric. The interaction
force-displacement relationship for harmonic excitation at point O (Fig. 1.1) is

{P(0)} = [S(@)]{u(w)} (1.1)

with {u(w)} denoting the amplitudes of the three displacements and three rotations at O, { P (w)}
the amplitudes of the three forces and three moments at O and [S(w)] representing the dynamic-
stiffness matrix, the complex frequency response function. As the foundation is axi-symmetric,



