David A. Poplawski

OBJEGTS

An Introduction to
Programming with Java

OBJECTS

tave Olass!

"OBJECTS

tave Class!

An Introduction to
Programming with Java

David A. Poplawski

Michigan Technological University

Boston Burr Ridge, [L Dubuque, IA Madison, WI New York San Francisco St. Louis
Bangkok Bogotd Caracas Kuala Lumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

McGraw-Hill Higher Education £7

A Division of The McGraw-Hill Companies
OBIJECTS HAVE CLASS! AN INTRODUCTION TO PROGRAMMING WITH JAVA

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of

the Americas, New York, NY 10020. Copyright © 2002 by The McGraw-Hill Companies, Inc. All

rights reserved. No part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill
Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission,
or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers
outside the United States.

This book is printed on acid-free paper.
1234567890QPF/QPF0987654321

ISBN 0-07-242340-4
ISBN 0-07-112258-3 (ISE)

General manager: Thomas E. Casson

Publisher: Elizabeth A. Jones

Developmental editor: Melinda Dougharty
Executive marketing manager: John Wannemacher
Senior project manager: Gloria G. Schiesl

Lead production supervisor: Sandra Hahn
Coordinator of freelance design: Michelle D. Whitaker
Freelance cover/interior designer: Jamie E. O’Neal
Cover image: Paul Biddle/The Image Bank
Supplement producer: Brenda A. Ernzen

Media technology senior producer: Phillip Meek
Compositor: Interactive Composition Corporation
Typeface: 10/12 Times Roman

Printer: Quebecor World Fairfield, PA

Library of Congress Cataloging-in-Publication Data

Poplawski, David A.
Objects have class! : an introduction to programming with Java / David A. Poplawski. — 1st ed.
p. cm.
ISBN 0-07-242340-4 — ISBN 0-07-112258-3 (ISE)
Includes index.
1. Java (Computer program language). 2. Object-oriented programming. 1. Title.

QA76.73.J38 P67 2002
005.13’3—dc21 2001026619
CIP

INTERNATIONAL EDITION ISBN 0-07-112258-3

Copyright © 2002. Exclusive rights by The McGraw-Hill Companies, Inc., for manufacture

and export. This book cannot be re-exported from the country to which it is sold by McGraw-Hill.
The International Edition is not available in North America.

www.mhhe.com

DEDICATION

To Dick Rudzinski, who took the time to point me in the
right direction a long time ago.

o

programming with Java!

Chapter Objectives

Each chap{er opens with a bulleted list of objectives
that lets students know what they can expect to learn

from the chapter.

{Definition of Terms}

A function is a method that returns a value. This value is the result of computing the
function, using the argument(s) sent to it when it was called.

{New Concepts}

Declaring a method name public makes it accessible from any method in any class.
Declaring it private makes it accessible only from methods in the same class.

{New Concepts}

A method executes in the context of an object and as a result has access to all the
instance variables of that object.

{Good Ideas}
Don't overspecify an abstraction. Define just those properties and behaviors that are
necessary and no more. Adding extra information or constraints will only limit choices for
implementations,

‘Here are some features to help you study

OBJECTIVES

* To understand the basic concept {8

| of an object 3.1 OBJECTS
To know the distinction between
objects end the class that
describes them.

Objects are the essence of programming in the object-
oriented programming design philosophy. Objects are
\ igghainyi L things. Objects have properties. Objects have behavior;
To undetstand how drawin) i that is, they do things. Usually wlgml they do depends
done in Java, B on their properties. Programs that you write will have lots
To be able to write & class of objects, and the objects will interact with one another to
definition, with ane method, for change one another’s properties and to cause things to
objects that draw on the soreen. | happen. The programmer’s task is to define the objects
To be able 16 write, compile, i that make up the intended program—to indicate what
and run 2 simple Java program. B properties each object has and what each object does in
response {0 requests from other objects, and fo organize
that collection of objects into a working program

The real world has all sorts of objects. You are an
object. A ball is an object. A pencil is an object. Just about
anything you can think of that you can touch is an object
These objects are something.

Objects have properties. For example, a ball has size,
it has color, it has weight. You have all sorts of proper-
ties, such as height. weight, skin color, gender, marital
status, number of toes, etc. These properties serve 1o iden-
tify the object, and can, over time, change. You probably
don't weigh the same today as you did 10 years ago. You
are still the same object, but one of your properties has
changed

In addition To properties. real-world ohjects have
behavior. Behavior is what the ohbject does in response
to some stimulus. If you squeeze a rubber ball, it will
change shape. If you squeeze a billiard ball, it might also
change shape, but very little. You have lots of behaviors. If
somebody tells you a good joke, you laugh. When you
have to write an answer {0 a Guestion on an exam, you put
down what you think is correct. If you get cold. you put on
more clothing. If you fall in the water, you start swimming
(hopefully).

Points of Emphasis

Point-of-Emphasis boxes call attention to
especially important definitions, concepts, and
ideas, and make them stand out for later reference.

* Definitions give clear, concise meanings for
importarnt programming terms.

» Concepts explain succinctly how particular
aspects of programs work.

* Good Ideas present guidelines that experience
has shown are worth following.

Written Exercises

Written exercises, which appear at the end of almost
every chapter section, allow students to test and
reinforce their understanding of important material.

42

The receiving method can give any names whatsoever the values it
receives. It does not matter how a value was generated when it was sent, or
what names the method
those values. For example. our ciraw method receives a value for the x-coor-
dinate to draw at., and we chose to call that value x. We have no idea how the
animation program generated the x-coordinate value it sent. nor what names it

at sends the values might have used when creating

FIGURE 6.1

Animator (Objects Have Class! in Introduction t Prog ming 'rlll Java)

may have given to various values it knew ahout in order to generate it. It
doesn't matter because only a value is sent to our < method. This is im
portant hecause if means that we can write our <+ aw method without having
1o worry about using some name that is used somewhere else

You can choose ary names you like for paratmotars of & methad

You cannot, however, use a name other than <t aw for the method that the
Animator calls to ask the ohject to draw the scene

Written Exercises

1. Type inand get the BasicShape program working as described in the pre
vious section, Now reverse the order of the parameters and y as shown
above. What do you think will happen to the animation as a result of this
chunge? Compile and run the new version of the program. Were you right?
If not, figure out why you were wrong

o

Type in #ind get the BasicShape program working is described in the pre-
viaus section: Then change every occurrence of x to across (there are
three plitces), and campile and run the new version of the program. Is there
any difference in the animation? Change every occurrence of y to dewr,
and compile and run the program. Is there any difference? Change every
ocaurrence of ¢ to per, and compile and run the program. [s there any
difference” What do your answers 10 these three questions tell you about
picking names for parameters?

3.10 BASIC JAVA LANGUAGE CONCEPTS

Now that you've seen & couple of complete class definitions and how objects
described by these definitions are used by the animation program, I'll describe
a few of the language concepts and rules that these examples demonstrate.

3.10.1 Reserved Words
A Javi program consis(s of a sequence of words and symbols. Some words,

suchas Lmport. e /oid,and 1t and are called reserved words (also
sometimes called kvywwdsy These are words that have a special meaning in

FIGURE 6.9

CHARTER 6

the label (o green. The main points illustrated in this example are the use of
single class definition for both listener objects and the use of instance variables
in the listener objects ta record which one listens for the red push button and
which one listens for the green

“This applet is structured much like the Last one. The main class defines an
abject whose sole responsibility is to create the required objects and add them
towi ndew. As in the previous-example, each TRUE Lo object will have an
associated listener object, with each (1 But ¢ or, being told about its listener via
thod. In addition, each listener will have a ref-
ctothe J1ab= | object so that it can use the s et Backa round methods
of the J L= | class to change the color of the label on the screen. The objects
and their relationships are shown in Figure 6.9.

 Toutalner a7

i1 = — = |
i rpnh,unmm -‘ ~_JButton object
e um.. L e

Autionlistener obiet” At ranListener obie

| hebabey Sbaalbial

) [
ﬁi, b

B Animator

The Animator supports the definition and
creation of interacting objects, one of the
core concepts of object-oriented
programming. From the very beginning, it
allows students to write simple, short
programs that come alive through animation.

Object Diagrams

Diagrams of objects, their instance variables, and
—— their relationships are used to help students
visualize how their collections of class definitions
result in the creation of objects when the program
executes.

import: fava.awt.*;
impogs. java.awt
inport Javax. swing

piblie class trons extentls OApplan |

new ButtonListener(which, Color.red);

red.addActionListener (redLstner) ;
Buttonlistener greenLstner =

Intarating Objects and Everts 73

11

niew ButtonListener(which, Color.green); e

CODE 6.18

gr

} 7/ end of TwoBurtons ¢
class Buttonl

private fiabel thefa
private Color theColors

VA and gt Buttontistener cluus

l:m- ¥
obieet with ¢
e

ath color property

e

one

line

.

Innovative Code Formatting

Intuitive Shading: Sections of code are
formatted so that classes are highlighted in

intensity and methods in another. This

makes identifying and understanding the
different elements of code easier for the
novice programmer.
* Author Comments: Author tips and
explanations provide detailed, even line-by-
, instruction on writing correct, workable
code.
Program identification boxes: Marginal
boxes throughout the text name and describe
each new complete program as it is
introduced.

Programming Exercises

These exercises give the student an opportunity to
try out the programming skills that have been

introduced in each chapter.

FIGURE 11.4 |

328 CHAPTER 11

Why does the outer for-loop in the sort method stop when | is 2 less than

3. Why is a temporiry variable d 1o swap values hetween two other

variahles?

Programming Exercises

Madify the I
Modify the Suniap;
i Write

10 display the minimum valie i the array

to display the second Jargest value in the array

plet with 1wo T cts and an array of 1000
erences (initially null). The first i

strings. Each time i new string is entered. put a re

vitin the
into the other
bel indi

JPeset i L, seirch for that strng in the array and set a
caning whether it was found, showing the index of the string in the array if

it s found

Madify the applet in the previous problem to add a third
When a user ente

strings

£

he minimum

Write an applet that

value, and has o b e contents of the

{ with the minimum valu recomputes and redis
g the 0 just inserted), Assume

that all numbers entered by the user will be greater than 0-and that they

TeRLFi
plitys the new minimum value (not incly

c unique (Figure 11.4)

| detewe minimum felite nunimur

Chapter Summaries
These allow students to review key points and

synthesize newly acquired information.

Interacting Objects and Events 193

Summary

* Objects interact by calling one another’s methods, sending argument val-

Chapter Glossaries

Key terms are listed and briefly defined at the
end of each chapter,

CHAPTER &

Glossary

Applet A Java program executed by a Web browser or the appletviewer.

Container An object that represents a region of the screen in which dis
playable objects can he laid out and made visible.

Event Something that happens at an unpredictable time that should be reacted
o0, for example, an Act ienEvent

Flow Layout Manager A particular layout manager that ays out displayable
objects from left to right, then top to bottom, similar to text Rowing across
and down a page, fitting as many objects as possible on each row.

Grid Layout Manager A particular layout manager that lays out displayable
objects in a fixed number of rows and columns

Layout Manager An object that positions displayable objects (JButton,
Thabel, JTextFiald) within the region of the screen corresponding
toaContainer

Listener An object containing a method that is called by the Web hrowser (or
appletviewer) when an event occurs.

Pass by Value A manner of passing information from a calling method to a
called method in which a value (not a variahle or an object) is transmitted.

Primitive Type A type built into Java, and not a class. Int and double are
primitive types

this A reference (o the same ohject that the current method is executing in the
context of.

ues when they do, and returning values when those methods finish

* Objects must have references to the other objects they interuct with, These
references are often passed to an ohject when it is created

* An event s something that huppens at an unpredictable time that should be
reacted to.

* Events are handled by a listener object that implements a listener interface
(e.g, CLickListener or Actionlistener) by including a methad
of a specific name (e

koracticnPerformad)

* Areference (0 the listener object must be sent to the object that causes the
event (e.g;, the Animator, a TBULtar, or a JText Fileld)

* Anapplet is a Java program designed to be run by a Web browser.

* An applet uses a region of the screen to display various components such
as text, push buttons, and hoxes into which tex can be typed.

* The region is associated with a browser-created Containe: object
which has methods for adding objécts representing text (fLabe1), push
buttons (JBut ton). and input text (JText Field),

* Events such as mouse clicks and text heing entered cause a method called
actionPer Eormed in a listener object to e called by the Weh browser,
giving the program the opportunity (0 act on them.

“ Each object that can generate an event (JEUt tor and 7
objects) must be associated with a listener object containing an

act ionper formed method that will act on the event

* Displayable objects are positioned in the display region by a layout
manager object

* A flow layout manager positions displayable objects from lefi 1o right, top
10 bottom, much as text flows across the screen, Starting a new row of
ohjects when the next object to be added won't fit in the current row

* A grid layout manager object positions displayable objects in a fixed num-
ber of rows and columns that are specified when the layout manager object
is created. The objects are laid out from left o right as they are added to the
cont but the number of displayable objects in each row is fixed

* Information is passed from one method to another when the first method
calls the second.

* The information passed is always a value that may be an integer value, a
double value, or a reference to an object

* The method being called cannot change any le appearing in the ar-
gument fist of the call, hut it can use and change any object whose refer-
ence is passed as an argument

Xviii

Supplements

* A CD-ROM packaged with the book contains all
source code and the Animator.

¢ The Online Learning Center includes solutions,
course notes, lab preparations and lab
programming assignments, homework
programming assignments, quiz material, links to
professional resources, source code, and a
downloadable version of the Animator.

PREFACE

elcome! Objects Have Class! An Introduction to Programming with Java
is not your typical introductory programming text. Programming is fun!
And that is the first thing beginning students should learn. In this book they get
to do object-oriented programming from the outset. Essential concepts are
introduced through animations, allowing students to form a visual image of
objects and their interactions.

Our stydents today come to computer science from a culture that is media-
rich. Objects Have Class! offers them access to the powers of programming by
giving them a fun-to-use, easy-to-grasp programming tool called the Animator.
The Animator and the Objects Have Class! approach make both teaching and
learning introductory programming a highly intuitive, more dynamic enter-
prise than éver before.

1. Object Orientation

Students define and use their own classes and objects from the beginning.
These essential concepts of object-oriented programming begin in Chapter 3
and then are continually reinforced throughout the book. In fact, traditional
programming concepts such as conditionals don’t even appear until Chap-
ter 7. Virtually every example and every programming exercise in the text in-
volve multiple objects. Simple inheritance is introduced early (Chapter 9),
but only in a very limited way by extending standard Java classes (e.g.,
JPanel and MouseAdapter). Inheritance is revisited more completely in
Chapter 15, when students are ready to design and use their own simple class
hierarchies.

2. The Animator

With the Animator students use graphics instead of textual output in the early
chapters to write simple, short programs that come alive through animation.
Drawing simple graphical shapes (lines, circles, rectangles, etc.) in color is
intuitive to most students. Hence graphics is used instead of textual output
in the early chapters. The Animator provides an environment in which ob-
jects defined by the students draw initially simple, then increasingly more
complex animations in which the objects interact to vary their appearance and
movement.

XiX

PREFACE

For example, the very first example program a student sees is this one:

B
(Graphics g

g.setColor (Color.yellow);
g.fi110val (10,20,40,40);
}

This simple class definition produces an object that draws a fixed, yellow sun
in the upper left corner of the animation scene area (Figure 1).

FIGURE 1

Ohjects Have Class! An Introduction to Programming with Java - Animator

This simple program introduces the student to the concepts of classes verses
objects, methods that encode the behavior of objects, and calling methods de-
fined for another object (Graphics) to draw the yellow circle.

The key point to the animations is that each object’s behavior includes
drawing something in the animation scene. This one-to-one correspondence
between an object and a figure in the scene makes it easy for students to see the

effect of various code structures, and it gives them immediate, visual feedback
when they make mistakes.

Successive examples involve drawing increasingly complex figures. This
motivates the use of parameter values and the writing of nontrivial arithmetic
expressions, conditional structures, and simple loops. Having Java objects di-
rectly represent shapes drawn in the scene also emphasizes that objects have
properties (state) that must be saved, modified, and used to affect what each
object draws as the animation progresses.

Programs with multiple objects, several of which are defined by the same
class, again emphasize the difference between class and object and also famil-
iarize students with creating their own objects. The example in Figure 2 (a wheel
rolling behind a fence and clouds drifting through the sky) contains several
student-defined objects, some moving, others not. This example also shows the
simple methanism provided by the Animator that allows programs to read and
write simple textual information similar to traditional text-based, blocking input
and output commands. Students need not deal with Java’s awkward input and
output classes until much later, making it possible for them to display debugging
information and to get user input to direct various aspects of an animation.

ﬁn Immductibn to ﬁ'ruqralﬁnﬁntj with J

Enter the length of the fehce
400 Sl

Enter the height of the fence
500

User input is entered here.

PREFACE

FIGURE 2

XXii PREFACE

Eventually animations are defined in which several objects are created that
interact with one another to exchange information via method calls, parameter
passing, and return values. The example in Figure 3 consists of a fixed
“person” (the tall rectangle), a balloon that can be moved from left to right (the
circle), and a string (the line) between them. Each is represented by a separate
object. The string object uses its references to the person and balloon objects
to get their positions in the scene and then draw the line between them appro-
priately. Object interactions such as these are simple and provide visually
based feedback to the student on whether the objects are interacting correctly.
Understanding object interactions such as these is essential to understanding
object-oriented programs, and the animation environment simplifies it for the
student.

FIGURE 3]

~ Animator (Objects Have Class! An Introduction to Programming with Java)

The Animator also allows the student to vary the speed of the animation,
or even stop it and then single-step to see what is drawn on each refresh of the
scene. When combined with the simple textual output commands, this provides
a simple but fairly robust debugging environment.

Every complete animation program in the text can be retrieved from the
text’s associated CD and/or website and executed. Doing so will help students
see exactly what an animation does and how the code makes it happen.

3. Object Diagrams

Diagrams of objects, their instance variables, and their relationships are used to
help students visualize how their collection of class definitions results in the
creation of objects when their program executes. Figure 4 shows the objects
that define the previous balloon animation, showing in particular that the
object that draws the line in the scene has references to the balloon and person
objects so that it can find out their positions and thereby draw the string be-
tween them correctly.

PREFACE

XXiii

Balloon object

—
BalloonScene object

thePerson

. \daveiaﬁallpon . Line object
v ‘theBalloon
¥: ,_‘— '_‘1v :

Person object

The use of such diagrams in the early design stages of a program is em-
phasized. In fact the student is encouraged to draw similar diagrams before
writing any code.

4. Applets and Applications

All programming examples, problems, and solutions in the first several chap-
ters use the Animator. By the middle of Chapter 6, students will have gained
enough understanding and experience with multiclass programs that define
multiple, interacting objects, including some that react to asynchronous events,
that students can begin writing applets with event-driven buttons and text
fields. Applets require the use of these same concepts, only in a different set-
ting than animations, and hence the use of object-oriented designs in the text is
continued. Applets are preferred over applications because applets can be
linked to the student’s own Web pages and viewed via Web browsers, increas-
ing motivation for students who can “show off” their work to their friends and

FIGURE 4

XXiv

PREFACE

relatives. The Animator runs as an applet, too, so even the student’s animations
can be put on display.

Application programs are presented in Chapter 12, but designing them
with graphical interfaces is emphasized. The transition to application pro-
grams with GUISs from applets is simple and natural, requiring only one new
class (JFrame). Application programs then serve as the basis on which pro-
grams using Java’s textual, binary, and serialized object input/output classes
are built.

5. Points of Emphasis

At selected points certain aspects of the discussion in the narrative become
important enough to emphasize. These points of emphasis come in three
types:

* Definitions give clear, concise meanings to important programming terms.

{Definitions of Terms}

A class is a description of one or more objects. It describes the kinds of properties the
objects have, but not their particular values, and it describes the behaviors of the objects.

* Concepts explain succinctly how certain aspects of programs work.

{New Concepts}

Objects interact by calling one another’s methods. They send information via arguments
and can get information returned.

* Good ideas are not rules, but guidelines that experience has shown are
worth following.

{Good Ideas}

Incremental and unit testing helps isolate possible errors to small sections of code,
thereby making debugging easier and moare efficient.

Because they stand out from the text, they clearly point out what is impor-
tant. They also provide a good study guide, as more extensive explanation and
examples can be found nearby in the text.

6. Program Development

The basic program development process (Figure 5) is presented in Chapter 2
and reinforced throughout the book, including an emphasis on designing be-
fore coding, incremental development, and good debugging and testing tech-
niques. Debugging hints are given in almost every chapter, and students are
warned about commonly made errors. The thought processes that are involved
in developing various parts of programs, and not Just final products, are pre-
sented (e.g., Section 10.5, “An Approach to Writing Loops”).

Write all or part

Write more code

Hand it in

Chapter 8 is about testing, including black-and-white (or clear) box tests,
unit tests, incremental testing, and drivers and stubs. Succeeding chapters
apply these testing techniques in new contexts as they arise. Manual execution
is presented as a method for understanding how a code segment or entire pro-
gram works (or doesn’t), especially when students are learning to write loops,
to manipulate arrays and linked lists, and to do recursion.

7. End-of-Chapter Glossaries

Using the correct terminology to refer to programming concepts is important
to understanding. Each chapter concludes with a glossary in which all new
terms covered in the chapter are defined and summarized.

8. Java and Swing

This text is not about the Java language. It is about learning how to program
using an object-oriented, graphical approach. Java is a great language for this
purpose as it supports object-oriented design; has built-in graphical support in
the form of the AWT and Swing libraries; has a clean, simple design that lends
itself to use by beginning programmers; and is just plain fun to use. The Swing
extensions to the window tool kit are used to keep pace with the rapid evolu-
tion of Java and its supporting libraries.

PREFACE

FIGURE 5

XXVi

PREFACE

CHAPTER OVERVIEW

Chapter 1, “Computers, Programs, and Java,” provides background infor-
mation for students with little or no computer experience. For most students
this will simply be a review, although the glossary terms will make many
loosely defined terms more precise.

Chapter 2, “Writing Programs,” defines the design, code, test, and debug
cycle for developing correctly working programs, and it describes the kinds of
software tools used in each step. It also makes the first strong case for spend-
ing time designing a program before jumping headlong into coding.

Chapter 3, “Getting Started,” guides the student through the first steps in
writing simple programs consisting of a single class definition with a single
method. Each object defined by one of these simple classes is used with the An-
imator to draw a simple shape, either static and moving, within the animation
scene. The emphasis in this chapter is on distinguishing classes versus objects,
and how a method describes one behavior of an object. The basic language con-
cepts of symbols, identifiers, literals, declarations, simple parameter passing,
and comments are defined, and the need for neat-looking, well-documented
code is demonstrated.

Chapter 4, “Variables, Expressions, and Assignment,” contains fairly
formal definitions of variables of the int, double, and String types as well as the
evaluation of expressions using the basic arithmetic operators, type conver-
sions, and functions from Java’s Math library. All these are used to define more
complex shapes and movement within the animation scene. Debugging tech-
niques based on displaying variable and expression values are introduced to
help the students identify and isolate errors in expressions.

Chapter 5, “Defining and Creating Multiple Objects,” is the first expo-
sure to programs with multiple, student-defined objects, including several dif-
ferent objects defined by the same class. Instance variables are introduced and
used to contain property values for the objects and to reference other objects.
At this point object interactions are quite simple, but parameter passing is re-
visited in depth since this is the first time students write calls to methods that
they write themselves. This is also the first time name scoping becomes an
issue, and the chapter begins the discussion of the scope of instance, parame-
ter, and local variables. Object diagrams are also introduced to help students
visualize the relationships between objects.

Chapter 6, “Interacting Objects and Events,” begins describing how ob-
jects interact via method calls and return values. The concepts are motivated
and demonstrated via animations in which objects representing shapes can ex-
change information about one another (e.g., position), leading to some inter-
esting animated scenes. Passing object references is covered for the first time.
The clicking of the mouse within the scene is presented as a first, simple intro-
duction to the concept of an asynchronous event, and techniques for reacting to
the event within an animation object are shown. The chapter concludes by in-
troducing simple Java applets with labels, buttons, text fields, and the ability to

