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Preface

The IAS/Park City Mathematics Institute (PCMI) was founded in 1991 as part of
the “Regional Geometry Institute” initiative of the National Science Foundation.
In mid 1993 the program found an institutional home at the Institute for Advanced
Study (IAS) in Princeton, New Jersey. The PCMI now holds its summer programs
either in Park City or in Princeton.

The TAS/Park City Mathematics Institute encourages both research and ed-
ucation in mathematics and fosters interaction between the two. The three-week
summer institute offers programs for researchers and postdoctoral scholars, gradu-
ate students, undergraduate students, high school teachers, mathematics education
researchers, and undergraduate faculty. One of PCMI’s main goals is to make all of
the participants aware of the total spectrum of activities that occur in mathematics
education and research: we wish to involve professional mathematicians in educa-
tion and to bring modern concepts in mathematics to the attention of educators.
To that end the summer institute features general sessions designed to encourage
interaction among the various groups. In-year activities at sites around the country
form an integral part of the High School Teacher Program.

Each summer a different topic is chosen as the focus of the Research Program
and Graduate Summer School. Activities in the Undergraduate Program deal with
this topic as well. Lecture notes from the Graduate Summer School are being
published each year in this series. The first ten volumes are:

Volume 1: Geometry and Quantum Field Theory (1991)

Volume 2: Nonlinear Partial Differential Equations in Differential Geometry (1992)
Volume 3: Complex Algebraic Geometry (1993)

Volume 4: Gauge Theory and Four-Manifolds (1994)

Volume 5: Hyperbolic Equations and Frequency Interactions (1995)

Volume 6: Probability Theory and Applications (1996)

Volume 7: Symplectic Geometry and Topology (1997)

Volume 8: Representation Theory of Lie Groups (1998)

Volume 9: Arithmetic Algebraic Geometry (1999)

Volume 10: Computational Complexity Theory (2000)

Future volumes from the 2001 Summer School on Quantum Field Theory, Super-
symmetry and Enumerative Geometry and from the 2002 Summer School on Auto-
morphic Forms and Applications are in preparation. The 2003 Research Program

xiii
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and Graduate Summer School topic is Harmonic Analysis and Partial Differential
Equations.

Some material from the Undergraduate Program is published as part of the Stu-
dent Mathematical Library series of the American Mathematical Society. We hope
to publish material from other parts of the IAS/Park City Mathematics Institute
in the future. This will include material from the High School Teacher Program
and publications documenting the interactive activities which are a primary focus
of the PCMI. At the summer institute late afternoons are devoted to seminars of
common interest to all participants. Many deal with current issues in education;
others treat mathematical topics at a level which encourages broad participation.
The PCMI has also spawned interactions between universities and high schools at
a local level. We hope to share these activities with a wider audience in future
volumes.

David R. Morrison, Series Editor
March, 2003
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Introduction

Computational Complexity Theory is a major research area of Computer Science.
Its aim is to set the formal mathematical foundations of efficient computation. As
such, it postulates that all agents/machines involved in performing a computational
task have limited resources (such as time, memory, communication, etc.), and asks
which tasks can be performed under such limitations.

There has been significant development in the nature and scope of the field in
the last 30 years. Traditionally it studied the computation of well-defined functions
on a completely specified input by a single, deterministic machine. While this
continues to be a focus, the field evolved to also study a very broad variety of
computational tasks by a diverse set of computational models, such as randomized,
interactive, distributed, and parallel computation. These models may include many
computers, which may behave cooperatively or adversarially.

Moreover, it became clear that the limits on the computational resources natu-
rally lead to a fundamentally new and important way of understanding many central
notions beyond computation itself, e.g., proof, knowledge, randomness, cryptogra-
phy, and more. Indeed, the field is riddled with basic results and open problems
which have deep conceptual meaning, and thus their significance can be readily
understood by non-experts.

Complexity theory also quickly developed close connections with other fields,
most notably Mathematics: first and most naturally with areas in Discrete Mathe-
matics, but more recently with Algebra, Analysis, Geometry, and Number Theory.
These connections, which often benefit both sides, keep increasing in quantity and
depth. Other connections are developing with Physics, Biology, Economics, and
other sciences.

The field has been lucky to continuously draw into it excellent students in the
last decades. This period witnessed exciting development in creating new directions
of study and understanding their inner relations with the basic problems of the field.

While mature in many ways, the most fundamental problems of the field are still
wide open. We still have no clue if P = NP or not, nor why it seems so difficult to
prove any nontrivial resource lower bound on natural computational tasks. We still
have no clue if randomness indeed is such a powerful aid for computation, or if there
is always an efficient deterministic way around the coin-flips (as was discovered very
recently for testing primality). But we do have a rich and intricate theory regarding
these fundamental problems, which in particular ties them together in a deep and
unexpected way.



2 INTRODUCTION

This exciting state of the field seemed perfect for a Park City summer school.
We have gathered some of the best researchers and teachers of the field to give
diverse sets of lectures, aiming to introduce newcomers to the field. The organi-
zation of the courses was designed to start at a very basic level and lead up to
the state of the art in some of the most active research areas in complexity. These
were given over 3 weeks to more than 150 graduate students, postdocs, and scholars
with different backgrounds who gathered on the IAS campus in Princeton during
the summer of 2000.

The first week of lectures was devoted to a general introduction to the field.
The main set of lectures, entitled “Complexity Theory: from Godel to Feynman”
was give by Steven Rudich, describing basic models, techniques, results and open
problems. These were accompanied by lectures by Avi Wigderson on average-case
complexity, by Sanjeev Arora on exploring complexity through reductions, and by
Ran Raz on quantum computation.

The second week was devoted to lower bounds on concrete models. Ran Raz
lectured on communication and circuit complexity, Michael Ben-Or lectured on
arithmetic and algebraic complexity (notes missing from this volume), and Paul
Beame lectured on proof complexity.

The third week of lectures was devoted to randomness in computation. Oded
Goldreich and Luca Trevisan gave two series of lectures on different notions of
pseudorandomness. Salil Vadhan lectured on interactive proof systems and zero
knowledge, and Madhu Sudan lectured on the probabilistically checkable proofs
(PCPs).

It is our pleasure to thank all speakers for this unique and exciting educational
experience. We hope that the lecture notes they have provided, collected in this
volume, will serve to welcome and introduce many more students and researchers
to the wonderful field of Computational Complexity.

Steven Rudich and Avi Wigderson, Volume Editors
Graduate Summer School Organizers
September, 2002
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