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PREFACE

This volume explores the possible realisation of fifth generation computer archi-
tectures through wafer scale integration. It looks at architectural considerations,
and designs for fifth generation, non-von-Neumann computer architectures. It
also considers fault tolerance, failure tolerance, reconfiguration and wafer scale
integration.

As integrated circuit technology improves, the demands on it increase too. In-
variably, as hardware is developed for one application, such as a computer architec-
ture, the demands for more functionality, and a consequential proliferation of its
components, promptly follow.

Present technology now allows the fabrication of circuits with more than 100000
transistors per die. Future systems will require even more than this, but how can
these circuits be fabricated, given that present technology is stretched nearly to the
limit? How can they be designed, given that present designs are already more
complicated than the combined road, rail, electricity, gas, water and telephone
layouts of a major city? What principles of operation will be employed, given that
the current ones now show severe signs of limitation?

This book sets out to answer these questions. It describes a number of the
techniques and problems of building the largest single chip computers possible,
namely those which occupy an entire wafer of semiconductor. It necessarily spans
the many subject areas which influence computer design, in particular those of
computer science, suggesting that which is desirable in a computer, and those of
microelectronics, indicating that which is possible in a computer.

The skills of the computer engineer will be in great demand to design new
architectures for the future breeds of supercomputer. The exciting prospect of
finding a successor to a system which has not been surpassed in forty years is now
realistic.

The academic study of this subject seems to be polarised into two classes of
department: those which study computing, and those which study electronic
engineering. However, this book is neither a computer science text, nor one for
microelectronics, though both areas are introduced here. Instead, it reports on some
exciting research work from various sources around the world which is relevant to
computer engineering and computer architecture design.

Although the work which is reported here is currently the subject of research, this
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book has been written with Master’s level teaching in mind. Some of the introduc-
tory material is included simply because it is useful to have a basic introduction
included in the one text rather than be constantly referred elsewhere. Ample refer-
ences are given though for further reading.
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GLOBALLY
RESERVED NAMES

A number of terms are used consistently throughout this book. These are listed here,
along with a brief definition. Fuller definitions can be found in the glossary at the
back of the book, and in the text, mainly on pages 125-35.
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area of cell

area of fault/failure tolerant overhead
per circuit

area of circuit with fault/failure
tolerance logic

reliability of cell

reliability of failure tolerant overhead
per circuit

reliability of circuit with failure
tolerance logic

number of cells needed

number of cells per circuit

diameter of water

unusable margin round wafer

usable diameter of wafer

harvest of cells
an integer
an integer

number of rows of cells needed
number of columns of cells needed
aprobability (0=p =1)

distance from centre of wafer
number of sides on a cell

time

yield of circuits

yield of cells
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area of device

area of non fault/failure tolerant
overhead per device

area of complete fault/failure tolerant
device

reliability of device

reliability of non failure tolerant
overhead per device

reliability of complete failure tolerant
device

number of cells fabricated

fault density

number of faults/failures tolerated by
device
harvest of devices

number of faults/failures to kill the
device

number of rows fabricated
number of columns fabricated

replication factor
speed ratio

yield of fault/failure tolerant devices
usable area of wafer
yield of devices
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crop
crop’
num

rca

yield of circuits with fault/failure
tolerance logic
number of test processors per device

fault clustering factor
angle relative to the major water flat
transistor

number of working devices obtained
per wafer

number of working fault/failure
tolerant devices obtained per wafer
number of devices fabricated per
wafer

relative cell area

YI

Q

rco
rda
rdo
rpa
rpo
TC
10

yield of fault/failure tolerant devices

unit length in circuit layout
standard deviation
transistor switching time

relative cell overhead
relative device area
relative device overhead
relative processor area
relative processor overhead
test coverage

test quality
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1

FIFTH GENERATION
COMPUTING
BACKGROUND

Digital electronic computer design has been an engaging subject for forty years. In
this time, some five orders of magnitude of improvement of performance have been
attained, but solely through trimming the original design to its present highly honed
state. There is no doubt that further improvement of performance is needed, but this
cannot be expected to be achieved by mere tuning of the current design any further.
As a result, radically new types of computer are being investigated by research
groups throughout the world, and this book reports on some of the implications of
this work. A study is made of some possible applications in which these machines
might be used, programmed and implemented. Necessarily, some degree of con-
jecture is involved, along with a backward glance at how the predecessors are used,
programmed and implemented. The latter is necessary in order to understand why
certain techniques and styles are still adopted, and others have been modified or
dropped in the light of the lessons of the past.

Over recent decades, many lessons have been learned. Not least, there is a striking
similarity between many of the problems and their possible solutions which are
found in electronic engineering and computer programming. Both disciplines have
learned that the design task becomes very much easier if the system is hierarchical,
highly regular and highly modular. They have also learned how efficiency of the final
product benefits from the use of local, highly parallel interconnections within the
regular arrangement of modules. However, it is critical that the right granularity be
found in all cases, and at all levels of detail. In other words, the modules must
neither be too small and plentiful, nor too large and scarce; similarly, communica-
tions should involve messages which are neither too short and prolific, nor too long
and infrequent (Figure 1.1).

From the hardware end, computer architects want programming languages which
make efficient use of their hardware primitives. From the software end, functional
language designers want new computer architectures which support their ideas

1



2 Fifth generation computing background

Parallel interconnectivity
Local interconnectivity
High modularity

High regularity
Optimum granularity

FIGURE 1.1 Recurring themes

efficiently. In a third corner, computer engineers need computer-aided design
programs to describe the structures which they intend to implement (Ullman 1984,
Sheeran 1985). There are, therefore, many lessons which each group can learn from
the others, and much virtue in a closer co-operation between the disciplines to solve
the imminent problems in computer design. Since this idea is so central to the aim of
this book, the common themes, as listed above, are repeated in Figure 1.1. They will
appear many times in this text, even across many subject boundaries. The computer
architect must be on the alert for this sort of commonality, and ready to exploit it at
all times.

This book concentrates on two seemingly unrelated ideas, namely functional
language programming, and wafer scale integration (WSI), and uses them to
illustrate the common points of computer science and microelectronics. It does not
matter whether WSI ever becomes economically viable. It is not certain even that
functional programming will become economic. What is important is that the
techniques which are eventually adopted will bear the same sort of interrelation-
ships. Functional language programming and WSI are therefore used here merely as
the vehicles with which to illustrate, to catalogue and to classify the points which are
made in this book.

A summary is given in the next section (Section 1.1) of the aims and concerns of
the fifth generation programme. This helpéto set the context: the goals towards
which the computer engineering ideas of this book hope to contribute, at least in
some small way. The section after (Section 1.2) describes the ideas on which the new
architectures must be built if forty years of work and lessons are not to be ignored.

1.1 BACKGROUND STUDY OF FIFTH GENERATION COMPUTING

The fifth generation programme was initiated by the Japanese in 1981 (Simons 1983)
to develop computer systems which are faster, more reliable and more intelligent
than those of the present, and was scheduled, rather optimistically, for completion
in 1991. Western countries, perceiving an imminent domination by the Japanese,
followed with their own initiatives. Respectively, they are Alvey (in the UK),
ESPRIT (in the EEC), DARPA and MCC (both in the USA). Along with the
Japanese ICOT programme, they can be grouped collectively under the ‘fifth
generation’ label.



