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PREFACE

This book was written to provide a guide for professionals
interested in energy transfer and electrochemical technology
systems. It covers the state-of-the-art of materials,
electrochemistry and electrochemical engineering as related to

electrochemical reactors, batteries and fuel cells.

The text is divided into 3 parts, the first (Part A) being
devoted to fundamentals of reactors, batteries and fuel cells and
covering various aspects of design, parts, construction, materials
operation and control systems. Part "B" 1is devoted to specific
reactors such as water electroorganic and inorganic synthesis,
electrochemical polymerization, molten salt electrolysis,
electrochemical machining, metal finishing, reactor performance,
failure mechanisms, corrosion control, materials selection and
techniques. Part "C: deals with manufacturing techniques and
surface treatment of materials for commercial reactors, commercial
parts/materials, fastening, assembly and production of reactor
parts and mathematical modelling of various reactor processes. The
appendix contains useful data for specialists as well as beginners
such as selected recent patents, organizations interested in

reactors, a glossary, and the biographic profiles of the authors.

It is hoped that this book will be of value to those working
in electrochemical engineering and chemical technology as well as
to students of materials science and chemistry especially for
courses in thermodynamics, kinetics, heat and mass transfer, fluid
mechanics, reactor design, control systems, batteries and fuel
cells, and materials for chemical industry and aggressive

environments.

Mississauga Mohamed I. Ismail
(Toronto)
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Electrochemical Reactors: Their Science and Technology Part A, edited by M.I. Ismail 1
Elsevier Science Publishers B.V., Amsterdam, 1989 — Printed in The Netherlands

CHAPTER 1

INTRODUCTION TO ELECTROCHEMICAL REACTORS

F.R. McLARNON Applied Science Division. Lawrence Berkeley

and Laboratory, Berkeley, California, USA

E.J. CAIRNS

and

M.I. ISMAIL CanReactor Materials, Inc., Box 189, Mississauga.
Ontario, Canada LS5M 2B8 and with the Department of
Chemical Engineering, King Abdul Aziz University,
Jeddah, Kingdom of Saudi Arabia

Electrochemical Reactors (ECRs) have played a vital role in
the advancement of modern society. Widespread availability of

electricity and the ever-increasing rate of introduction of new
technologies during this century have produced a tremendous growth
in the number, types and applications of ECRs. whereas prior to
1900 the only ECRs in widespread use were galvanic cells. We now

see the ECR employed 1in such

chemicals production, portable 1
finishing, corrosion contr '
sensors and medical devices. fact it,js difficult to envisipn
an advanced technological soci nqa ep n the HER
to a significant degree. \ E

While the diversity of app%s ’ in

a bewildering number of reactor configurations, sizes and materials
of construction, there exists a set of fundamental (thermodynamic,
kinetic, transport and conservation) scientific principles that are
common to all ECRs. Armed with these principles and a knowledge of
pertinent materials science and economics, the scientist/engineer
can, in principle, evaluate ECR components and designs. However,
the physical nature of the electrochemical cell, e.g. the complex
interaction of transport phenomena and electric fields, and its
demanding requirements, e.g. stability of diverse components in an
aggressive chemical environment, combine to make the optimal
design of an ECR one of the most demanding challenges of modern
science and technology.

In view of the complex physical nature of the ECR, the
number and diversity of academic disciplines (chemistry, physics,
chemical engineering, materials science, metallurgy, economics,

mathematics, mechanical, engineering, etc.) which must be applied



to ECR research, design and development, and the wide range of
applications of ECRs, it 1is not surprising that comprehensive
programs in ECR Engineering are rarely found in universities.
It is the purpose of this book to provide a resource for ECR
science and technology, and to demonstrate the application of
certain fundamental principles to ECR design. The remainder
of this chapter outlines fundamental ECR principles and describes

their application to various ECR designs.

1.1 FUNDAMENTAL PRINCIPLES

A description of fundamental principles that guide research,
design and development of ECRs follows. The general application
of these principles is described later in this chapter, rigorous
mathematical statements of these principles are given in reference
(1), and detailed applications of these principles are presented

throughout this book.

1.1.1 Thermodynamics
The most useful thermodynamic principles, terms and equations

include relations for charged interfaces, electrode potential,
Faraday's law and overpotential; these are used to calculate
the terminal voltage of the ECR. This calculated theoretical
voltage is compared with the measured value(s) in order to assess
the efficency and effectiveness of the various ECR designs.

More details are provided in ref. 2 and chapter 2.

1.1.2 Kinetics

The experimental electrochemical methods for determination
of kinetic parameters (described in ref. 3 and chapter 3), along
with transport rates, define ECR space-time vyield and often
determine the practical stability limits of the materials employed
in ECRs. The rate at which any given electrochemical reaction
proceeds, including unwanted side reactions, can be

calculated/measured.

1.1.3 Transport phenomena
Transport rates, along with Kkinetics, determine ECR space-

time vield. Heat and mass transfer phenomena are covered in

chapter 5, and ECR fluid mechanics are discussed in chapter 11.



