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Preface

In this text, we define the Heegner module of an elliptic curve over a global
field. For global ground fields of positive characteristic. Drinfeld proved that
certain clliptic curves are the images of Drinfeld modular curves. On these
modular curves are points corresponding to Heegner points on classical mod-
ular curves. These points. called Drinfeld-Heegner points. correspond to gen-
erators of the Heegner module of the elliptic curve. Furthermore, for the case
of a Welil elliptic curve over the rational field Q. the Heegner module of the
curve is generated by the corresponding Heegner points.

The cohomology of the Heegner module of an elliptic curve over a global
field induces elements in the cohomology of the elliptic curve. As an applica-
tion, we prove the Tate conjecture for a class of elliptic surfaces over finite
fields. This case of the Tate conjecture is essentially equivalent to the con-
jecture of Birch and Swinnerton-Dyer for a corresponding class of elliptic
curves over global fields and is also equivalent to the finiteness of the Tate-
Shafarevich groups of these elliptic curves. This application is parallel to V.A.
Kolyvagin’s proof of the conjecture of Birch and Swinnerton-Dyer for a class
of Weil elliptic curves over the field of rational numbers.

Paris. March 2004 M.L. Broun
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1

Introduction

The points of departure of this text are twofold: first the proof by Drinfeld
in 1974 ([Drl], see also Appendix B) of an important case of the Langlands
conjecture for GLy over a global field of positive characteristic and second the
proof by Kolyvagin [K] in 1989 of the Birch Swinnerton-Dyer conjecture for
a class of Weil elliptic curves over the rational field Q.

A consequence of Drinfeld’s work is that an elliptic curve E over a global
field F of positive characteristic with split multiplicative reduction at a place is
an image of a Drinfeld modular curve (see Appendix B, §B.11). The analogues
of Heegner points on elliptic curves over the rational field Q may be then
constructed on the curve E; these points on £ are called Drinfeld-Heegner
points.

These Drinfeld-Heegner points satisfy relations given by the action of the
Hecke operators on the Drinfeld modular curves. We may then define, by gen-
erators and these relations, a Heegner module attached to the elliptic curve
E. The Drinfeld-Heegner points of F generate a subgroup of E which is a ho-
momorphic image of the Heegner module; nevertheless, the Heegner module
is an object distinct from E. The cohomology of the Heegner module may be
computed to a large extent (see Chapter 6). As an application of the coho-
mology of the Heegner module, we may then prove under suitable hypotheses
the Tate conjecture for the elliptic surface over a finite field corresponding to
the elliptic curve F/F (see Chapter 7).

The final part of the proof of the Tate conjecture (see Chapter 7) is parallel
to Kolyvagin’s calculation with “Euler systems” (see [R]). In particular, the
derived cohomology classes of Kolyvagin transposed to the present case of
elliptic curves over function fields arise naturally as part of the cohomology
of the Heegner module.

Chapter 7 of this text is the sequel to the paper [Br2], in which we con-
sidered the Tate conjecture for surfaces equipped with a rational pencil of
elliptic curves; here we consider the general case of surfaces with an irrational
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clliptic fibration. Furthermore, for the original case of a rational pencil of el-
liptic curves, we give much more complete results and eliminate some of the
technical hypotheses of the main theorem 1.1 of the first paper [Br2].

In this chapter below, we summarise the main results of this text.

1.1 Statement of the Tate conjecture

Let

k be a finite field of characteristic p with ¢ = p’ elements;

k be an algebraic closure of k;

('/k be a smooth projective irreducible curve over k;

F' be the function field of the curve ('

X/Fk be an elliptic surface over ('; that is to say, X /k is a smooth projective
irreducible surface. equipped with a morphism f: X — (' with a
section such that all fibres of f. except a finite number. are
elliptic curves;

F/F be the generic fibre of f: X — (', which is an elliptic curve E
over I

o0 be a closed point of C.

The zeta function ((X.s) of X is defined by the formula
1
(X.s) = —_—
(o= 1l e
re X (k)

By Grothendieck and Deligne, for every prime number [ # p the zeta function
takes the form

1
(X, 8) = H“(X.(f")(*l)”"
1=
where we have
(i) Pi(X.t) = det(1 —tO| Hi\ (X xi k. Q)
PUX, ) = 1=t Pi(X,0 =1 ¢,

where @ is the Frobenius automorphism of X x k relative to k:
(i) P(X.t) € Z[t] is independent of the prime number ¢ for all
(iii) the roots of P,(X.t) in € have absolute values equal to ¢~ /2.
Let p(X) be the rank of the Néron-Severi group NS(X) of X/k. The Tate

conjecture for this particular case of a surface over a finite field can be stated
in one of these three equivalent ways:
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(a) If L # p. the cycle map
NS(X) 207 Q) — HZ (X xp k, Q1)) /K
NS(X) @z Qi G (XX kL Q(1))

is an isomorphism.
(b) The multiplicity of ¢ as an inverse root of P»(X.t) is equal to p(X).

(¢) The order of the pole of ((X.s) at s = 1 is equal to p(X).

[For more details see [Br2, Introduction], [T1], [T3].]

1.2 The Drinfeld modular curve X(l))ri"(I)

Let A be the coordinate ring I'(C'\ {~c}, O,.) of the affine curve C'\ {oc}. Let
I be a non-zero ideal of A. ’

The curve X"(1) is the coarse moduli scheme of Drinfeld modules of
rank 2 for A equipped with an [-cyclic subgroup (Definition 2.4.2); this curve
is compactified by a finite number of cusps which correspond to “degenerate”
Drinfeld modules. The points of X" (1) /F correspond to pairs (D, Z) where
D is a Drinfeld module of rank 2 for A and Z is a finite closed sub-group
scheme of D which is isomorphic to A/[. as an A-module-scheme.

This modular curve XP(7) is an analogue for the global field F of the
classical modular curve X(/N) which is the coarse moduli scheme of elliptic
curves equipped with a cyclic subgroup of order N. where N is a positive
integer.

[For more details see, §2.4.

1.3 Analogue for F' of the Shimura-Taniyama-Weil
conjecture

Let E/F be an elliptic curve which admits “split Tate multiplicative reduc-
tion™ at oc. Let I be the non-zero ideal of the ring A which is the conductor,
without the place at ~. of the elliptic curve £.

Thanks to the work of Drinfeld on the Langlands conjecture for GL(2).
there is a finite surjective morphism of curves

Pz XPH(I) - E.

This result is the analogue for the global field F' of the Shimura-Taniyama-
Weil conjecture proved by Wiles [W] for semi-stable elliptic curves over Q.
[For more details, see §4.7 and Appendix B
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1.4 Drinfeld-Heegner points

Let K be a field which is an quadratic extension of F' where the place o
remains inert; K is said to be an imaginary quadratic extension of F.

Let D be a Drinfeld module for A of rank 2 with complex multiplication
by an order O of K; let Z be an I-cyclic subgroup of D. Then the pair (D, Z)
represents a point on the modular curve X1 (I) (see §1.2).

If the quotient Drinfeld module DD/Z has the same ring of endomorphisms
O as D then the point (D,Z) on the modular curve XP""(I) is called a
Drinfeld-Heegner point (see chapter 4).

If (D,Z) is a Drinfeld-Heegner point and ¢ : XP'(I) — E is a finite
surjective morphism of curves, where F' is an elliptic curve over F' (see §1.3),
then the point ¢ (D, Z) is called a Drinfeld-Heegner point of the elliptic curve
E.

The Drinfeld-Heegner points (D, Z) and ¢/(D, Z) are rational over the ring
class field K|[c|, where ¢ is the conductor of the order O of K relative to A
(see §6§2.2,2.3).

1.5 Heegner sheaves

Let E/F be an elliptic curve equipped with a finite surjective morphism of
curves

o X — B
where I is the conductor, without the place at oo, of E (see §1.3).

Let F®°P be a separable closure of the field F. The set of Drinfeld-
Heegner points of £ generates a subgroup H of the abelian group E(FP) of
FsP_rational points of E. The group H equipped with its action by the Galois
group Gal(F®P/F) is then a sheaf of abelian groups for the étale topology of
Spec F (see chapter 4) where for any étale morphism U — Spec F' we have

. _JfU—=E | the geometric points of
Pl = { | the image of f are Drinfeld — Heegner |

Evidently H is a subsheaf of the étale sheaf defined by the elliptic curve E.

In the same way, the set of Drinfeld-Heegner points of XP""(I) defines a
sheaf of sets for the étale topology on Spec F. Furthermore, a sheaf of abelian
groups may be defined for the étale topology on the curve C' and which is the
subsheaf generated by the Drinfeld-Heegner points of the sheaf defined by the
Néron model of F over (' .

1.6 Hecke operators

Let z be a closed point of C'\ {oc} let m, be the maximal ideal of the ring A
defined by z. If z is not in the support of Spec A/I, the Hecke operator 7T, is
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1.7 Bruhat-Tits buildings with complex multiplication
defined on the curve XPrin(I) by

T.:(D.Z)— > (D/H.(Z + H)/H)
H

where H runs over the m,-cyclic subgroups of D and the right hand side of
this formula is a divisor on X ().
[See §4.5 for more details.]

1.7 Bruhat-Tits buildings with complex multiplication

Let A(SLy(F')) be the euclidean Bruhat-Tits building for SLy of the field F
equipped with its discrete valuation associated to a closed point z. For this
case of SLy, the building A(SLy(F)) is a tree.

Let £ be the set of vertices of A(SLy(F')). Then a Bruhat-Tits tree with
complex multiplication is a couple (A(SLa(F')), Exp) where Exp, called an
exponent function, is a map of sets (see chapter 3)

Exp: L — Z.

We are principally concerned with Bruhat-Tits buildings with complex
multiplication which arise in the following way. Let

M be a reduced 2-dimensional commutative F-algebra;

R be the discrete valuation ring of F' associated to the closed point z;
7 be a uniformising parameter of K;

S be the integral closure of R in M.

As M is a 2-dimensional vector space over £, the R-lattices contained in
M correspond surjectively to the elements of £. Two R-lattices Ay, Ay in M
correspond to the same point in £ if and only if they are equivalent, that is,
Ay = aAy for some a € F'™*.

To each lattice equivalence class [A] € £, where A C M is a lattice of M,
is associated the ring of endomorphisms End?/ (A) which is the subring of M
preserving A:

End¥ (A) = {m e M | mA c A}.

The ring End3/ (A) is uniquely determined by its conductor ideal [S: Endf?l(A)].
which is an ideal of R, and depends only on the lattice class of A. The con-
ductor [S : En(lj‘?l(/l)] is of the form 7#P*P(MD R where the exponent of the
conductor Exp([A]) is an integer; this defines a map

Exp: £ — Z.

This pair (A(SLo(F)).Exp) is a Bruhat-Tits building with complex multi-
plication. When the algebra M is not reduced, a Bruhat-Tits building with
complex multiplication may also be defined (chapter 3).
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This construction may be globalised to define a Bruhat-Tits net with com-
plex multiplication for any excellent Dedekind domain R (see §53.9.3.10. 3.11).

1.8 Bruhat-Tits buildings with complex multiplication
and Drinfeld-Heegner points

Let (D. Z) be a Drinfeld-Heegner point on X" (1) relative to the imaginary
quadratic field extension K of £ (see §1.4). Let = be a closed point of '\ {oc}
where z is not in the support of Spec A/I; let T. be the Hecke operator at z.
Then

T.(D.Z)

is a divisor on XP""(I) whose irreducible components are also Drinfeld-
Heegner points.

The Drinfeld module D, which has complex multiplication by an order of
K, corresponds to an A-sublattice A of rank 2 of A, under the equivalence
between Drinfeld modules of infinite characteristic and lattices. Hence D cor-
responds via A to a vertex v of the Bruhat-Tits building A(SLy(F')) with
respect to the discrete valuation on F corresponding to z. The irreducible
components of T.(D, Z) then correspond to the neighbouring vertices of v in
A(SLa(F)). The exponents at z of the conductors of the endomorphism rings
of these components of T. (D, Z) are then the values of an exponent function
[Fxp on the corresponding vertices of A(SLy(F)).

The endomorphism rings of the components of T.(D, Z) are in this way de-
scribed by a Bruhat-Tits tree with complex multiplication (A(SL,(£)), Exp)
with respect to z (see §53.6-3.8).

1.9 Classification of Bruhat-Tits buildings with complex
multiplication

Let M, R, zbeasin§l.7. Let (A(SLy(F)), Exp) be the corresponding Bruhat-
Tits tree with complex multiplication.

We prove that there are precisely 4 distinct forms of the Bruhat-Tits trees
with complex multiplication (A(SLy(F')). Exp). that is to say, 4 distinct forms
of the exponent functions Exp: there are 3 forms corresponding to the splitting
of the place z in the quadratic extension of algebras M/F and there is a 4th
form when A/ is not a reduced algebra.

We give a simple formula for the exponent functions Exp in terms of the
standard metric on the euclidean building A(SLa([7)) (see theorems 3.7.3,
3.7.5 and figures 1. 2. 3, and 4 of §3.8).
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1.10 The Heegner module of a galois representation

Let

p be a finite dimensional continuous representation over a local field L of
the galois group Gal(F=?/F), where F*? denotes the separable
closure of F';

K/F be an imaginary quadratic field extension;

R be a subring of L such that the character of p takes its values in RR.

We construct a discrete galois R-module H(p) over Gal(A™P/K) called
the canonical Heegner module attached to p and K/F with coefficients in R.

The Heegner module H(p) is defined by generators and relations over the
ring . The generators are the symbols < b, ¢ > where ¢ runs over all effective
divisors on Spec A and b runs over all divisor classes of Pic(O,). the Picard
group of the order O,. of K with conductor ¢. The relations are explicitly given
in (5.3.5)-(5.3.8): they are derived from the action of the Hecke operators on
Drinfeld-Heegner points.

The most important case of this construction of H(p) arises from elliptic
curves. Suppose that F/F' is an elliptic curve equipped with a finite surjective
morphism of curves

U )&'(l')rin(l) 5 B

For any prime number [ different from the characteristic of F', the curve £
provides a continuous /-adic representation

o Gal(F*P/F) — Endg, (HA\ (E x » F*?, Q).

Let K/F be an imaginary quadratic extension field of F' in which all primes
dividing the conductor of E, except oo, split completely. The character of this
representation o takes its values in Z. The Heegner module H(o) attached
to o and K/F is then an abelian group equipped with the structure of a
discrete Gal(A™? /K )-module; it is also equipped with a galois-equivariant
homomorphism (see examples 5.3.18)

[:H(o)") — E(F™P)

where H(a)") is the direct summand of H(o) generated by the symbols
< b, ¢ > where ¢ runs over all effective divisors on Spec A prime to a particular
finite exceptional set of prime divisors. The image of this homomorphism is
precisely the subgroup of E(F%P) generated by the Drinfeld-Heegner points:
that is to say. the image f(H(e)'")) may be considered as a sheaf of abelian
groups for the étale topology on Spec K and it coincides with the Heegner
sheaf H of F, as in §1.5.
[See chapter 5 for more details.]
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1.11 Cohomology of the Heegner module

As in the preceding section §1.10, let. H(p) over Gal(K**?/K') be the Heegner
module over R attached to p, K/F, and R.
The Heegner module H(p) is an abelian representation of Gal(K*P/K') in
that the action of this galois group factors through an abelian quotient.
More precisely, let K [c] be the ring class field of K over F' with conductor
¢ (§2.3). Then H(p) may be expressed as a direct limit

H(p) = limH,

where ¢ runs over all effective divisors on Spec A and H, is a Gal(K|[c]/K)-
module and is an R-module of finite type. This direct limit (which under a
simple hypothesis is a direct union; see corollary 5.9.4) defines a filtration on
H(p) and gives this Heegner module the structure of a discrete module over
the abelian galois group

Gal(|  K[c]/K).

For any R-algebra S and any prime divisor z in the support of ¢, we
attempt to determine in Chapter 6 the galois cohomology groups

H'(Gal(K|[c]/K[c — z]),H. @R S), fori=>0.
This is the first step in the determination of the galois cohomology groups
H'(Gal(K*P/K), H(p) ®r S), fori>0.

The most precise results we obtain are for the case where S is an infinitesimal
trait that is to say an artin local ring which is a quotient of a discrete valuation
ring.

[See chapter 6 for more details.]

1.12 The Tate conjecture and the Heegner module

Let £/C be the Néron model of the elliptic curve E/F. Then € can be con-
sidered as a sheaf of abelian groups on C' for the étale topology.
The Tate-Shafarevich group of E/F is defined by

[TI(E.F) = HL(C,E).

As k is a perfect field, this says that [J[(£,F) is the group of principal
homogeneous of E//F which are everywhere locally trivial. Thanks to the work
of Artin. Tate and Milne, the finiteness of the group [J[(E, F) is equivalent
to the Tate conjecture for the elliptic surface £/k of §1.1.
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Suppose that E/F is an elliptic curve equipped with a finite surjective
morphism of curves over F

d" : X{I])rin([) — F.

For any prime number [ different from the characteristic of F, we have a
continuous [-adic representation

p: Gal(F*P/F) — Endg, (HA\(E x ¢ F*P. Q).

Let K/F be an imaginary quadratic extension field of F' in which all primes
dividing the conductor of F, except oo, split completely. As in §1.10, let
H(p) = limH,. be the Heegner module attached to p and K/F and the ring

of coefficients Z; we have a morphism of sheaves for the étale topology over
Spec K
fH(p) — E.
The morphism of sheaves f provides homomorphisms of cohomology
groups

2\ Gal(K[]/K , . CCal(K T/
(H,- ®gz, _Z) (K [c]/K) — H(f“(bpec K [(,]7 L',,”)('dl("[’]/[‘)
n
for all integers n > 1 prime to the characteristic of F' and all ¢ prime to a
finite exceptional set of divisors, where F,, is the n-torsion subgroup of F.
This gives rise (see (7.14.5)) to the fundamental Heegner homomorphism, for
all n prime to a finite exceptional set of prime numbers,
Z | Gal(K[c]/K)
H,. Ry — — H) (Spec K, E).
( R/ TlZ) (f,( I )
The subgroups of H},(Spec K, E) coming from the calculation of the coho-
mology of the Heegner module H(p), by a fine analysis in Chapter 7, enables
us to show, under suitable hypotheses. the finiteness of the Tate-Shafarevich
group [[J(E. F) and hence to prove the Tate conjecture for £/k.

1.13 Statement of the main result on the Tate
conjecture

In this section, let F' be a global field of positive characteristic and with exact
field of constants k; fix a place oo of F with residue field equal to k. Let E/F
be an elliptic curve with an origin and with split multiplicative reduction at
oo. Then E/F is equipped with a map of F-schemes

g7 X([,)ri“(l) L F

where I, which is an ideal of A, is the conductor of E without the component
at oo (see §1.3). Let K be an imaginary quadratic extension field of F' for



