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Preface

These are the Proceedings of a conference on Lyapunov Exponents held at Ober-
wolfach May 28 — June 2, 1990. The volume contains an introductory survey and
26 original research papers, some of which have, in addition, survey character.

This conference was the second one on the subject of Lyapunov Exponents. The first
one took place in Bremen in November 1984 and lead to the Proceedings volume Lec-
ture Notes in Mathematics # 1186 (1986). Comparing those two volumes, one can
realize pronounced shifts, particularly towards nonlinear and infinite-dimensional
systems and engineering applications.

We would like to thank the ‘Mathematisches IForschungsinstitut Oberwolfach’ for
letting us have the conference at this unique venue.

March 1991

Ludwig Arnold Hans Crauel Jean-Pierre Eckmann
(Bremen) (Saarbriicken) (Geneve)
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Random Dynamical Systems

Ludwig Arnold Hans Crauel
Institut fir Dynamische Systeme Fachbereich 9 MATHEMATIK
Universitat Bremen Universitat des Saarlandes
2800 Bremen 33 6600 Saarbricken 11

1 Introduction

The main purpose of this survey is to present and popularize the notion of a random
dynamical system (RDS) and to give an impression of its scope. The notion of RDS
covers the most important families of dynamical systems with randomness which are
currently of interest. For instance, products of random maps — in particular products
of random matrices — are RDS as well as (the solution flows of) stochastic and random
ordinary and partial differential equations.

One of the basic results for RDS is the Multiplicative Ergodic Theorem (MET) of Oseledec
[38]. Originally formulated for products of random matrices, it has been reformulated and
reproved several times during the past twenty years. Basically, there are two classes of
proofs. One makes use of Kingman’s Subadditive Ergodic Theorem together with the
polar decomposition of square matrices. The other one starts by proving the assertions of
the MET for triangular systems, and then enlarges the probability space by the compact
group of special orthogonal matrices, so that every matrix cocycle becomes homologous
to a triangular one.

Let us emphasize that the MET is a linear result. It is possible to introduce Lyapunov
exponent-like quantities for nonlinear systems directly a la (9) below, or, much more
sophisticated, as by Kifer [27]. However, the wealth of structure provided by the MET
is available for linear systems only. Speaking of an “MET for nonlinear systems” always
means the MET for the linearization of a nonlinear system. What is new for nonlinear
systems is the fact that the linearization lives on the tangent bundle of a manifold (instead
of the flat bundle R x § as for products of random matrices). The MET yields nontrivial
consequences for deterministic systems already. This case has been dealt with by Ruelle
[39]. Ruelle’s argument proceeds by trivialization of the nonflat tangent bundle. It is
exactly the same argument that works for nonlinear random systems: infer the MET
for the linearization of the system from the ordinary MET together with a trivialization
argument. We reproduce the argument below.

Stochastic flows have entered the scene a couple of years ago. They are related to RDS,
but they are not the same. We describe their relations, and point out their differences.

The final Section briefly reviews all contributions to the present volume.



2 Random Dynamical Systems and Multiplicative
Ergodic Theory

2.1 RDS

Consider a set T' (time), T = R, Z; R*, or N, and a family {dJ; : @ — Q |t € T} of
measure preserving transformations of a probability space (2, F, P) such that (¢,w) — Jsw
is measurable, {J; | t € T} is ergodic, and ¥¢4s = ¥y 09, for all ¢,s € T with 9o = id.
Thus (9¢)ter is a flow if T = R or Z, and a semi-flow if T = R* or N. The set-up
((,F, P), (Y1)er) is a (measurable) dynamical system.

Definition A random dynamical system on a measurable space (X, B) over (J:)ter on
(R, F, P) is a measurable map

p:TxXxN—-X
such that ¢(0,w) = id (identity on X) and
Pt + s,w) = p(t,d,w) o p(s,w) (1)

for all ¢,s € T and for all w outside a P-nullset, where ¢(¢,w) : X — X is the map which
arises when t € T and w €  are fixed, and o means composition. A family of maps
¢(t,w) satisfying (1) is called a cocycle, and (1) is the cocycle property.

We often omit mentioning ((2, F, P), (9:)ier) in the following, speaking of a random
dynamical system (abbreviated RDS) ¢.

We do not assume the maps ¢(t,w) to be invertible a priori. By the cocycle property,
¢(t,w) is automatically invertible (for all ¢ € T' and for P-almost all w) if T = R or Z,
and ¢(t,w)™! = p(—t, dw).

The following examples are quite distinct in many respects. However, they all are RDS.

1. The simplest case of a random dynamical system is a non-random — viz., deterministic
— dynamical system. An RDS is deterministicif ¢ does not depend on w, i.e., p(t,z,w) =
©(t,z). Then the cocycle property (1) reads ¢(t+s) = ¢(t)op(s), hence (¢(t))ier consists
of the iterates of a measurable map on X if T' = Z(+) and ((t)).er is a measurable (semi-)
flow if T = R, respectively.

2. Let 9: Q2 — Q be a measure preserving transformation, and let ¢ : X x —~+X bea
measurable map. Put ¢, =1 o 9", Then

Pn(w) 0 Pn_1(w) ... o hy(w) for n>0
p(n,w) =< id for n=0
Y1 (W) o Yria(w) e o9hg’ (w) for n <O,

defines an RDS (of course, defining ¢(n,w) for n < 0 needs ¥ and ¥(-,w) invertible P-
a.s.). In particular, if X = R? and & — t(z,w) is linear, then ¢ is a product of random
matrices.



3. Suppose T = R, and M is a C* manifold. Denote by TM the total space of the
tangent bundle of M, and let Y : M x § — TM be a measurable map such that for
P-almost all w the map Y (-,w) is a smooth vector field. Then the random differential
equation

i(t) = Y (2(t),0w),  3(0) = 2o, @)

induces a map ¢(t,w) : M — M, such that z(t,w) = ¢(t,w)z solves (2) with z(0) = =
for t € (1~ (z,w),t*(z,w)), where t7(z,:) < 0 < t*(z,-) (P-a.s.) describe the maximal
intervals of definition of solutions. If t~(z,-) = —oco and t*(z,:) = +oo (for all z € M
P-a.s.) then ¢ is an RDS. In addition, £ — ¢(¢,w)z is a diffeomorphism for all ¢ € R
(P-a.s.) in this case. The maximal interval of definition is automatically all of R if M is
compact. If —oo < t7(z) or t*(z) < oo for some z with positive probability we speak of
a local RDS or local random flow.

4. Suppose M is a C? manifold, and ¥;, 0 < ¢ < n, are smooth vector fields on M. Then
the stochastic differential equation

dz(t) = Yo(z(t)) dt + i Yi(z(t))o dWi(t),  z(0) = zo, (3)

induces a (local) stochastic flow. Usually (3) is understood for ¢t > 0. We will describe
below how to give (3) a meaning on the whole time axis. Once this is done, maximal
intervals of solutions, containing ¢ = 0 as an interior point, exist and have the same
properties as for random flows described in the previous example.

We have introduced local random and stochastic flows because they play a role in stochas-
tic bifurcation. For details see below.

As for deterministic systems, RDS may be classified according to their spatial properties.

If X is a topological space (with Borel o-algebra), a random dynamical system is said to
be continuous if ¢(t,w) : X — X is continuous for all ¢ € T and all w € Q outside a
P-nullset.

If X is a C™ manifold, r > 1, an RDS ¢ on X is said to be differentiable or smooth if
¢(t,w): X — X is C" differentiable for all ¢ € T and all w outside a P-nullset.

A random dynamical system on a topological vector space X is said to be linear if (¢, w) :
X — X is linear for all ¢t € T and all w outside a P-nullset.

If an RDS consists of non-invertible maps then T' cannot contain negative times. An
RDS ¢ consisting of invertible maps need not allow negative time, since 9; need hot be
invertible. So we have to distinguish between two kinds of invertibility. An RDS is said to
be two sided if T = R or T' = Z. It is said to be invertible if, for all ¢ € T and P-almost
all w, ¢(t,w) is invertible in the corresponding class (measurable, continuous, smooth).
Clearly ‘two sided’ is stronger than ‘invertible’.

Any RDS induces a measurable skew product (semi-) flow

Q;: X xN — XxQ
(z,w) = (p(t,w)z, dw),

(4)



t € T, where ¢(t,w)z = ¢(t,z,w). The flow property ©;4, = ©; o O, follows from the
cocycle property of ¢ (see (1); we use the term flow for both continuous and discrete time
T).

From the point of view of abstract ergodic theory, an RDS is nothing but an ordinary
dynamical system (©,);cr with a factor (9;):er together with the extra bit of structure
provided by the fact that the ergodic invariant measure P for the factor is given a priori.
(This observation might serve as an abstract definition of RDS.)

A probability measure g on X x Q (on the product o-algebra B ® F) is said to be an
invariant measure for ¢ if p is invariant under O, ¢t € T, and if it has marginal P on
). Invariant measures always exist for continuous RDS on a compact X (which is in
complete analogy with deterministic dynamical systems).

Denote by Pr(X) the space of probability measures on X, endowed with the smallest
o-algebra making the maps Pr(X) — R, v — fx h dv, measurable with h varying over
the bounded measurable functions on X.

Given a measure p € Pr(X x Q) with marginal P on , a measurable map u, :  —
Pr(X), w+— p, will be called a disintegration of u (with respect to P) if

W(B % C) = [ u(B)dP)
c
forall B€ Band C € F.
Disintegrations exist and are unique (P-a.s.), e. g., if X is a Polish space. We will assume

existence and uniqueness of a disintegration in the following.
A measure y is invariant for the RDS ¢ if and only if

E(p(t, ). | 97 F)(w) = pow P-a.s. foreveryt e T. (5)
If T is two sided then 9;'F = F, hence for T two sided (5) reads

P(t, w) e = Pow P-a.s. for every t € T.

2.2 Lyapunov exponents and the Multiplicative Ergodic The-
orem

For a differentiable manifold M denote by T'M the total space of its tangent bundle. The
linearization of a differentiable map 3 : M — M is denoted by Ty : TM — TM with
T : T:M — Ty)M, z € M, denoting the action of T'¢ on individual fibers.

Suppose ¢ is a smooth RDS on a d-dimensional Riemannian manifold M. The chain rule
yields
Top(t + 5,w) = Ty(sw)zp(t, V) o Top(s,w) (6)

for all {,s € T and £ € M with P-measure 1. Consequently, the linearization Ty :
TxTM> Q — TM is a cocycle over the skew product flow O;(z,w) = (¢(t,w)z,dw)
on M x Q (cf (4)).



Suppose p is an invariant measure for ¢ such that

(zaw) — sup 1°g+(“Tr‘P(taw)”) € Ll(/")v (7)
0<t<to

where logt = max{log, 0}, and || - || denotes the norm induced by the Riemannian metric.
Denote by M (z,w) > M(z,w) > ... > M(z,w) the Lyapunov exponents of ¢ associated
with p, where the © . -invariant maps (z,w) — M(z,w) are defined via

k
> N (@) = lim = log IA*Tap(t,0)ll, ®)

=1

1<k <d. Here /\k denotes the k-fold exterior product of T,p. Existence of the limits
in (8) follows from Kingman’s subadditive ergodic theorem (Kingman [29]). Though (7)
guarantees A\; < 0o, the last \;’s may equal —co. If u is ergodic, the Lyapunov exponents
do not depend on (z,w). If M is compact, the Lyapunov exponents do not depend on the
choice of the Riemannian metric.

Sometimes it is more convenient to count only the distinct Lyapunov exponents, denoted
here by A1 > A; > ... > A,, where r is the number of distinct exponents, 1 < r < d (we
assume p ergodic to ease notation). Denote by d; = max{p — ¢+ 1| A\, = A, = A;} the
multiplicity of A;.

There is another classical way to introduce Lyapunov exponents (see for instance Arnold
and Wihstutz [8]). Put

A(w,) = lim sup 7 log | Tap(t, w)ol. (9)

The map A(,w) : TM — RU {—o0} satisfies A(cv) = A(v) for all ¢ # 0, v € TM, and
A(c1v1 + covz) < max{A(v1), A(vz)} for all ¢;,¢c; € R and vy,v2 € Ty M, z € M (sometimes
called a characteristic exponent); we dropped w, which is fixed here. These two properties
imply that ) takes only finitely many values A; > A; > ... > A; as v varies over T, M,
v # 0. The Lyapunov exponents in this approach are the A;. By definition of v Alv,w),
the sets
1/6(3:)"‘)) = {‘U € T’-‘M I ’\(va) S 6}

are linear subspaces of T; M for § € R arbitrary. Put V; = V5, and d; = dimV; — dim V4.
The two definitions of Lyapunov exponents presented above are in general not equivalent.
However, they are equivalent if (and only if) (z,w) is a forward regular point for Tp(t,w)

(see Arnold and Wihstutz [8]) pp.2-3). In terms of the present paper, (z,w) is forward
regular if 3] d;A; = Y] diA;. It is clear from (6) that the bundle of linear subspaces

V,~(z,w) = {'U € T::M I /\(v1w) S ]\,‘(.’E,UJ)},

is invariant under Ty in the sense that T (¢, w)Vi(z,w) C Vi(0O:(z,w)). We refer to the
family
T.M = Vi(z,w) D Vo(z,w) D ... D Vi(z,w) D {0}



as the Oseledec flag associated with ¢.
In the following we will be concerned with regular systems only, so that we need not
distinguish between A and A.

We now recall the Multiplicative Ergodic Theorem (MET) of Oseledec for nonlinear RDS
and sketch Ruelle’s trivialization argument which reduces the nonflat bundle case to the
flat bundle one.

Theorem

(i) (Multiplicative Ergodic Theorem without invertibility)

Suppose ¢ is a smooth RDS on a d-dimensional Riemannian manifold M and let p be an
invariant measure for ¢ such that (7) is satisfied. Then the linearization T,p(t,w) of ¢
is forward regular at u-almost all points (z,w) € M x Q.

(ii) (Multiplicative Ergodic Theorem with invertibility)

Suppose ¢ is a smooth two sided RDS on a d-dimensional Riemannian manifold M and
let p be an invariant measure for ¢ such that

(z,w) = sup {log™* (| Tz (t, w)|I) + log* (|(Txe(t,w)) N} € L*(w). (10)

Then the linearization Typ(t,w) of ¢ is bi-regular’ at p-almost all points (z,w) € M x Q.

Note that in the invertible case regularity implies that for u-almost all (z,w) the spaces
Ei(z,w) = {v € TuM | At (v,w) = A7 (v,w) = Ai(z,w)}

form a splitting of T, M (with A*(v,w) = A(v,w) as in (9), and A~ (v,w) defined as in (9)
with t = —o00). TM = @ E; is referred to as the Oseledec splitting.

ProoF oF THE MET Denote the tangent bundle by (T'M,n, M). Choose a countable
covering of M by bundle charts (M;, ;) trivializing T'M locally in an isometrical manner.
That means, M; is an open subset of M, and 9; : 7~}(M;) — M; xR?, where 7w : TM — M
denotes the canonical bundle projection, such that ; restricted to #='{z} is linear for
all z € M;. In addition, ¢; may be chosen to be an isomorphism with respect to the
scalar product on #~1{z} induced by the Riemannian structure on M and the standard
scalar product on R for all z € M;, see Klingenberg [31] Theorem 1.8.20. (It is not really
essential to choose isometric bundle charts, it is simply more convenient.)

Next put Bo = M, and B, = M,,\ |J B; to obtain a countable covering {B,. | n € N} of

i<n

M by disjoint Borel sets. Putting

T:TM — MxR?
u —  Pi(x) for z € B;

yields a bimeasurable bundle map from T'M to the flat bundle M x R? such that X, :
T:M — {z} x R?is an isomorphism for all z € M. Finally, put

U(t;z,w) = Zo(tyw)z © 2p(t,w) o E;l.

l¢regular’ in the terminology of Arnold and Wihstutz [8] p.4



Then ¥ is a linear RDS on R over the (enlarged) probability space (M X §2, u). Since £,
is an isomorphism for all z € M,

IA"E(t 2,w)ll = A Tep(t,w)ll
for all k, 1 < k < d, and

12(t; 2, w)yll = [ Ta(t, w)(E7 )l

forally € R4 t € T, z € M, and P-almost all w € . Thus regularity of ¥ implies
regularity of T'w. But U satisfies the integrability conditions of the ‘ordinary’ MET by
(7) and (10), respectively, hence ¥ is forward or bi-regular, respectively, for u-almost all
(z,w). m|

Note that the Theorem does not require compactness of the manifold M. For a given
smooth RDS with an invariant measure it thus only remains to check the integrability
conditions (7) or (10), respectively, to infer the conclusions of the MET. This has been
done directly for white noise systems on compact manifolds by Carverhill [19] (without
imposing any further assumptions). Later Kifer [28] has shown that white noise systems
on compact manifolds satisfy much stronger integrability conditions.

Multiplicative ergodic theory becomes much more difficult when considering infinite di-
mensional RDS. Recall that for a finite dimensional linear deterministic system the Lya-
punov exponents are precisely the real parts of the eigenvalues of A (for continuous time,
z = Az) or the logarithms of the eigenvalues of A (for discrete time, zn41 = Atx,), respec-
tively. Thus, the Lyapunov exponents are determined by the spectrum. The definition
(see (8)) suggests that it is essential to have a ‘well behaved’ top part of the spectrum:
isolated eigenvalues of finite multiplicity. Since spectra of infinite dimensional operators
in general have a considerably more complicated structure than finite dimensional ones,
it is clear that much less is to be expected for infinite dimensional RDS. For a survey on
infinite dimensional systems see 4.3 below.

3 Random Dynamical Systems and Markov Pro-
cesses

3.1 Two cultures

In the theory of RDS two well-established mathematical cultures meet, overlap, and some-
times collide:

e Dynamical Systems: the flow point of view. Typically T' = R or Z unless mappings
are non-invertible which typically happens only for discrete time. Invariance of a measure
is defined as invariance with respect to the mappings of the system.

e Markov processes, stochastic analysis: Here time is almost exclusively Z* or R* (or
part of it). Markov processes are defined and studied through their transition semigroups
forward in time. The necessity to really construct stochastic processes with prescribed



transition semigroups (their existence follows from Kolmogorov’s theorem) created the
theory of stochastic differential equations (SDE’s) (which are really ODE’s with white
noise input). Continuous time is R*, and a filtration F; (i.e., an increasing family of
sub o-algebras of F) collects the information available at time t. Everything has to be
adapted, i. e., Fy-measurable. ‘Invariant measure’ in the Markov context means invariance
with respect to the transition semigroup.

The door from Markov processes to dynamical systems was really opened around 1980,
when several people (Elworthy [24], Bismut [12], Ikeda and Watanabe [25], Kunita [33])
realized that writing down an SDE for a Markov process means much more than originally
thought of by the pioneers K. It et al. It means the construction of a stochastic flow
(or, as we will see, of an RDS with independent increments) whose one-point motions are
Markov with the prescribed transition semigroup or its generator, respectively.

Probabilists sometimes criticize moving from an SDE to an RDS as ‘forgetting’ some of
the probabilistic structure of the original, e. g., the fact that coming from an SDE implies
in particular that all n-point motions are Markov. We think that the contrary is true, as
many contributions to this volume show.

First, the concept of an RDS allows to address completely new questions on SDE’s, as
for instance the problem of finding all invariant measures (and not only those solving
the Fokker-Planck equation), the problem of random invariant manifolds, random normal
forms etc.

Second, the underlying Markov structure gives rise to problems which do not make sense
for deterministic dynamical systems, such as the interplay of measurability and adapted-
ness properties with dynamics, see Crauel [20], [21], [22].

There seems to be some need for describing the connection between RDS and Markov
processes in some detail.

3.2 RDS with independent increments, Brownian RDS

An RDS o(t,w) over (@, F, P, (Y:)ter) is said to have independent increments if for all
to <t <...<t, the random variables

(p(tl — to, 19tow), (p(tz - tl, 19:10.7), ceey ()O(tn - t"_l, ﬁtn_,w) (11)

are independent. If, in addition, for T' = R* or R the map ¢t — ¢(¢,w)z is continuous for
all z € X P-a.s., then the RDS or cocycle is said to be a Brownian RDS or cocycle.

Remarks (i) An RDS with independent increments automatically has sta.tionaryg(time
homogeneous) increments, as, by the 9; invariance of P, ¢(h,Jw) 2 p(h,w)forallt € T.
(ii) If p(t,w) consists of invertible mappings then, by the cocycle property,
Poa(W) := @(t,w) 0 p(s,w) ™" = p(t — 5,9,w)
for s <t,s0 (11) means that for to <¢; < ... <,
Ptostrr Prastar - -+ Phacsstn (12)

are independent.



3.3 RDS and Markov chains, discrete time T' = Z™* or Z

Case T = Z*: Here p(n,w) = p(1,9" 'w)o...0¢p(1l,w), so the cocycle has independent
increments if and only if ¢(1,w),p(l,dw),... are iid. We thus have a product of iid
random mappings, i. e., a classical ‘iterated function system’. The mapping

z — p(n,w)z
defines a homogeneous Markov chain with transition kernel
P(z,B) = P{w | ¢(1,w)z € B}. (13)
Putting z, = ¢(n,w)ze we have
T = (1, 9"w)zn, (14)

i.e., a stochastic difference equation generating the Markov chain.

Conversely, given a transition kernel P(z, B) on X, we want to construct an RDS with
independent increments over a dynamical system (2, F, P, 1), i.e., a cocycle ¢(n,w) with
(¢(1,9™w))nez+ iid, such that (13) holds. This question has been dealt with by Kifer [26]
Section 1.1. It always has a positive answer as soon as X is a Borel subset of a Polish
space and if we are content with a measurable mapping (z,w) — ¢(1,w)z. If we want
z — ¢(1,w)z to be continuous or homeomorphisms or smooth etc., a general answer to
this representation problem is not known up to now (compare Kifer [26] p.12).

Case T = Z: Now ¢(n,w) is invertible, and the cocycle has independent increments
if and only if (¢(1,9"w))nez is iid. The mapping z — ¢(n,w)z defines a homogeneous
Markov chain on all of Z starting at zo = z, and (14) can be inverted to give
Tn = (1, 9"w)  Zpp1 = 0(—=1,97"W)Tpy1-
We can now look at the forward transition kernel
P¥(z,B) = P{w | ¢(1,w)z € B}
and the backward transition kernel
P~ (z,B) = P{w | ¢(~1,w)z € B} = P{w | ¢(l,w) 'z € B}.

Note that in general Pt and P~ do not have the same invariant measures: a forward
invariant measure vt has to satisfy

i = /P"’(:c,-) dvt(z) = Ep(1l,w)v,
whereas a backward invariant measure v~ is characterized by

vo = /P'(z,-) dv(z) = Ep(—1,w)v™ = Ep(l,w) 'v".
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How are measures v* related to invariant measures of the RDS, i. e., measures x on X x
whose disintegration satisfies ¢(1,w)p, = po.? For one sided time Ohno [37] has proved
that if » = v is an invariant measure for the forward transition kernel P*, then p = v x P
is invariant for the RDS. Conversely, if a product measure v x P is invariant for the RDS,
then v is invariant for P*.

For two sided time, a product measure is invariant for the RDS if and only if » is fixed
under ¢, i.e., p(l,w)r = v P-almost surely. If a measure v* is P* invariant then the
measures ut and p~, given by
pE = lim o(n,w) v,
n—Foo
are invariant for the RDS (so-called Markov measures). They are the ones which ‘re-

member’ the Markov kernels P%. This equally applies for continuous time 7' = R* or R.
These questions have been studied systematically by Crauel [21].

However, typically an RDS has more invariant measures not coming from the Markov
chain — and those measures are needed for a systematic study of the RDS.

3.4 RDS and Markov processes, continuous time T = R* or R

Here the situation is much nicer and its description more complete than in the discrete
time case. Basic results are due to Baxendale [10] and Kunita [33], [34], [35]. We describe
the situation conceptually, i. e., without stating all technical assumptions, and quote freely
from the above sources. We mainly emphasize the RDS point of view.

Case T = R*: Assume X = R (similar things hoia on manifolds). Let ¢(t,w) be a
Brownian RDS of homeomorphisms (or diffeomorphisms of some smoothness class). Then
(¢(t,w)),cp+ is a Brownian motion with values in the group Hom(R?) (or Diff*(R¢) with
a suitable *) in the sense of Baxendale [10], or

Pst(w) = p(t,w) o (,o(s,w)—l,
s,t € R*, is a temporally homogeneous Brownian flow in the sense of Kunita [35] p.116.

By studying the infinitesimal mean

1
,111{}1) EE(‘Pz.Hh(“’)x —z) = b(z) ¢
and the infinitesimal covariance

lim l

hN\0 hE((Pt,H-h(w)x — z)(pre+n(w)y —y) = a(z,y),

Kunita constructs a vector field valued Brownian motion (F(z,?,w)),cga g+ i- €., & con-
tinuous (in t) Gaussian process (F(-,t,w)),cg+ With values in the space of vector fields
on R? (so z — F(z,t,w) is a vector field), which has additively stationary independent
increments and satisfies F'(-,0,w) = 0 (P-a.s.). The Brownian motion F is related to the
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Brownian flow ¢ by EF(z,t,w) = tb(z) and cov(F(z,t,w), F(y,s,w)) = min{t, s} a(z,y).
This implies that for all s € R*

Pop(w)z =z + /F(cp,,..(w):c,du,w), t € [s,00), (15)

which has to be understood in the sense that (15) has a solution which coincides in
distribution with the original Brownian flow ¢. In short: The (forward) flow satisfies
an Ité SDE driven by vector field valued Gaussian white noise. F is called the random
infinitesimal generator of ¢.

All n-point motions (p(t,w)z1,...,¢(t,w)z,) are homogeneous Feller-Markov processes.
In particular, (¢(t,w)z),cg+ is @ Markov process whose transition semigroup has generator

8 12 5
L= Zb'(xa_ 52} %) 55 (16)

i=1

The backward flow ¢, :(w)™! = p(s,w) o p(t,w)™!, 0 < s < t, satisfies for each t € R* a
backward Ité equation in s € [0, 1],

pri) Mo =2 = [ Flpudw) e duw)

where

ﬁ'(az,t,w) = F(z,t,w) — tc(z), ci(z) = Z £ , z,y | L 1n

j=1

and the backward integral f: F(pus(w) 'z, du,w) is formally defined by the same defini-
tion as the forward integral — the difference being the inverted measurability counting
from t backward to s.

As usual, things get more symmetric if we use Stratonovich forward and backward inte-
grals. Put

t
Fo(xataw) = F(z,t,w) — Ec(w%
then F© is the forward as well as the backward Stratonovich infinitesimal generator of ¢.

Conversely, given a temporally homogeneous V(R?) (= vector fields on R?) -valued Brown-
ian motion F', we can write down the SDE (15) to generate a Brownian flow with generator
F. We can easily construct a Brownian RDS describing the same object. Indeed, put

Q = {w]|w(0)=0,w(-) € C(RY,V(R?))}

F = Borel field

P = distribution of F' = ‘Wiener measure’
duw() = w(-+1t)-w(t), teRT,



