

System/360-370
Assembler Language
(O3)

Kevin McQuillen

Edited by Mike Murach

Mike Murach & Associates, Inc.

4222 West Alamos, Suite 101
Fresno, California 93711

© 1975, Mike Murach & Associates, Inc.
All rights reserved.

Printed in the United States of America.
Library of Congress Catalog Card Number:
74-29645

Thanks to IBM for permission to reprint or
adapt the materials listed.

Reprinted by permission of International
Business Machines Corporation: figures 1-1, 1-7,
2-5, 2-6, 2-15, 6-3, 9-9, 9-16, 9-18, 10-12, 10-13,
10-14, 12-2, 12-4, 12-5, 12-6, 12-11, 13-2, 13-6,
13-13, 13-14, 15-4, 15-12, 15-13, 15-24, 15-25,
16-6, A-1, A-2, and A-3; and forms GX24-6599,
GX20-1776, GX28-6509, and GX20-8021.

ISBN 0-9116256-02-X

20 19 18 17 16 15 14 13 12 11

System/360-370
Assembler Language
(O5)

Preface for Instructors

System/360-370 Assembler Language (OS) has been designed
for use in both introductory and advanced courses. Specifically,
this book teaches System/360-370 assembler language for the
OS and OS/VS operating system. In chapters 1 through 5,
| believe this book provides the most effective introduction to
assembler-language programming that is currently available.
In chapters 6 through 16, | believe this book provides the most
effective advanced material on assembler-language program-
ming that is on the market today.

Because most students taking this course will have taken a
previous course in data processing or programming, or will have
had equivalent experience in the field, it is assumed that the
readers have certain skills. In particular, the readers should be
able to do the following:

1 Describe the components of a typical card, tape, or direct-
access system.
Explain what is meant by the term continuous form.

3 Decode the data in an uninterpreted punched card.

4 Describe how data is keypunched into a standard
punched card.

Explain what is meant by loading a program.
Describe blocked tape records.

Preface

Since this is a very limited set of requirements, it is
possible to use this book for a first course in computing by
giving the class a computer and keypunching demonstration
plus an introductory lecture that provides the background
material indicated above. Similarly, if the courses previously
taken by some students haven’t covered all the material
required by these prerequisites, the omitted material can be
covered in a single lecture or demonstration. If all six
prerequisites should have been met in a previous course,
you may want to give a pretest on the first day of class to
make sure that they actually have been met; you can then
review accordingly.

This is the second book published by our company, and
it was developed in a way that | think adds some much
needed professionalism to the process of preparing
instructional materials. To begin with, more than three
months were spent in analyzing the possible subjects to be
included in this book, selecting the actual content, and
organizing that content based on a theory of instruction.
Since few writers have the luxury of this much time for
planning, one of the major shortcomings of most texts is the
content selection and organization. Second, this book was
written by a first-rate industry specialist, Kevin McQuillen, on
a full time basis. In contrast, many books in the field are
written on nights and weekends as secondary projects to
some full time job. Finally, Kevin’s manuscript was
extensively rewritten and edited in an attempt to bridge the
gap between professional and novice. | think the resulting
product indicates that this method of preparing instructional
materials is an effective one.

BOOK FEATURES
Content Selection

One important feature of this book is the breadth and
usefulness of its content. This is true because the content
was selected based on an analysis of the tasks done by a
professional assembler-language programmer. For each task
required of him, there is explanatory material in this book.

As a result, | think you will find that this book is the most
complete assembler-language book currently available. If you
check the table of contents, you will find material on
diagnostics, debugging, tape and disk concepts, operating
systems, job-control language, and keypunching. Although all
of these subjects are related to essential programming tasks,
it is common for one or more of them to be omitted from
assembler-language texts.

On the other hand, subjects that aren’t related to the
tasks of a professional programmer have been omitted from
this text. This makes the book relevant. Although you may
think that all programming books use task analysis as a
guideline for selecting content, | can find numerous examples
of irrelevant material in the sampling of assembler-language
books that | have in my library. Multiplying binary numbers,
decoding the PSW word, writing channel commands, coding
privileged instructions, using physical IOCS, knowing the
interrupt system—all are irrelevant to the assembler-language
programmer but are included in one text or another.
(Granted some of these are related to the tasks of a software
specialist, but that isn’t the context in which these subjects
are presented.)

The only material in this book that isn’t based on a
strict task analysis is the topic on floating-point arithmetic
and the topic on advanced macro writing. Although these
topics are more relevant to the software specialist than to
the assembler-language programmer, they have been included
to give some important exposure. Otherwise, you can be sure
that the coding and techniques illustrated in this book are
also those found in industry. In contrast, a student who uses
another text will all too often discover that the techniques
illustrated are not those of the real world.

Modular Organization

A second feature of this book is its organization, sometimes
referred to as “modular” organization. After reading the first
five chapters of the text, the student can continue with any
of its other parts, or modules. In particular, the book is
organized as follows:

Prerequisite

Part Chapters Part Title Parts Design

1 1-2 Required Background - Sequential

2 3-5 Assembler Language: 1 Sequential
The Core Content

3 6-11 Advanced Assembler- 1,2 Random
Language Subjects

4 12-15 Tape and Direct- 1,2 Sequential
Access Programming

] 16 The Operating System 1,2

This means that the chapters in part 4 should be studied
in sequence, but the chapters in part 3 can be studied in
any order. Within the few limitations indicated in this table,
it is you who will determine the sequence of instruction and
the material to be emphasized. Similarly, the student is free
to jump to a topic that interests him without fear of missing
related background material. In short, the course can be
teacher-directed or student-directed, but it will not be
textbook-directed.

In addition to the teaching flexibility that modular
organization gives, there is an important educational
reason for organizing a book-in this way. Briefly stated, this
organization forces the author to present the essence, or
“core content,” of the subject in just a few chapters early
in the book. This in turn means that the student is shown
all the important relationships between the elements of the
subject early in the course. Because one of the major
problems of learning is the failure to see the relationships
between the parts, the emphasis on core content makes
learning more efficient.

I might add that although many books are advertised
as modular, few actually are. To be truly modular, the
essence, totality, or core content of the subject (call it what
you will) must be presented early in the course and all
subsequent modules must need only this core content as
prerequisite material. When a book is designed in this way,
its format proceeds from a theory of education rather than
from marketing considerations.

Preface

Educational Methodology

| think the primary feature of this book is that it works—you
can actually learn how to program in assembler language
from it. | know because | learned DOS assembler language
from Kevin’s raw manuscript without any outside help of
any kind. Since that time, we've refined the manuscript
considerably and have made it more effective didactically.

As | see it, there are two main reasons for this book’s
effectiveness. One of these reasons is its modular approach.
In general, there are two basic approaches to teaching
assembler language—the parts-to-the-whole method and the
modular method. The first teaches the separate elements of
the language until a great deal of detail has been covered
and only at that time are a few of these elements put
together in a complete program. Using this approach, it isn’t
uncommon for the first complete program to be presented
in the second half of the book, and sometimes the first
complete program is presented very late in the book. For
instance, one of the leading texts presents its first complete
program on page 285, while another presents its first
complete program in chapter 14 of a 15-chapter book.

The problem with this parts-to-the-whole method of
teaching is twofold. First, a student doesn’t have the
perspective to appreciate the relationships between the
parts until he is familiar with a complete program. As a
result, he learns the parts through memory rather than
through some underlying structure or concept. Second,
from a point of view of classroom teaching, this method
is impractical. Normally, you must wait at least several
weeks before a student has learned enough of the parts in
order to be able to write a complete program. In the
meantime, motivation dwindles, and what should be an
exciting problem-solving class becomes a frustrating struggle
to learn the massive amount of detail associated with the
language. Also, if the assignment of computer laboratory
time is a fixed number of hours per week from the start of
the course, the instructor usually has to create supplementary
material so students can run programs, or segments of
programs, in the early weeks of the course.

Preface

As indicated earlier, this book uses the second (modular)
approach to the teaching of assembler language. After some
background material is provided in chapters 1 and 2 (some
of which may be review), topic 1 of chapter 3 presents a
complete program including card input, printer output, data
movement, editing, arithmetic, and logic. As soon as this
basic program is understood, the student can begin to write
significant programs of his own. Before chapter 3 is
completed, though, two refinements of this first program
and two additional programs are presented so a total of
five complete programs are shown in chapter 3. By this
time, a full subset of the language has been presented, and
the student is prepared to do independent work in a
computer lab.

Following the subset presented in chapter 3, chapter
4 offers a definitive presentation on correcting diagnostics,
preparing test data, and debugging programs, including the
analysis of core dumps. Since these skills are essential to
assembler-language programming and to successful lab
work, it is amazing that they are often treated so lightly in
other texts. To complete the core content, chapter 5 presents
a collection of elements and techniques that expands the
subset and makes the book truly modular.

Once a student has satisfactorily completed part 2—in
particular, chapters 3 and 4—the most demanding part of the
instructor’s job is finished. With an understanding of the
structure of the language and all the related skills for
coding, testing, and debugging a program, learning other
assembler-language elements and techniques becomes part
of a pattern. If a student can see the need for an element
or technique and can see how that element or technique
relates to the whole task of programming, mastering the
material is a manageable task.

The second reason for the book’s didactic effectiveness
is its illustrative material. Although many authors rely
heavily on verbal description, we know from experience
that a programming language cannot be learned without
extensive illustrative material. In fact, the illustrative material
is far more important than the descriptive material. For this
reason, this book has a carefully planned sequence of

program listings. In all, there are 26 complete program
listings, about 45 self-contained segments of coding, several
diagnostic and debugging listings, and numerous supporting
examples. As soon as | saw the illustrative material that
Kevin had selected for this book, | knew the product would
be effective.

Apparatus by Topic

Because learning depends on what the student does, not
upon what he sees or hears, each topic is followed by
terminology lists, behavioral objectives, and, whenever
relevant, problems and their solutions. The terminology lists
are listings of the new words presented in the text. The
intent is for the student to scan the list to check his
comprehension of the terminology. If he understands the
words, he can proceed. If he feels that he doesn’t have a
clear understanding of a term, he can reread applicable
sections or note the term so he can question its meaning in
class. In any case, the intent of the list is for use as a quick
review; a student shouldn’t be expected to write definitions
of the words.

Following the terminology lists are behavioral objectives
that describe the activities a student should be able to do
upon completion of the topic. The intent of these objectives
is to give the student a clear picture of what his learning
goals should be. Since this book deals with programming,
the primary objectives have to do with solving various types
of programming problems using assembler language. In
addition, there are objectives that deal with related skills
such as reading core dumps, describing a type of file
organization, choosing blocking factors for disk files, and
preparing OS job-control cards. Although some students
will ignore the objectives, others will be more efficient
learners because of them.

Although some instructors seem to feel that preparing
and using objectives is busywork, | would like to see them
in all textbooks. At the least, listing objectives would force
the author to focus more clearly on what he is trying to
accomplish. Without objectives, | think an author all too

often concerns himself with writing a definitive work rather
than concentrating on the goals of education.

At any rate, | believe objectives can contribute
significantly to the success of a course. If students are
convinced that the objective lists describe all activities
that they will be expected to perform, their learning will
become much more directed. In each class I've taught, |
have found students who wouldn’t rest until they felt they
could satisfy all of the course objectives. Because some
students find it hard to believe an instructor is telling them
everything they will be required to do, it is important for
you to refer to the objectives as you review a topic in class.
If the objectives are made prominent in all classroom
activity, | am convinced that teaching has a greater likelihood
of success.

Since it is unlikely that two people will agree on a list
of objectives for a course, you will probably want to modify
the objectives to suit your class. If, for example, you are
using the text for a computer science course, you may want
to add objectives that emphasize software development.
The objective lists, then, are only a starting point. However,
if only the objectives given in the text are fulfilled, | would
say that you have taught a highly successful course.

When the objectives deal with problem solving, they
are followed by problems and their solutions. These
problems are intended to give practice in the skills described
by the objectives. As much as possible, these problems
have been designed to show how the elements and
techniques described in the text are used in a different
context. There are no multiple-choice, true/false, matching,
or fill-in questions, because those types of activities
have nothing to do with the important objectives of a
programming course.

So there is immediacy to the problem-solving activity,
solutions are presented immediately after the problems. This
has the advantage of letting a student know that he is
right when he is right, and just as important, of letting him
know right away when he’s wrong. For those students who
wouldn’t otherwise know how to get started in solving a
problem, the solutions are an essential part of the learning

Preface

process. Although compiling and testing programs on a
computer system has the same effect as doing the problems
and checking the solutions, studying the solutions of a
professional can correct many false notions and bad habits
before problems are actually tried on a computer system.
Because of the expense of computer time, this is a practical
consideration.

What about students who don’t actually do the
problems but look to the solutions? The experience is still
valuable. Although the best way to learn is to actually do
the problems and then compare the answers with the
solutions provided, it may not always be the most efficient
way of learning—particularly, for the brightest students or
for those with experience in another language. In the interest
of expediency, then, a student may read a problem, conceive
a solution, and compare this conception with the actual
solution. The important thing is that assembler language be
viewed in the context of its application. Looking at the
problems in this way, they can be seen simply as a means of
presenting additional assembler-language applications.

Lab Problems

Appendix F presents a progression of programming problems.
Since these problems include test data listings, they are ideal
for lab problems. In addition, they can be used for classroom
exercises or tests. If a student can write programs for all of
the types of problems given, | feel sure he is well qualified
to become an entry-level programmer in industry.

TEACHING NOTES

Because there is no instructor’s guide for this text, we have
tried to make the text itself as complete—both for teacher
and student—as is practical. For this reason, the following
teaching notes are included in this preface.

1 If students taking this course have a strong background
in data processing or programming, it is possible that
they will have already mastered the material in chapter

Preface

1 (introductory concepts), chapter 12 (tape concepts),
and chapter 13 (direct-access concepts). For this reason,
you may want to give a pretest for these chapters
based on the objectives at the ends of the topics. To

a lesser extent, the students may also be familiar with
the material of chapter 2 (CPU concepts) and chapter
16 (OS and JCL). Here again, a pretest can determine
which students need to master which objectives.

If your students have keypunched source and JCL decks
before, appendix A should give them all the information
they need for keypunching assembler-language decks.
Otherwise, a keypunching demonstration that includes
the mounting of a program card on a program drum
should be given.

Because it can make the running of lab problems more
efficient, | recommend that tape or sequential-disk
programming be taught immediately after the core
content. Then, a card-to-tape or card-to-disk utility can
be used to store the test decks in tape or sequential-disk
files, and the problems for chapters 6 through 12 can

be run as tape-to-printer or disk-to-printer programs
rather than card-to-printer programs. In general, this
presents no conceptual problems for the students, but

it can greatly improve computer efficiency.

Although the material in this text is self-sufficient, there
are several references to IBM manuals that provide
additional information. As a result, one or more copies
of the relevant manuals should be available to the
members of the class. These manuals are listed at the
end of the introduction.

5 Because of its modular organization, didactic approach,

illustrative material, and apparatus, | believe some new
solutions to old teaching problems are possible when
this text is used. Perhaps the most significant teaching
problem encountered in a programming course is the
range of aptitudes of the students. For instance, some
students will grasp the material by merely reading the
text, some will require minor assistance in addition to
reading the text, some will require extensive help in
the form of lecture and discussion, and |some just
shouldn’t be taking the course. Because 'this text gets
into the problem-solving aspects of the subject in
chapters 2 and 3, the aptitudes of your students should
be apparent early in the course, in time for effective
counseling. Then, the brightest students can be assigned
lab problems and be allowed to work independently;
others can be assigned less demanding problems and
given periodic assistance; and the marginal students can
be given full assistance and supervision.

CONCLUSION

In conclusion, I'd like to say that we have tried very hard

to make this text as effective as possible. Nevertheless,

| know that we have much to learn about preparing
instructional materials. To this end, we intend to do
controlled tests of this product in order to see at what

points in this text learning problems develop. Maybe then
we can improve our methodology in future editions and in
future products. We also welcome your comments, criticisms,
suggestions, or questions.

Mike Murach
Fresno, California

The text of this book is set in 10 point Zenith with
heads set in Galaxy Medium by Applied Typographic
Systems of Mountain View, California.

Pat Rogondino, of Palo Alto, California, prepared the
illustrations. Tom Tracy, of Oakland, California, took
the photographs for the part openers and cover.

Michael Rogondino of Rogondino & Associates,
Palo Alto, California, did the book design and the
cover design. He also guided the book’s production.

Preface for Instructors
Introduction

PART 1 Required Background

Chapter 1 Preliminary Concepts and Terminology
Topic One System/360-370
Topic Two Writing a Program in System/360-370
Assembler Language
Topic Three Introduction to OS and Job-Control
Language

Chapter 2 System/360-370 CPU Concepts
Topic One Data and Instructions
Topic Two Overlap and /0 Instructions

PART 2 Assembler Language: The Core Content

Chapter 3 A Subset of Assembler canguage
Topic One
Topic Two Refining the Reorder-Listing Program
Topic Three Completing the Basic Subset

Chapter 4 Diagnostics and Debugging
Topic One Desk Checking and Diagnostics
Topic Two Testing and Debugging

Chapter 5 Expanding the Basic Subset
Topic One Register Operations
Topic Two Storage Definition Techniques

An Introduction to Assembler Language

Contents

vii

10

22

29
29
49

55
55
77
87

97
97
112

141
141
149

PART 3 Advanced Assembler Language Subjects

Chapter 6 Binary Arithmetic
Topic One Fixed-Point Arithmetic
Topic Two Floating-Point Arithmetic

Chapter 7 Table Handling
Topic One Single-Level Tables
- Topic Two Multilevel Tables

Chapter 8 Editing, Bit Manipulation, and Translation

Chapter 9 Subroutines and Subprograms
Topic One Subroutines
Topic Two Subprograms

Chapter 10 Writing Macro Definitions
Topic One Basic Macro Writing
Topic Two Advanced Macro Writing

Chapter 11 Useful Standard Macros and Assembler
Commands

Standard Macros

Assembler Commands

Topic One
Topic Two

PART 4 Tape and Direct-Access Programming

Chapter 12 Magnetic Tape Concepts
Topic One Tape Characteristics

Topic Two Programming Considerations

161
162
165

173
173
181

185

199
199
213

225
226
232

247
247
254

261
261
266

Chapter 13 Direct-Access Concepts
Topic One Direct-Access Devices
Topic Two File Organization
Topic Three Programming Considerations

Chapter 14 BAL for Sequential Files
Topic One Fixed-Length Records
Topic Two Variable-Length Records

Chapter 15 BAL Coding for Indexed Sequential and
Direct Files
Topic One Indexed Sequential Access Method
Topic Two Direct Access Method

PART 5 The Operating System

Chapter 16 The Operating System and Its Job-Control
Language
Topic One The Operating System
Topic Two OS Job-Control Language

273
274
280
290

297
298
314

323
323
348

367
367
380

PART 6 Appendixes

Appendix A Procedures for Keypunching Source Decks

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

and JCL Cards

BAL Instruction Summary

Assembler Command Summary

Common DCB Operands for QSAM

System /370 Instructions

Problems for Computer Lab

413

417

422

424

425

429

Introduction

In the mid-1960s, computer industry experts began to predict
that the use of assembler language would decline and die within
ten years or so. Today, various experts continue to predict the
replacement of assembler languages by various software or
hardware developments. In fact, however, assembler language
is the second most widely used programming language for busi-
ness applications—second only to COBOL. Furthermore, the
use of assembler language does not appear to have declined
in the last three years.

Because of this widespread use, a professional programmer
for a medium or large sized computer system is almost certain
to come in contact with assembler language at some time in
his career. But that’s only one of the reasons for studying as-
sembler language. In addition, the ability to write and debug
assembler-language programs allows you to write routines that
cannot be written in high-level languages, helps you write more
efficient high-level language programs, and gives you the tools
with which to debug sophisticated problems that may result
from using high-level-language code. In short, a high-level-
language programmer isn’t in complete control of a computer
system unless he knows assembler language.

In case you don’t know it, there are many different assem-
bler languages. For instance, each type of computer system has
its own assembler langu:ge. In addition, there may be more

2 Introduction

than one version of assembler language for a single
computer. For the IBM System/360-370, there are two main
versions of assembler language. They can be referred to as
the DOS and OS assembler languages. This book teaches OS
assembler language.

With few exceptions, the content of this book has been
selected based on frequency of use in industry. As a result,
you can feel sure that this book is a true representation of
what you’ll find in the business world. However, because
of the range of this book—it covers everything from
elementary coding to advanced table handling, translating,
macro writing, and disk file handling—much of the material
presented here is not known or used by the average
professional programmer. For this reason, | feel confident
that you will have more than met the requirements of a
starting programmer in industry if you are able to apply
all of the material in this book to business programming
problems.

Before you actually begin to use this book, there are
several things you ought to know about it.

1 In most cases, a student taking this course will have taken
an introductory course or will have programmed in
another language. As a result, this book assumes that you
can do the following:

a. Describe the components of a typical card, tape, or
direct-access system.

b. Explain what is meant by the term continuous form.

c. Decode the data in an uninterpreted punched card.

d. Describe how data is keypunched into a standard
punched card.

e. Explain what is meant by loading a program.

f. Describe blocked tape records.

Since this is a very limited set of requirements, your
background is probably much stronger than required. If
so, the material will be that much easier for you. In
particular, chapters 1, 12, and 13 are likely to be mainly
review for you, and chapters 2 and 16 are likely to be
advanced versions of material you have already been
introduced to.

2

This book is not designed so that you must read its
sixteen chapters in sequence. Instead, its chapters are
divided into five parts as indicated by this table:

Prerequisite

Part Chapters Title Parts Design
1 1-2 Required Background - Sequential
2 3-5 Assembler Language: 1 Sequential
The Core Content
3 6-11 Advanced Assembler- 1,2 Random
Language Subjects
4 12-15 Tape and Direct- 1,2 Sequential
Access Programming
5 16 The Operating System 1,2

This means that after completing the first two parts, you
can continue with any other part of the book. In part 4
and 5 the chapters should be read in sequence, but part
3 is designed so the chapters can be read in any order
you choose.

The advantage of this type of organization is that you
can read the parts and chapters in the sequence that
interests you, not in the sequence the author thinks is
best. If, for example, you are interested in writing a
file-handling program for a direct-access file, you can
skip to part 4 immediately after completing part 2.
Similarly, a COBOL programmer who wants to know
how to write an assembler-language subprogram might
skip to chapter 9 immediately after part 2.

From an educational point of view, this method of
organization is effective because it gives you an honest
representation of the language early in the course. By the
time you complete chapter 3, you will know how to code
complete assembler-language programs for card input and
printer output. Then chapter 4 shows you how to prepare
and debug programs, and chapter 5 presents some
professional coding techniques. As a result, after
completing part 2 you will have a good appreciation
for the nature of assembler language as well as a good
idea of your ability to master the language.

If you are studying this language on your own and
want a recommended sequence of study, | recommend
the following:

Chapters 1, 2,3, 4,5

Chapters 7, 8, 9, 11
Chapters 12, 13, 14, 15

The Core Content

Selected Advanced Subjects

Tape and Direct-Access
Programming

Chapter 16 OS and JCL for Tape Files
Chapter 10 Macro Writing
Chapter 6, Binary Arithmetic

Don’t feel, however, that you should rigidly adhere to this
sequence. Whenever your interest in a subject is aroused,
read the appropriate chapter. If, for example, a question
arises about tape input and output when you are reading
chapter 5, turn to part 4 next. There is no greater
assurance that learning will take place than to study a
subject in search of an answer.

At the end of each topic or chapter there are terminology
lists of all the new terms. The intent of these lists is not
that you be able to define the words in them, but that
you feel you understand the words. After you read a topic,
glance at the list and note any word whose meaning

i$ unclear to you. Then, reread the related material. Once
the words are fixed in your mind, continue.

Following the terminology lists for each topic or chapter
there are one or more behavioral objectives. These
objectives describe the activities (behavior) that you
should be able to perform upon completion of a topic or
chapter. The theory is that you will be a more effective
learner if you know what you are expected to do and
what you will be tested on. This contrasts with the
traditional classroom treatment in which a student is
forced to guess as to what he will be tested on.

In general, behavioral objectives can be divided into
two classes: knowledge objectives and application
objectives. A knowledge objective requires you to list,
identify, describe, or explain aspects of a subject. For

Introduction 3

example, the first objective in chapter 1 is: Identify

the model number and 1/0 device numbers of the
System/360-370 that you will be writing programs for.
Once you have been told what these numbers are, you
should have no trouble fulfilling this objective. Although
other knowledge objectives will be more involved and
more difficult than this one, given the objective and
source of knowledge, you should be able to perform the
activity described in the objective.

Application objectives, on the other hand, require
you to apply knowledge to problems. Since
assembler-language programming is concerned entirely
with problem solving, the primary objectives of this
book are application objectives. In general, knowledge
objectives are only stated when they are a prerequisite
for understanding some aspect of assembler language.

If only one objective were given for this entire book,
it would be something like this: Given a business
programming problem of any degree of difficulty, solve
it using assembler language.

Following the behavioral objectives there are one or more
problems for each application objective. These problems
are intended to get you involved. There is much truth in
the maxim: | hear and | forget; | see and | remember;

| do and | understand. If there is one message coming
from research in education, it is that meaningful learning
depends on what the learner does—not on what he sees,
hears, or reads.

Because the intent of this book is to teach
assembler-language programming, the problems for the
most part ask you to apply assembler language to
significant programming tasks. There are no fill-in answers,
no multiple choice questions, and no true/false
statements because those types of activity have nothing
to do with writing assembler-language programs. As
much as possible, the problems are intended to stimulate
the kind of thinking that would be necessary if you
were actually doing the job of a programmer. Because
the problems often require you to apply assembler

4

Introduction

language to situations that go beyond the applications
shown in the topics themselves, | hope that at times
the problems will help you to experience the joy

of discovery and to receive the reward of deeper
understanding.

Solutions are presented immediately after the
problems. This allows you to confirm that you are right
when you are right, but it also lets you learn from being
wrong. By checking the solution when you finish a
problem, you can discover when you are wrong and
correct false notions before they become habits.

Should you actually work each problem in detail
before checking the solution? This may be the surest
way of learning, but it isn’t necessarily the most efficient
or the most practical way. As long as you determine
what the problem is and conceive the essential elements
of a solution before you check the given solution,
learning should take place.

One important message: don’t skip the problems.
Reading, like listening, can be a very passive activity.
Have you ever, for example, read an entire chapter of a
book and then realized you didn’t understand any of it?
The problems for each topic or chapter will provide you
with check points to reinforce the reading you've done,
to teach you application, to keep the learning process
active, and to help you progress toward deeper
understanding.

Although this book provides all the information needed
to write a wide variety of programs, it is not a complete
description of all of the details or instructions of
assembler language. As a result, several IBM manuals
are named as reference materials in various chapters of
the book. If you would like to get a complete set of
these reference manuals (though it’s certainly not

necessary), you can order them through IBM.

For 360 systems operating under OS/MFT or OS/MVT,
use these older versions:

Order No.
GX20-1703
GA22-6821
GC28-6514
GC26-3756
GC-3794

GC28-6646

GC28-6631
GC28-6703

Title

System/360 Reference Card

System/360 Principles of Operation

OS Assembler Language

OS Assembler (F) Programmer’s Guide
OS Data Management Macro Instructions
OS Supervisor Services and Macro
Instructions

OS Messages and Codes

OS Job Control Language Reference

For 370 systems operating under OS/VS1 or OS/VS2,
there are newer versions of the same manuals:

Order No.
GX20-1850
GA22-7000
GC33-4010
GC33-401
GC26-3793

GC27-6979

GC38-1001
GC38-1003
GC38-1002
GC38-1008
GC28-0618

Title

System/370 Reference Card

System/370 Principles of Operation
0OS/VS and DOS/VS Assembler Language
OS/VS Assembler Programmer’s Guide
0OS/VS Data Management Macro
Instructions

OS/VS Supervisor Services and Macro
Instructions

VS1 System Messages

VS1 System Codes

VS2 System Messages

VS2 System Codes

OS/VS Job Control Language Reference

At the least, you should order the reference card that
applies to the system you will be using.

