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PREFACE

Recently a large amount of research has been related to nonlinear systems having
multidegrees of freedom, but hardly any of this can be found in the many exist-
ing books related to this general area. The previously published books empha-
sized, and some exclusively treated, systems having a single degree of freedom.
These include the books of Krylov and Bogoliubov (1947); Minorsky (1947,
1962); Den Hartog (1947); Stoker (1950); McLachlan (1950); Hayashi (1953a,
1964); Timoshenko (1955); Cunningham (1958); Kauderer (1958); Lefschetz
(1959); Malkin (1956); Bogoliubov and Mitropolsky (1961); Davis (1962);
Struble (1962); Hale (1963); Butenin (1965); Mitropolsky (1965); Friedrichs
(1965); Roseau (1966); Andronov, Vitt, and Khaikin (1966); Blaquiére (1966);
Siljak (1969), and Brauer and Nohel (1969). Exceptions are the books by Evan-
Iwanowski (1976) and Hagedom (1978), which treat multidegree-of-freedom
systems. However, a number of recent developments have not been included.
The primary purpose of this book is to fill this void.

Because this book is intended for classroom use as well as for a reference to
researchers, it is nearly self-contained. Most of -the first four chapters, which
treat systems having a single degree of freedom, are concerned with introducing
basic concepts and analytic methods, although some of the results in Chapter 4
related to multiharmonic excitations cannot be found elsewhere. In the remain-
ing four chapters the concepts and methods are extended to systems having
multidegrees of freedom.

This book emphasizes the physical aspects of the systems and consequently
serves as a companion to Perturbation Methods by A. H. Nayfeh. Here many
examples are worked out completely, in many cases the results are graphed, and
the explanations are couched in physical terms.

An extensive bibliography is included. We attempted to reference every paper
which appeared in an archive journal and related to the material in the book.
However omissions are bound to occur, but none is intentional. Many exercises
have been included at the end of each chapter except the first. These exercises
progress in complexity, and many of them contain intermediate steps to help the
reader. In fact, many of them would expand the state of the art if numerical re-
sults were computed. Some of these exercises provide further references.
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CHAPTER 1

Introduction

1.1. Preliminary Remarks

In this chapter we attempt to abstract the entire book. We introduce some of
the nonlinear physical phenomena that are discussed in detail in subsequent
chapters. The development of many of the results discussed here requires some-
what elaborate algebraic manipulations. Here we describe only the physical
phenomena, leaving all the algebra to the subsequent chapters. The descriptions
in this chapter are intended to give an overview of the whole book. Thus one
might better see how a given topic fits into the overall picture by rereading
portions or all of this chapter as one progresses through the rest of the book.

1.2. Conservative Single-Degree-of-Freedom Systems

In Chapter 2, free oscillations of conservative nonlinear systems are considered.
Most of these systems are governed by equations having the general form

u+fu)=0 (1.1)
Upon integrating, we obtain
a2 =h- F(u) (1.2)

where F(u) = [fdu and h is a constant of integration. Referring to (1.1) and
(1.2), we note that f(u) is the (nonlinear) restoring force, F(u) is the potential
energy, 3u? is the kinetic energy, and h (which is determined by the initial
conditions) is the total energy level per unit mass.

In the upper portion of Figure 1-1, the undulating line represents the potential
energy, while the straight horizontal lines represent total energy levels. Each
total energy level corresponds to a different motion, and the vertical distance
between a given horizontal line and the undulating line represents the kinetic
energy for that motion. Thus motion is possible only in those regions where the
potential energy lies below the total energy level.

In the lower portion of Figure 1-1, the variation of & with u is shown. Such a
graph is called a phase plane. For a given set of initial conditions (i.e., for a given

1
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Figure 1-1. Phase plane for a conservative system having a single degree of freedom.

total energy level), the response of the system can be viewed as the motion of a
point along a one-parameter (time) curve. Such a curve is called a trajectory. The
trajectory labeled T, corresponds to the energy level 4,,. The arrows indicate the
direction in which the point representing the motion moves as time increases.

The points labeled S are called saddle points or cols, and the one labeled C is
called a center. Saddle points and centers correspond to extrema of the potential
energy and hence they are equilibrium points. Saddle points correspond to
maxima while centers correspond to minima of the petential energy. The tra-
jectories that intersect at the saddle points (73 and 7’5 in Figure 1-1) are called
separatrices. They are the heavy lines. The point representing the motion moves
toward S along two of the separatrices and away from § along the other two. If
the representative point is displaced a small distance away from S, there are
three possibilities. First, the point can be placed exactly on an inward-bound
separatrix, and hence it approaches § as time increases. Second, it can be placed
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on a closed trajectory, and at times it is far away from S, though it periodically
passes close to S. (Here we assume that the equilibrium points are isolated.)
Third, it can be placed on an open trajectory, and hence it approaches infinity
as time increases. Because the representative point does not stay close to S for
all small displacements, the motion is said to be unstable in the neighborhood of
a saddle point (i.e., an equilibrium point corresponding to a maximum of the
potential energy is unstable).

In the neighborhood of the center, the trajectories are closed, and hence the
response is periodic (though not necessarily harmonic). Thus if the motion is
displaced slightly from a center, the representative point will always move on a

_closed trajectory which surrounds the center and stay close to it. (Again we
assume that the equilibrium points are isolated.) Thus the motion is said to be
stable in the neighborhood of a center (i.e., an equilibrium point corresponding
to a minimum of the potential energy is stable). An examination of these closed
trajectories shows that the period is a function of the amplitude of the motion.
In general, these trajectories do not extend the same distances to the right and
the left of the center; thus the midpoint of the motion shifts away from the
static center as the amplitude increases. This shift is often called drift or
steady-streaming.

Several analytical methods are introduced and subsequently used to provide
approximate expressions for the response. These methods treat small, but
finite, periodic motions in the neighborhood of a center. For various examples,
the approximate and exact values of the periods are compared.

1.3. Nonconservative Single-Degree-of-Freedom Systems

In Chapter 3, free oscillations of nonconservative systems are introduced.
Examples of positive damping due to dry friction (Coulomb damping), viscous
effects, form drag, radiation, and hysteresis are presented; examples of negative
damping are also included.

In Figure 1-2, a typical phase plane is shown. This one describes the oscilla-
tions of a simple pendulum under the action of viscous damping. Depending on
the initial conditions, the pendulum may execute several complete revolutions
before the oscillatory motion begins. The trajectories spiral into points that
correspond to the straight-down position of the pendulum. These points are
called foci. The straight-up positions correspond to the saddle points in the
phase plane. And as in the case of conservative systems, the trajectories that pass
through the saddle points are called separatrices.

The concept of a limit cycle is introduced. As an example, we consider
Rayleigh’s or van der Pol’s equation:

i+ wlu=e@- 34°) (1.3)
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)
-7 0 ™ 2T 3T  Figure 1-2. Phase plane for a simple
8 pendulum with viscous damping.

We regard the right-hand side of (1.3) as a damping term and note that its influ-
ence depends on the amplitude of the motion. When the amplitude of the motion
is small, 343 is small compared with # and the ‘“damping” force has the same
sign as the velocity (negative damping); thus the response grows. When the

LIMIT CYCLE

i

<

Figure 1-3. Phase plane for van der Pol’s equation (e = 0.1).
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amplitude is large, %123 is large compared with & and the damping force has the
opposite sign of the velocity (positive damping); thus the motion decays. This
behavior of growth when the amplitude is small and decay when the ampitude is
large suggests that somewhere in between there exists a motion whose amplitude

¢=01

NAD T
TR

- SEEE
Es P

Figure 1-4. Responses of the van der Pol oscillator for various values of ¢.
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neither grows nor decays. This is the case, and the motion is said to approach a
limit cycle.

In Figure 1-3, a phase plane for the van der Pol equation is shown. There are
two trajectories. One begins well outside the limit cycle, while the other begins
near the origin. Again the arrows indicate the direction in which the point repre-
senting the motion moves. The two trajectories approach the same limit cycle.

The influence of the parameter € on the response is shown in Figure 1-4. The
two curves in the top graph correspond to the two trajectories shown in Figure
1-3. We note that, as € increases, the motion becomes jerky; that is, in each cycle
there is a period of very rapid motion which is followed by a period of very slow
motion. This jerky motion is called a relaxation oscillation. Among other ex-
amples, this jerky type of motion is characteristic of a beating heart.

A system such as the Rayleigh or van der Pol oscillator is said to be a self-
exciting or a self-sustaining system. Some other examples of self-sustaining sys-
tems are found in various other electronic circuits, flutter, supersonic flow past a
liquid film, violin strings, a block on a moving belt, Q machines, multimode
operation of lasers, ion-sound instability in an arc discharge, and a beam-plasma
system.

In Chapter 3, a general discussion of singular points is given, and then various
qualitative methods and the analytical methods of multiple scales and averaging
are described, The analytical methods treat small, but finite, motions in the
neighborhood of a focus or a center. Several examples are worked out, and the
analytical results are compared with numerical results.

The comparisons made in the second and third chapters provide confidence
for the reader who is not well versed in perturbation methods. Confidence is
essential because in the subsequent chapters the analysis predicts many phe-
nomena that are associated only with nonlinear systems and that are in sharp
contrast with those associated with linear systems. Some of these phenomena,
such as ““saturation,” are described for the first time in this book.

1.4. Forced Oscillations of Systems Having a Single Degree of Freedom

In Chapter 4, we consider forced oscillations of weakly nonlinear systems
having a single degree of freedom. A number of concepts that are associated only
with nonlinear systems are introduced. The analytical methods introduced in
Chapters 2 and 3 are used for the analysis, and some of the analytical predictions
are verified by numerical integration. The problem reduces mathematically to
finding the solution of

i+ wlu=¢(u,u)+E (1.4)

where € <<'1 and £ is an externally applied, generalized force called the excita-
tion. We distinguish between two types of excitations. The first type of excitation



